1
|
Fischer Sigel LK, Sánchez DS, Sacerdoti F, Zotta E, Silberstein C. Progression of renal damage and tubular regeneration in pregnant and non-pregnant adult female rats inoculated with a sublethal dose of Shiga toxin 2. Microb Pathog 2024; 186:106482. [PMID: 38086442 DOI: 10.1016/j.micpath.2023.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli is the main cause of post-diarrheal hemolytic uremic syndrome (HUS) which produces acute kidney injury mainly in children, although it can also affect adults. The kidneys are the organs most affected by Shiga toxin type 2 (Stx2) in patients with HUS. However, previous studies in pregnant rats showed that a sublethal dose of Stx2 causes severe damage in the uteroplacental unit and induces abortion, whereas produces mild to moderate renal damage. The aim of the present work was to study the progression of renal injury caused by a sublethal dose of Stx2, as well as renal recovery, in pregnant and non-pregnant rats, and to investigate whether pregnancy physiology may affect renal damage progression mediated by Stx2. METHODS Renal function and histopathology was evaluated in pregnant rats intraperitoneally injected with a sublethal dose of Stx2 (0.5 ng/g bwt) at the early stage of gestation (day 8 of gestation), and results in these rats were compared over time with those observed in non-pregnant female rats injected with the same Stx2 dose. Hence, progression of cell proliferation and dedifferentiation in renal tubular epithelia was also investigated. RESULTS The sublethal dose of Stx2 induced abortion in pregnant rats as well as a significant more extended functional and histological renal injury in non-pregnant rats than in pregnant rats. Stx2 also caused decreased ability to concentrate urine in non-pregnant rats compared to their controls. However, renal water handling in pregnant rats was not altered by Stx2, and was significantly different than in non-pregnant rats. The greatest renal injury in both pregnant and non-pregnant rats was observed at 4 days post-Stx2 injection, and coincided with a significant increase in tubular epithelial proliferation. Expression of mesenchymal marker vimentin in tubular epithelia was consistent with the level of tubular damage, being higher in non-pregnant rats than in pregnant rats. Recovery from Stx2-induced kidney injury was faster in pregnant rats than in non-pregnant rats. CONCLUSIONS Adaptive mechanisms developed during pregnancy such as changes in water handle and renal hemodynamic may contribute to lessen the Stx2-induced renal injury, perhaps at the expense of fetal loss.
Collapse
Affiliation(s)
- Lilian K Fischer Sigel
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Fisiología Renal, Buenos Aires, Argentina; Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina
| | - Daiana S Sánchez
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Fisiología Renal, Buenos Aires, Argentina; Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina
| | - Flavia Sacerdoti
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Fisiopatogenia, Buenos Aires, Argentina
| | - Elsa Zotta
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Fisiopatogenia, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Laboratorio de Patología, and Facultad de Farmacia y Bioquímica, Cátedra de Fisiopatología, Buenos Aires, Argentina
| | - Claudia Silberstein
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Fisiología Renal, Buenos Aires, Argentina; Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Vieira Pimentel RL, Braga JF, Velloso EPP, Lautner RQ, de Oliveira ML, Todiras M, Alenina N, Bader M, de Sousa FG, Beier SL, Santos R. G-protein-coupled receptor MAS deletion produces a preeclampsia-like phenotype in FVB/N mice. Clin Sci (Lond) 2023; 137:1249-1263. [PMID: 37527493 DOI: 10.1042/cs20220819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND An unbalance in the renin-angiotensin (Ang) system (RAS) between the Ang II/AT1 and Ang-(1-7)/Mas axis appears to be involved in preeclampsia (PE), in which a reduction in Ang-(1-7) was observed. Here, we tested whether the reduction in the activity of the Ang-(1-7)/Mas axis could be a contributing factor for the development of PE, using Mas-deficient (Mas-/-) mice. METHODS AND RESULTS Cardiovascular parameters were evaluated by telemetry before, during pregnancy and 4 days postpartum in 20-week-old Mas-/- and wild-type (WT) female mice. Mas-/- mice presented reduced arterial blood pressure (BP) at baseline (91.3 ± 0.8 in Mas-/- vs. 94.0 ± 0.9 mmHg in WT, Diastolic, P<0.05). However, after the 13th day of gestation, BP in Mas-/- mice started to increase, time-dependently, and at day 19 of pregnancy, these animals presented a higher BP in comparison with WT group (90.5 ± 0.7 in Mas-/- vs. 80.3 ± 3.5 mmHg in WT, Diastolic D19, P<0.0001). Moreover, pregnant Mas-/- mice presented fetal growth restriction, increase in urinary protein excretion as compared with nonpregnant Mas-/-, oliguria, increase in cytokines, endothelial dysfunction and reduced ACE, AT1R, ACE2, ET-1A, and eNOS placental mRNA, similar to some of the clinical manifestations found in the development of PE. CONCLUSIONS These results show that Mas-deletion produces a PE-like state in FVB/N mice.
Collapse
Affiliation(s)
- Renata Lúcia Vieira Pimentel
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janaína Félix Braga
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elizabeth Portugal Pimenta Velloso
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberto Queiroga Lautner
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marilene Luzia de Oliveira
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Natalia Alenina
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
- German Center for Cardiovascular Research (DZHK) site Berlin, Berlin, Germany
| | - Michael Bader
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
- German Center for Cardiovascular Research (DZHK) site Berlin, Berlin, Germany
- Charité University Medicine Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Felipe Gaia de Sousa
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Suzane Lilian Beier
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ras Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Gu R, Cui T, Guo Y, Luan Y, Wang X, Liu R, Yin C. Angiotensin-(1-7) ameliorates intestinal barrier dysfunction by activating the Keap1/Nrf2/HO-1 signaling pathway in acute pancreatitis. Mol Biol Rep 2023:10.1007/s11033-023-08544-9. [PMID: 37269386 DOI: 10.1007/s11033-023-08544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Intestinal barrier dysfunction is a serious complication associated with acute pancreatitis (AP). Angiotensin (Ang)-(1-7) plays a protective role in the intestinal barrier, but the underlying mechanism remains clear. This study investigated the impact of Ang-(1-7) on AP-induced intestinal dysfunction and its involvement in the Keap1/Nrf2/HO-1 pathway. METHODS AND RESULTS We studied caerulein- and lipopolysaccharide (LPS)-induced AP in mice and an epithelial cell line (IEC-6) from the small intestinal crypt of rats. Ang-(1-7) was administered orally or via the tail vein. IEC-6 cells were divided into five groups: control; LPS; LPS + Ang-(1-7); LPS + Ang-(1-7) + ML385 (an Nrf2 inhibitor); and LPS + ML385. Pancreatic and intestinal histopathology scores were analyzed using the Schmidt and Chiu scores. The expression of intestinal barrier-associated proteins and Keap1/Nrf2/HO-1 pathway constituents was assessed by RT-PCR and western blotting. The peroxide and antioxidant activities in the IEC-6 cells were measured. Compared to those in AP mice, Ang-(1-7) diminished the intestinal levels of proinflammatory factors (interleukin-1β and tumor necrosis factor α) and serum levels of intestine permeability (D-lactate). Ang-(1-7) increased the expression of barrier-associated proteins (aquaporin-1, claudin-1, and occludin) compared to those in the AP and LPS group. Moreover, Ang-(1-7) promoted the Keap/Nrf2/HO-1 pathway, which resulted in significantly reduced malondialdehyde and increased superoxide dismutase levels.. However, ML385 abolished the effects of Ang-(1-7) on barrier-associated proteins and reversed the Keap1/Nrf2/HO-1 pathway. CONCLUSIONS Ang-(1-7) reduces AP-induced intestinal inflammation and oxidative injuries by activating the Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Ruru Gu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Tianyu Cui
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yinan Guo
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Yingyi Luan
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Xueran Wang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China.
| |
Collapse
|
4
|
Modelling Female Physiology from Head to Toe: Impact of Sex Hormones, Menstrual Cycle, and Pregnancy. J Theor Biol 2022; 540:111074. [DOI: 10.1016/j.jtbi.2022.111074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
|
5
|
Stadt M, Layton AT. Adaptive Changes in single-nephron GFR, Tubular Morphology, and Transport in a Pregnant Rat Nephron: Modeling and Analysis. Am J Physiol Renal Physiol 2021; 322:F121-F137. [PMID: 34894726 DOI: 10.1152/ajprenal.00264.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Normal pregnancy is characterized by massive increases in plasma volume and electrolyte retention. Given that the kidneys regulate homeostasis of electrolytes and volume, the organ undergoes major adaptations in morphology, hemodynamics, and transport to achieve the volume and electrolyte retention required in pregnancy. These adaptations are complex, sometimes counterintuitive, and not fully understood. In addition, the demands of the developing fetus and placenta change throughout the pregnancy. For example, during late pregnancy, K+ retention and thus enhanced renal K+ reabsorption is required despite many kaliuretic factors. The goal of this study is to unravel how known adaptive changes along the nephrons contribute to the ability of the kidney to meet volume and electrolyte requirements in mid- and late pregnancy. We developed computational models of solute and water transport in the superficial nephron of the kidney of a rat in mid- and late pregnancy. The mid-pregnant and late-pregnant rat superficial nephron models predict that morphological adaptations and increased activity of the sodium hydrogen exchanger 3 (NHE3) and epithelial sodium channel (ENaC) are essential for enhanced Na+ reabsorption observed during pregnancy. Model simulations showed that for sufficient K+ reabsorption, increased H +-K +-ATPase activity and decreased K+ secretion along the distal segments is required in both mid- and late-pregnancy. Furthermore, certain known sex differences in renal transporter pattern (e.g., the higher NHE3 protein abundance but lower activity in the proximal tubules of virgin female rats compared to male) may serve to better prepare the female for the increased transport demand in pregnancy.
Collapse
Affiliation(s)
- Melissa Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Alves DT, Mendes LF, Sampaio WO, Coimbra-Campos LMC, Vieira MAR, Ferreira AJ, Martins AS, Popova E, Todiras M, Qadri F, Alenina N, Bader M, Santos RAS, Campagnole-Santos MJ. Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein. Clin Sci (Lond) 2021; 135:2197-2216. [PMID: 34494083 DOI: 10.1042/cs20210599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
Activation of the angiotensin (Ang)-converting enzyme (ACE) 2/Ang-(1-7)/MAS receptor pathway of the renin-angiotensin system (RAS) induces protective mechanisms in different diseases. Herein, we describe the cardiovascular phenotype of a new transgenic rat line (TG7371) that expresses an Ang-(1-7)-producing fusion protein. The transgene-specific mRNA and the corresponding protein were shown to be present in all evaluated tissues of TG7371 with the highest expression in aorta and brain. Plasma Ang-(1-7) levels, measured by radioimmunoassay (RIA) were similar to control Sprague-Dawley (SD) rats, however high Ang-(1-7) levels were found in the hypothalamus. TG7371 showed lower baseline mean arterial pressure (MAP), assessed in conscious or anesthetized rats by telemetry or short-term recordings, associated with increased plasma atrial natriuretic peptide (ANP) and higher urinary sodium concentration. Moreover, evaluation of regional blood flow and hemodynamic parameters with fluorescent microspheres showed a significant increase in blood flow in different tissues (kidneys, mesentery, muscle, spleen, brown fat, heart and skin), with a resulting decrease in total peripheral resistance (TPR). TG7371 rats, on the other hand, also presented increased cardiac and global sympathetic tone, increased plasma vasopressin (AVP) levels and decreased free water clearance. Altogether, our data show that expression of an Ang-(1-7)-producing fusion protein induced a hypotensive phenotype due to widespread vasodilation and consequent fall in peripheral resistance. This phenotype was associated with an increase in ANP together with an increase in AVP and sympathetic drive, which did not fully compensate the lower blood pressure (BP). Here we present the hemodynamic impact of long-term increase in tissue expression of an Ang-(1-7)-fusion protein and provide a new tool to investigate this peptide in different pathophysiological conditions.
Collapse
Affiliation(s)
- Daniele T Alves
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
| | - Luiz Felipe Mendes
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walkyria O Sampaio
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leda M C Coimbra-Campos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson J Ferreira
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Almir S Martins
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elena Popova
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
| | | | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité, University Medicine Berlin, Berlin, Germany
| | - Robson A S Santos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) and Mas receptor in gonadal and reproductive functions. Clin Sci (Lond) 2021; 134:2929-2941. [PMID: 33196086 DOI: 10.1042/cs20200865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Angiotensin (Ang)-(1-7) is an active peptide formed from Ang I or Ang-(1-9) by multiple proteolytic steps involving angiotensin-converting enzyme (ACE) 1 and other peptidases, or by a single cleavage of Ang II catalyzed chiefly by ACE2. The effects of Ang-(1-7) are mediated by the G protein-coupled receptor Mas (or Mas1), encoded by the protooncogene MAS. The reproductive system expresses ACE2 quite abundantly and therefore is able to generate Ang-(1-7) using precursor peptides produced locally or taken from circulation. In several mammalian species, Ang-(1-7) stimulates ovarian follicle growth, oocyte maturation and ovulation. The peptide is found in human endometrium, mostly during the secretory phase of menstrual cycle when the uterus is receptive to embryo implantation. Rat models and human observational studies suggest that Ang-(1-7) is part of the maternal adaptive response to pregnancy and its deficiency is associated with poor circulation in the placental bed. Knockout mice revealed a relevant participation of Mas-mediated stimulus to the maintenance of normal spermatogenesis, even though the animal can still reproduce without it. In addition, the vasorelaxant effect of Ang-(1-7) participates in the physiological mechanism of corpus cavernosum blood influx and penile erection. We conclude that preclinical evidence encourages the pursuit of treatments for female and male reproductive dysfunctions based on Mas agonists, starting with its natural ligand Ang-(1-7).
Collapse
|
8
|
Brosnihan KB, Merrill DC, Yamaleyeva LM, Chen K, Neves L, Joyner J, Givner C, Lanier K, Moorefield C, Westwood B. Longitudinal study of angiotensin peptides in normal and pre-eclamptic pregnancy. Endocrine 2020; 69:410-419. [PMID: 32319014 PMCID: PMC10519175 DOI: 10.1007/s12020-020-02296-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To address whether differential regulation of the renin-angiotensin-aldosterone system occurs in pre-eclampsia, we performed an analysis of the time course of circulating and urinary profiles of the vasoconstrictor (Ang II) and the vasodilator [Ang-(1-7)] peptides in normal pregnant (NP) and pre-eclamptic (PE) women. METHODS Urine and plasma samples from 86 nulliparous women were collected prospectively; 67 subjects continued as NP and 19 developed PE. Subjects were enrolled prior to 12 weeks of gestation and plasma and spot urine samples were obtained throughout gestation. Control samples were obtained at 6 weeks postpartum (PP). RESULTS Mean blood pressure (p < 0.001) was elevated at 31-37 weeks of gestation in PE subjects as compared with NP subjects. Plasma Ang I and Ang II levels were elevated in NP subjects as early as 16 weeks of gestation and maintained throughout gestation. In PE subjects both plasma Ang I and Ang II were elevated at 16-33 weeks as compared with PP levels. PE subjects showed reduced plasma Ang I and Ang II (at 35-37 weeks of gestation) compared with NP subjects. Plasma Ang-(1-7) was unchanged in both groups. All three urinary peptides increased throughout gestation in NP subjects. In PE subjects urinary Ang I was increased at 23-26 weeks and was maintained throughout gestation. Urinary Ang II was increased at 27-29 and 31-33 weeks of gestation. PE subjects had no change in urinary Ang-(1-7). CONCLUSION The activation of the RAS, particularly Ang II throughout normal gestation may contribute to the maintenance of vascular tone during normal pregnancy. However higher sensitivity to Ang II in pre-eclampsia may be potentiated by the higher circulating and urinary levels of Ang II, unopposed by local renal Ang-(1-7), and thus may contribute to the development of pre-eclampsia.
Collapse
Affiliation(s)
- K Bridget Brosnihan
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | | | - Liliya M Yamaleyeva
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kai Chen
- Aspirus Wausau Medical Center, Wausau, WI, 54401, USA
| | - Liomar Neves
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - JaNae Joyner
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Courtney Givner
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristy Lanier
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Cheryl Moorefield
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Brian Westwood
- Department of Surgery/Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
9
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 722] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
10
|
Herak-Kramberger CM, Breljak D, Ljubojević M, Matokanović M, Lovrić M, Rogić D, Brzica H, Vrhovac I, Karaica D, Micek V, Dupor JI, Brown D, Sabolić I. Sex-dependent expression of water channel AQP1 along the rat nephron. Am J Physiol Renal Physiol 2015; 308:F809-21. [PMID: 25656365 DOI: 10.1152/ajprenal.00368.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/03/2015] [Indexed: 11/22/2022] Open
Abstract
In the mammalian kidney, nonglycosylated and glycosylated forms of aquaporin protein 1 (AQP1) coexist in the luminal and basolateral plasma membranes of proximal tubule and descending thin limb. Factors that influence AQP1 expression in (patho)physiological conditions are poorly known. Thus far, only angiotensin II and hypertonicity were found to upregulate AQP1 expression in rat proximal tubule in vivo and in vitro (Bouley R, Palomino Z, Tang SS, Nunes P, Kobori H, Lu HA, Shum WW, Sabolic I, Brown D, Ingelfinger JR, Jung FF. Am J Physiol Renal Physiol 297: F1575-F1586, 2009), a phenomenon that may be relevant for higher blood pressure observed in men and male experimental animals. Here we investigated the sex-dependent AQP1 protein and mRNA expression in the rat kidney by immunochemical methods and qRT-PCR in tissue samples from prepubertal and intact gonadectomized animals and sex hormone-treated gonadectomized adult male and female animals. In adult rats, the overall renal AQP1 protein and mRNA expression was ∼80% and ∼40% higher, respectively, in males than in females, downregulated by gonadectomy in both sexes and upregulated strongly by testosterone and moderately by progesterone treatment; estradiol treatment had no effect. In prepubertal rats, the AQP1 protein expression was low compared with adults and slightly higher in females, whereas the AQP1 mRNA expression was low and similar in both sexes. The observed differences in AQP1 protein expression in various experiments mainly reflect changes in the glycosylated form. The male-dominant expression of renal AQP1 in rats, which develops after puberty largely in the glycosylated form of the protein, may contribute to enhanced fluid reabsorption following the androgen- or progesterone-stimulated activities of sodium-reabsorptive mechanisms in proximal tubules.
Collapse
Affiliation(s)
| | - Davorka Breljak
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marija Ljubojević
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirela Matokanović
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mila Lovrić
- Clinical Institute of Laboratory Diagnosis, University Hospital Center, Zagreb, Croatia
| | - Dunja Rogić
- Clinical Institute of Laboratory Diagnosis, University Hospital Center, Zagreb, Croatia
| | - Hrvoje Brzica
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Vrhovac
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vedran Micek
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ivan Sabolić
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia;
| |
Collapse
|
11
|
Velez JCQ, Janech MG, Hicks MP, Morinelli TA, Rodgers J, Self SE, Arthur JM, Fitzgibbon WR. Lack of renoprotective effect of chronic intravenous angiotensin-(1-7) or angiotensin-(2-10) in a rat model of focal segmental glomerulosclerosis. PLoS One 2014; 9:e110083. [PMID: 25337950 PMCID: PMC4206519 DOI: 10.1371/journal.pone.0110083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Unopposed angiotensin (Ang) II-mediated cellular effects may lead to progressive glomerulosclerosis. While Ang-II can be locally generated in the kidneys, we previously showed that glomerular podocytes primarily convert Ang-I, the precursor of Ang-II, to Ang-(1-7) and Ang-(2-10), peptides that have been independently implicated in biological actions opposing those of Ang-II. Therefore, we hypothesized that Ang-(1-7) and Ang-(2-10) could be renoprotective in the fawn-hooded hypertensive rat, a model of focal segmental glomerulosclerosis. We evaluated the ability of 8-12 week-long intravenous administration of either Ang-(1-7) or Ang-(2-10) (100-400 ng/kg/min) to reduce glomerular injury in uni-nephrectomized fawn-hooded hypertensive rats, early or late in the disease. Vehicle-treated rats developed hypertension and lesions of focal segmental glomerulosclerosis. No reduction in glomerular damage was observed, as measured by either 24-hour urinary protein excretion or histological examination of glomerulosclerosis, upon Ang-(1-7) or Ang-(2-10) administration, regardless of peptide dose or disease stage. On the contrary, when given at 400 ng/kg/min, both peptides induced a further increase in systolic blood pressure. Content of Ang peptides was measured by parallel reaction monitoring in kidneys harvested at sacrifice. Exogenous administration of Ang-(1-7) and Ang-(2-10) did not lead to a significant increase in their corresponding intrarenal levels. However, the relative abundance of Ang-(1-7) with respect to Ang-II was increased in kidney homogenates of Ang-(1-7)-treated rats. We conclude that chronic intravenous administration of Ang-(1-7) or Ang-(2-10) does not ameliorate glomerular damage in a rat model of focal segmental glomerulosclerosis and may induce a further rise in blood pressure, potentially aggravating glomerular injury.
Collapse
Affiliation(s)
- Juan Carlos Q. Velez
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| | - Michael G. Janech
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Megan P. Hicks
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thomas A. Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jessalyn Rodgers
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sally E. Self
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John M. Arthur
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Wayne R. Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
12
|
Lumbers ER, Pringle KG. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am J Physiol Regul Integr Comp Physiol 2013; 306:R91-101. [PMID: 24089380 DOI: 10.1152/ajpregu.00034.2013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review describes the changes that occur in circulating renin-angiotensin-aldosterone system (RAAS) components in human pregnancy. These changes depend on endocrine secretions from the ovary and possibly the placenta and decidua. Not only do these hormonal secretions directly contribute to the increase in RAAS levels, they also cause physiological changes within the cardiovascular system and the kidney, which, in turn, induce reflex release of renal renin. High levels of ANG II play a critical role in maintaining circulating blood volume, blood pressure, and uteroplacental blood flow through interactions with the ANG II type I receptor and through increased production of downstream peptides acting on a changing ANG receptor phenotype. The increase in ANG II early in gestation is driven by estrogen-induced increments in angiotensinogen (AGT) levels, so there cannot be negative feedback leading to reduced ANG II production. AGT can exist in various forms in terms of redox state or complexed with other proteins as polymers; these affect the ability of renin to cleave ANG I from AGT. Thus, during pregnancy the rate of ANG I production varies not only because levels of renin change in response to homeostatic demand but also because AGT changes not only in concentration but in form. Activation of the circulating and intrarenal RAASs is essential for normal pregnancy outcome subserving the increased demand for salt and, hence, water during pregnancy. Thus, the complex integration of the secretions and actions of the circulating maternal renin-angiotensin system in pregnancy plays a key role in pregnancy outcome.
Collapse
Affiliation(s)
- Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy and Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | | |
Collapse
|
13
|
Castelo-Branco RC, Leite-Delova DCA, de Mello-Aires M. Dose-dependent effects of angiotensin-(1-7) on the NHE3 exchanger and [Ca(2+)](i) in in vivo proximal tubules. Am J Physiol Renal Physiol 2013; 304:F1258-65. [PMID: 23515716 DOI: 10.1152/ajprenal.00401.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acute direct action of angiotensin-(1-7) [ANG-(1-7)] on bicarbonate reabsorption (JHCO(3)(-)) was evaluated by stationary microperfusions on in vivo middle proximal tubules in rats using H ion-sensitive microelectrodes. The control JHCO(3)(-) is 2.82 ± 0.078 nmol·cm(-2)·s(-1) (50). ANG-(1-7) (10(-12) or 10(-9) M) in luminally perfused tubules decreases JHCO(3)(-) (36 or 60%, respectively), but ANG-(1-7) (10(-6) M) increases it (80%). A779 increases JHCO(3)(-) (30%) and prevents both the inhibitory and the stimulatory effects of ANG-(1-7) on it. S3226 decreases JHCO(3)(-) (45%) and changes the stimulatory effect of ANG-(1-7) to an inhibitory effect (30%) but does not affect the inhibitory effect of ANG-(1-7). Our results indicate that in the basal condition endogenous ANG-(1-7) inhibits JHCO(3)(-) and that the biphasic dose-dependent effect of ANG-(1-7) on JHCO(3)(-) is mediated by the Mas receptors via the Na(+)/H(+) exchanger 3 (NHE3). The control value of intracellular Ca(2+) concentration ([Ca(2+)](i)), as monitored using fura-2 AM, is 101 ± 2 nM (6), and ANG-(1-7) (10(-12), 10(-9), or 10(-6)M) transiently (3 min) increases it (by 151, 102, or 52%, respectively). A779 increases the [Ca(2+)](i) (25%) but impairs the stimulatory effect of all doses of ANG-(1-7) on it. The use of BAPTA or thapsigargin suggests a correlation between the ANG-(1-7) dose-dependent effects on [Ca(2+)](i) and JHCO(3)(-). Therefore, the interaction of the opposing dose-dependent effects of ANG II and ANG-(1-7) on [Ca(2+)](i) and JHCO(3)(-) may represent an physiological regulatory mechanism of extracellular volume and/or pH changes. However, whether [Ca(2+)](i) modification is an important direct mechanism for NHE3 activation by these peptides or is a side effect of other signaling pathways will require additional studies.
Collapse
Affiliation(s)
- Regiane C Castelo-Branco
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
14
|
Santos RAS, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol 2013; 216:R1-R17. [PMID: 23092879 DOI: 10.1530/joe-12-0341] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin (Ang)-(1-7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). Ang-(1-7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1-7) synthesis. This enzyme can form Ang-(1-7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1-7). Thus, the axis formed by ACE2/Ang-(1-7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/proliferative arm of the RAS consisting of ACE, Ang II, and AT(1) receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1-7) and Mas with AT(1) and AT(2) receptors.
Collapse
Affiliation(s)
- Robson A S Santos
- Departments of Physiology and Biophysics Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
15
|
J Spaan J, A Brown M. Renin-angiotensin system in pre-eclampsia: everything old is new again. Obstet Med 2012; 5:147-153. [PMID: 30705695 DOI: 10.1258/om.2012.120007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 01/15/2023] Open
Abstract
This review presents an update of the role of the renin-angiotensin system in normal pregnancy and pre-eclampsia. We have known for years that the circulatory renin-angiotensin system in pre-eclampsia is suppressed. We now know that the circulating renin-angiotensin system does not only have a vasoconstrictor arm, but also a vasodilator arm, which is upregulated in normal pregnancy; this balance is probably disturbed in pre-eclampsia. Recent studies show the importance of the local renin-angiotensin system in the uteroplacental unit for early placentation and regulation of placental blood flow. We discuss the possible role of autoantibodies against the AT1-receptor in pre-eclampsia and the suggestion that activation of the AT1-receptor in the placenta may lead to placental dysfunction and the clinical syndrome of pre-eclampsia.
Collapse
Affiliation(s)
- Julia J Spaan
- Departments of Medicine and Renal Medicine, St George Hospital, University of NSW, Kogarah, NSW, Australia
| | - Mark A Brown
- Departments of Medicine and Renal Medicine, St George Hospital, University of NSW, Kogarah, NSW, Australia
| |
Collapse
|
16
|
Wenner MM, Stachenfeld NS. Blood pressure and water regulation: understanding sex hormone effects within and between men and women. J Physiol 2012; 590:5949-61. [PMID: 23027816 DOI: 10.1113/jphysiol.2012.236752] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death for both men and women. Hypertension is less prevalent in young women compared with young men, but menopausal women are at greater risk for hypertension compared with men of similar age. Despite these risks, women do not consistently receive first line treatment for the early stages of hypertension, and the greater morbidity in menopause reflects this neglect. This review focuses on ovarian hormone effects on the cardiovascular and water regulatory systems that are associated with blood pressure control in women. The study of ovarian hormones within young women is complex because these hormones fluctuate across the menstrual cycle, and these fluctuations can complicate conclusions regarding sex differences. To better isolate the effects of oestrogen and progesterone on the cardiovascular and water regulation systems, we developed a model to transiently suppress reproductive function followed by controlled hormone administration. Sex differences in autonomic regulation of blood pressure appear related to ovarian hormone exposure, and these hormonal differences contribute to sex differences in hypertension and orthostatic tolerance. Oestrogen and progesterone exposure are also associated with plasma volume expansion, and a leftward shift in the osmotic operating point for body fluid regulation. In young, healthy women, the shift in osmoregulation appears to have only a minor effect on overall body water balance. Our overarching conclusion is that ovarian hormone exposure is the important underlying factor contributing to differences in blood pressure and water regulation between women and men, and within women throughout the lifespan.
Collapse
|
17
|
Bharadwaj MS, Strawn WB, Groban L, Yamaleyeva LM, Chappell MC, Horta C, Atkins K, Firmes L, Gurley SB, Brosnihan KB. Angiotensin-converting enzyme 2 deficiency is associated with impaired gestational weight gain and fetal growth restriction. Hypertension 2011; 58:852-8. [PMID: 21968754 DOI: 10.1161/hypertensionaha.111.179358] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme of the renin-angiotensin system that influences the relative expression of angiotensin II (Ang II) and Ang-(1-7). Although ACE2 expression increases in normal pregnancy, the impact of ACE2 deficiency in pregnancy has not been elucidated. We determined the influence of ACE2 deficiency on circulating and tissue renin-angiotensin system components, fetal and maternal growth characteristics, and maternal hemodynamics (mean blood pressure and cardiac output) at day 18 of gestation. Gestational body weight gain was lower in the ACE2 knockout (KO) versus C57BL/6 (wild-type) mice (30.3±4.7 versus 38.2±1.0 g; P<0.001). Fetal weight (0.94±0.1 versus 1.24±0.01 g; P<0.01) and length (19.6±0.2 versus 22.2±0.2 mm; P<0.001) were less in KO. Mean blood pressure was significantly reduced in C57BL/6 with pregnancy; it was elevated (P<0.05) in the KO virgin and pregnant mice, and this was associated with an increased cardiac output in both C57BL/6 and KO pregnant mice (P<0.05). Plasma Ang-(1-7) was reduced in pregnant KO mice (P<0.05). Placenta Ang II levels were higher in KO mice (52.9±6.0 versus 22.0±3.3 fmol/mg of protein; P<0.001). Renal Ang II levels were greater in KO virgin mice (30.0±1.7 versus 23.7±1.1 fmol/mg of protein; P<0.001). There was no change in the Ang-(1-7) levels in the KO placenta and virgin kidney. These results suggest that ACE2 deficiency and associated elevated placenta Ang II levels impact pregnancy by impairing gestational weight gain and restricting fetal growth.
Collapse
Affiliation(s)
- Manish S Bharadwaj
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157-1032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fábrega E, Berja A, García-Unzueta MT, Guerra-Ruiz A, Cobo M, López M, Bolado-Carrancio A, Amado JA, Rodríguez-Rey JC, Pons-Romero F. Influence of aquaporin-1 gene polymorphism on water retention in liver cirrhosis. Scand J Gastroenterol 2011; 46:1267-74. [PMID: 21793635 DOI: 10.3109/00365521.2011.603161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Water retention is a major clinical problem in patients with liver cirrhosis. The factors that predispose to water retention are poorly understood but may involve genetic factors. Recent research suggests that renal aquaporins may be a pathophysiological factor involved in this condition. Aquaporin-1 (AQP1) is expressed in the proximal tubule and aquaporin-2 (AQP2) in the renal collecting duct cells. The aim of our study was to investigate the distribution of single nucleotide polymorphisms (SNPs) of AQP1: rs1049305 (C/G) and AQP2: rs3741559 (A/G) and rs467323 (C/T) in 100 cirrhotic patients with ascites and to analyze their relationship with dilutional hyponatremia. METHODS Genomic DNA was extracted from peripheral blood. Genotyping for the presence of different polymorphisms was performed using the Custom Taqman SNP Genotyping Assays. The possible influence of rs1049305 (C/G) in AQP1 gene expression was evaluated by luciferase assays in vitro. RESULTS The allelic frequencies of the AQP1 gene were the following: CC = 15%; CG = 49%; GG = 36%. Patients with CC genotype had significantly lower plasma sodium concentration than those with CG or GG genotype. Luciferase assays showed that the rs1049305 (C/G) in the AQP1 gene functionally affected the expression level in vitro. In addition, we did not find any relationship between AQP2 SNPs observed and plasma sodium concentration. CONCLUSIONS Our results suggest that the rs1049305 (C/G, UTR3) AQP1 polymorphism could be involved in the genetic susceptibility to develop water retention in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Emilio Fábrega
- Gastroenterology and Hepatology Unit, University Hospital "Marqués de Valdecilla", Faculty of Medicine, Santander, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Castro-Chaves P, Cerqueira R, Pintalhao M, Leite-Moreira AF. New pathways of the renin-angiotensin system: the role of ACE2 in cardiovascular pathophysiology and therapy. Expert Opin Ther Targets 2010; 14:485-96. [PMID: 20392165 DOI: 10.1517/14728221003709784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD The renin-angiotensin system (RAS) is nowadays an important target in cardiovascular diseases and we are currently on the verge of a new interpretation of its role in cardiovascular homeostasis, mainly due to the identification of the new axis ACE2/angiotensin 1 - 7/Mas receptor. AREAS COVERED IN THIS REVIEW The main aspects related to ACE2 role in cardiovascular physiology and possible pathological and therapeutic implications are reviewed. WHAT THE READER WILL GAIN A description of the new view of the RAS, along with the key findings that support it. In the cardiovascular system, the ACE2/angiotensin 1 - 7/Mas axis, mainly through the inhibition of fibrosis, inflammation, thrombosis and cell proliferation, modulates RAS activity with significant pathophysiological implications in clinical conditions such as hypertension, myocardial ischemia and heart failure. A more complete understanding of this axis has significant therapeutic relevance and a major effort is being carried out in order to pursue this objective. TAKE HOME MESSAGE There is increasing evidence that ACE2/angiotensin 1 - 7/Mas receptor axis has a key role in RAS activity regulation with significant pathophysiological implications in several disease states. A therapeutic intervention at this level may open new doors and change the current approach to RAS targeting.
Collapse
Affiliation(s)
- Paulo Castro-Chaves
- University of Porto, Department of Physiology, Faculty of Medicine, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
20
|
Ferrario CM, Varagic J. The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Physiol Renal Physiol 2010; 298:F1297-305. [PMID: 20375118 DOI: 10.1152/ajprenal.00110.2010] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The study of experimental hypertension and the development of drugs with selective inhibitory effects on the enzymes and receptors constituting the components of the circulating and tissue renin-angiotensin systems have led to newer concepts of how this system participates in both physiology and pathology. Over the last decade, a renewed emphasis on understanding the role of angiotensin-(1-7) and angiotensin-converting enzyme 2 in the regulation of blood pressure and renal function has shed new light on the complexity of the mechanisms by which these components of the renin angiotensin system act in the heart and in the kidneys to exert a negative regulatory influence on angiotensin converting enzyme and angiotensin II. The vasodepressor axis composed of angiotensin-(1-7)/angiotensin-converting enzyme 2/mas receptor emerges as a site for therapeutic interventions within the renin-angiotensin system. This review summarizes the evolving knowledge of the counterregulatory arm of the renin-angiotensin system in the control of nephron function and renal disease.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center and Department of Surgery, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA.
| | | |
Collapse
|
21
|
Joyner J, Neves L, Ferrario C, Brosnihan K. Administration of D-Alanine-[Ang-(1-7)] (A-779) Prior to Pregnancy in Sprague Dawley Rats Produces Antidiuresis in Late Gestation. ACTA ACUST UNITED AC 2008; 2:425-430. [PMID: 19198668 DOI: 10.1016/j.jash.2008.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We previously demonstrated that angiotensin-(1-7) [Ang-(1-7)], which is increased in the kidney and urine during pregnancy, influences normal fluid expansion of pregnancy. These previous studies were completed by chronic administration of the Ang-(1-7) receptor antagonist D-Alanine-[Ang-(1-7)] (A-779) at a dose of 48 μg/kg/hr after the start of pregnancy (gestational days 11-19). To further explore the role of Ang-(1-7) on kidney function during early, middle, and late pregnancy, Sprague Dawley rats were chronically pretreated 8 days prior to pregnancy and throughout pregnancy (gestational days 0-19) with vehicle or A-779 at a dose of 24 μg/kg/hr. Metabolic studies were completed in virgin animals and throughout pregnancy (gestational days 4-5, 14-15, and 18-19). Chow consumption and water intake increased throughout pregnancy while the difference between intake and output (balance) was increased only at late (day 19) pregnancy with both vehicle and A-779 administration. Urine volume and urinary osmolality were significantly increased and decreased respectively throughout pregnancy in vehicle treated rats only. In late (19 day) pregnancy, A-779 administration significantly decreased chow consumption and water intake. In virgin animals, A-779 administration significantly increased urine volume, while during late pregnancy (19 day), urine volume was significantly decreased with A-779 administration. These studies using pretreatment with a lower dose of A-779 prior to pregnancy confirm results of higher dose A-779 administration after the start of pregnancy. These studies show that Ang-(1-7) produces antidiuresis in virgin rats and diuresis in late gestation. Ang-(1-7) also contributes to the enhanced water intake during pregnancy allowing maintenance of the normal volume expanded state despite diuresis.
Collapse
Affiliation(s)
- J Joyner
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina USA
| | | | | | | |
Collapse
|