1
|
Gut Microbial Succession Patterns and Metabolic Profiling during Pregnancy and Lactation in a Goat Model. Microbiol Spectr 2023; 11:e0295522. [PMID: 36700635 PMCID: PMC9927511 DOI: 10.1128/spectrum.02955-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The maternal gut microbiome affects the duration of pregnancy, delivery, and lactation. It also coordinates the stability of maternal metabolism by regulating and modulating inflammatory cytokines and reproductive hormones. This has been shown in several species; however, the situation in ruminants remains a black box. Here, we aimed to elucidate the relationship between the hindgut microbiota, metabolism, and reproductive hormones in domestic goats (Capra hircus) during nonpregnancy, pregnancy, and lactation stages. The hindgut microbiota was altered during these three stages, with a drastic decrease in the abundance of Family_XIII_AD3011_group in the second and third trimesters of pregnancy. Additionally, a decline in the abundance of Christensenellaceae_R-7_group and Turicibacter was observed from the nonpregnancy stage to late gestation. Family_XIII_AD3011_group and Paeniclostridium were strongly correlated with decreased fecal estradiol and progesterone. Furthermore, we generated a metabolome atlas of the gut and serum from nonpregnancy to lactation to reveal the specific metabolic fingerprints of each physiological stage. Several specific gut metabolites, including carnitine C8:1, γ-aminobutyric acid, and indole-3-carboxylic acid, were negatively correlated with the fecal and serum estradiol concentrations. In contrast, 2'-deoxyinosine, deoxyadenosine, and 5'-deoxyadenosine were positively correlated with the fecal and serum estradiol concentrations. The levels of 2'-deoxyinosine, deoxyadenosine, and 5'-deoxyadenosine in fecal samples were positively correlated with Family_XIII_AD3011_group. Other serum metabolites, such as (±)12-HEPE (hydroxy eicosapentaenoic acid), (±)15-HEPE, (±)18-HEPE, cytidine, uracil, and 5-hydroxyindole-3-acetic acid, were negatively correlated with the serum concentrations of estradiol and progesterone. Finally, Corynebacterium and Clostridium_sensu_stricto_1 in the fecal samples were positively correlated with the abundance of 11,12-EET (epoxy-eicosatrienoic acid), (±)18-HEPE, (±)15-HEPE, and (±)12-HEPE in the serum. IMPORTANCE Our findings revealed that the activity of Family_XIII_AD3011_group and Corynebacterium is strongly correlated with the beneficial regulation of physiological hormones and metabolic changes during pregnancy and lactation. These findings are key for guiding targeted microbial therapeutic approaches to modulate microbiomes in gestating and lactating mammals.
Collapse
|
2
|
Al-Shabrawey M, Elmarakby A, Samra Y, Moustafa M, Looney SW, Maddipati KR, Tawfik A. Hyperhomocysteinemia dysregulates plasma levels of polyunsaturated fatty acids-derived eicosanoids. LIFE RESEARCH 2022; 5:14. [PMID: 36341141 PMCID: PMC9632953 DOI: 10.53388/2022-0106-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyperhomocysteinemia (HHcy) contributes to the incidence of many cardiovascular diseases (CVD). Our group have previously established crucial roles of eicosanoids and homocysteine in the incidence of vascular injury in diabetic retinopathy and renal injury. Using cystathionine-β-synthase heterozygous mice (cβs+/-) as a model of HHcy, the current study was designed to determine the impact of homocysteine on circulating levels of lipid mediators derived from polyunsaturated fatty acids (PUFA). Plasma samples were isolated from wild-type (WT) and cβs+/- mice for the assessment of eicosanoids levels using LC/MS. Plasma 12/15-lipoxygenase (12/15-LOX) activity significantly decreased in cβs+/- vs. WT control mice. LOX-derived metabolites from both omega-3 and omega-6 PUFA were also reduced in cβs+/- mice compared to WT control (P < 0.05). Contrary to LOX metabolites, cytochrome P450 (CYP) metabolites from omega-3 and omega-6 PUFA were significantly elevated in cβs+/- mice compared to WT control. Epoxyeicosatrienoic acids (EETs) are epoxides derived from arachidonic acid (AA) metabolism by CYP with anti-inflammatory properties and are known to limit vascular injury, however their physiological role is limited by their rapid degradation by soluble epoxide hydrolase (sEH) to their corresponding diols (DiHETrEs). In cβs+/- mice, a significant decrease in the plasma EETs bioavailability was obvious as evident by the decrease in EETs/ DiHETrEs ratio relative to WT control mice. Cyclooxygenase (COX) metabolites were also significantly decreased in cβs+/- vs. WT control mice. These data suggest that HHcy impacts eicosanoids metabolism through decreasing LOX and COX metabolic activities while increasing CYP metabolic activity. The increase in AA metabolism by CYP was also associated with increase in sEH activity and decrease in EETs bioavailability. Dysregulation of eicosanoids metabolism could be a contributing factor to the incidence and progression of HHcy-induced CVD.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Ahmed Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Departments of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yara Samra
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mohamed Moustafa
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Stephen W. Looney
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishna Rao Maddipati
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, Michigan, USA
| | - Amany Tawfik
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
3
|
Baranowska I, Gawrys O, Walkowska A, Olszynski KH, Červenka L, Falck JR, Adebesin AM, Imig JD, Kompanowska-Jezierska E. Epoxyeicosatrienoic Acid Analog and 20-HETE Antagonist Combination Prevent Hypertension Development in Spontaneously Hypertensive Rats. Front Pharmacol 2022; 12:798642. [PMID: 35111064 PMCID: PMC8802114 DOI: 10.3389/fphar.2021.798642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous studies indicate a significant role for cytochrome P-450-dependent arachidonic acid metabolites in blood pressure regulation, vascular tone, and control of renal function. Epoxyeicosatrienoic acids (EETs) exhibit a spectrum of beneficial effects, such as vasodilatory activity and anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. In the present study, the efficiency of EET-A (a stable analog of 14,15-EET) alone and combined with AAA, a novel receptor antagonist of 20-HETE, was tested in spontaneously hypertensive rats (SHR). Adult SHR (16 weeks old) were treated with two doses of EET-A (10 or 40 mg/kg/day). In the following experiments, we also tested selected substances in the prevention of hypertension development in young SHR (6 weeks old). Young rats were treated with EET-A or the combination of EET-A and AAA (both at 10 mg/kg/day). The substances were administered in drinking water for 4 weeks. Blood pressure was measured by telemetry. Once-a-week observation in metabolic cages was performed; urine, blood, and tissue samples were collected for further analysis. The combined treatment with AAA + EET-A exhibited antihypertensive efficiency in young SHR, which remained normotensive until the end of the observation in comparison to a control group (systolic blood pressure, 134 ± 2 versus 156 ± 5 mmHg, respectively; p < 0.05). Moreover the combined treatment also increased the nitric oxide metabolite excretion. Considering the beneficial impact of the combined treatment with EET-A and AAA in young rats and our previous positive results in adult SHR, we suggest that it is a promising therapeutic strategy not only for the treatment but also for the prevention of hypertension.
Collapse
Affiliation(s)
- Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Olga Gawrys
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Krzysztof H Olszynski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Adeniyi M Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
4
|
Singh N, Vik A, Lybrand DB, Morisseau C, Hammock BD. New Alkoxy- Analogues of Epoxyeicosatrienoic Acids Attenuate Cisplatin Nephrotoxicity In Vitro via Reduction of Mitochondrial Dysfunction, Oxidative Stress, Mitogen-Activated Protein Kinase Signaling, and Caspase Activation. Chem Res Toxicol 2021; 34:2579-2591. [PMID: 34817988 PMCID: PMC8853703 DOI: 10.1021/acs.chemrestox.1c00347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The usage of cisplatin, a highly potent chemotherapeutic, is limited by its severe nephrotoxicity. Arachidonic acid (ARA)-derived epoxyeicosatrienoic acids (EETs) and soluble epoxide hydrolase (sEH) inhibitors were shown to ameliorate this dose-limiting side effect, but both approaches have some pharmacological limitations. Analogues of EETs are an alternative avenue with unique benefits, but the current series of analogues face concerns regarding their structure and mimetic functionality. Hence, in this study, regioisomeric mixtures of four new ARA alkyl ethers were synthesized, characterized, and assessed as EET analogues against the concentration- and time-dependent toxicities of cisplatin in porcine proximal tubular epithelial cells. All four ether groups displayed bioisostere activity, ranging from marginal for methoxy- (1), good for n-propoxy- (4), and excellent for ethoxy- (2) and i-propoxy- (3). Compounds 2 and 3 displayed cytoprotective effects comparable to that of an EET regioisomeric mixture (5) against high, acute cisplatin exposures but were more potent against low to moderate, chronic exposures. Compounds 2 and 3 (and 5) acted through stabilization of the mitochondrial transmembrane potential and attenuation of reactive oxygen species, leading to reduced phosphorylation of mitogen-activated protein kinases p38 and JNK and decreased activation of caspase-9 and caspase-3. This study demonstrates that alkoxy- groups are potent and more metabolically stable bioisostere alternatives to the epoxide within EETs that enable sEH-independent activity. It also illustrates the potential of ether-based mimics of EETs and other epoxy fatty acids as promising nephroprotective agents to tackle the clinically relevant side effect of cisplatin without compromising its antineoplastic function.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemical synthesis
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Antineoplastic Agents/toxicity
- Caspase 3/metabolism
- Caspase 9/metabolism
- Cells, Cultured
- Cisplatin/antagonists & inhibitors
- Cisplatin/toxicity
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Humans
- Kidney Tubules, Proximal/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Structure
- Oxidative Stress/drug effects
- Signal Transduction/drug effects
- Swine
Collapse
Affiliation(s)
- Nalin Singh
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Daniel B. Lybrand
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
5
|
Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation. Biomedicines 2021; 9:biomedicines9081053. [PMID: 34440257 PMCID: PMC8393645 DOI: 10.3390/biomedicines9081053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.
Collapse
|
6
|
Kikut J, Komorniak N, Ziętek M, Palma J, Szczuko M. Inflammation with the participation of arachidonic (AA) and linoleic acid (LA) derivatives (HETEs and HODEs) is necessary in the course of a normal reproductive cycle and pregnancy. J Reprod Immunol 2020; 141:103177. [PMID: 32659532 DOI: 10.1016/j.jri.2020.103177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
Abstract
Data on arachidonic (AA) and linoleic (LA) acid derivatives and their role in the reproductive cycle are limited. In order to systematize these reports, 54 scientific investigations were analyzed, which revealed the important role of AA and LA in the planning and course of pregnancy. Ovulation, menstruation, pregnancy, and childbirth are strongly related to the occurrence of physiological inflammatory reactions. Ovulation and menstruation are cyclic tissue remodeling processes that cause changes in the synthesis of inflammation mediators, such as prostaglandins and leukotrienes. Thus, the cyclooxygenase (COX) and lipoxygenase-5 (5-LOX) pathway for AA transformation is activated. Only the absence of neutrophils during this process differentiates an embryo implantation from a standard inflammatory response. It has been found that in COX-2 deficiency conditions, incorrect embryo implantation and decidual reaction occur; therefore, the mechanism associated with the activation of the nuclear factor (NF)-κB pathway seems to play an important role in the course of embryo implantation. In addition, 12/15-LOX may be key modulators of uterine activity during the implantation process. According to the current state of knowledge, AA derivatives synthesized throughout the cytochrome P450 (CYP) and LOX pathways play a special role in the late pregnancy period. Decreased 5-HETE levels have been related to slowing down the progression of labor, while 11-HETE and 15-HETrE to its acceleration. It has been also proven that renal 20-HETE contents undergo significant changes in the late pregnancy period, which are caused by an increase in their adrenal medulla and vascular synthesis, leading to decrease of blood pressure and an increase of sodium excretion, finally conditioning a normal course of labor.
Collapse
Affiliation(s)
- Justyna Kikut
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Poland.
| | - Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Poland.
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology Pomeranian Medical University in Szczecin, Poland.
| | - Joanna Palma
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Poland.
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Poland.
| |
Collapse
|
7
|
Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. J Hypertens 2020; 38:1802-1810. [DOI: 10.1097/hjh.0000000000002462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Kala P, Červenka L, Škaroupková P, Táborský M, Kompanowska-Jezierska E, Sadowski J. Sex-linked differences in the mortality in Ren-2 transgenic hypertensive rats with aorto-caval fistula: effects of treatment with angiotensin converting enzyme alone and combined with inhibitor of soluble epoxide hydrolase. Physiol Res 2019; 68:589-601. [DOI: 10.33549/physiolres.934094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We found recently that in Ren-2 transgenic hypertensive rats (TGR) addition of soluble epoxide hydrolase inhibitor (sEHi) to treatment with angiotensin-converting enzyme inhibitor (ACEi), surprisingly, increased the mortality due to heart failure (HF) induced by creation of the aorto-caval fistula (ACF). Since TGR exhibit sex-related differences in mortality, we examined here if such differentiation exists also in the response to the treatment with ACEi (trandolapril), alone or combined with sEHi [cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid, (c-AUCB)]. ACEi improved survival in males to 74 % (vs. 0 %) and in females to 65 % (vs. 32 %). ACEi and sEHi combined also improved the survival in male ACF TGR, however, it was significantly less (38 %) than after ACEi alone. In contrast, in females the combined treatment significantly improved the final survival rate (84 %). There were no significant sex-linked differences in survival rate in untreated or treated normotensive Hannover Sprague-Dawley rats. In conclusion, in HF patients with co-existing hypertension and RAS hyperactivity, the sex may co-determine the rate of HF progression, and can influence the effectiveness of the therapeutic measures applied. Therefore, in the relevant pre-clinical studies the sex-linked differences should be seriously considered. Our data indicate that TGR might be an optimal model for such studies.
Collapse
Affiliation(s)
| | - L. Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 1958/9 Vídeňská, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J Hypertens 2019; 36:1326-1341. [PMID: 29570510 DOI: 10.1097/hjh.0000000000001708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We examined the effects of treatment with soluble epoxide hydrolase inhibitor (sEHi) and epoxyeicosatrienoic acids (EETs) analogue (EET-A), given alone or combined, on blood pressure (BP) and ischemia/reperfusion myocardial injury in rats with angiotensin II (ANG II)-dependent hypertension. METHODS Ren-2 transgenic rats (TGR) were used as a model of ANG II-dependent hypertension and Hannover Sprague-Dawley rats served as controls. Rats were treated for 14 days with sEHi or EET-A and BP was measured by radiotelemetry. Albuminuria, cardiac hypertrophy and concentrations of ANG II and EETs were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury and the infarct size and ventricular arrhythmias were determined. RESULTS Treatment of TGR with sEHi and EET-A, given alone or combined, decreased BP to a similar degree, reduced albuminuria and cardiac hypertrophy to similar extent; only treatment regimens including sEHi increased myocardial and renal tissue concentrations of EETs. sEHi and EET-A, given alone or combined, suppressed kidney ANG II levels in TGR. Remarkably, infarct size did not significantly differ between TGR and Hannover Sprague-Dawley rats, but the incidence of ischemia-induced ventricular fibrillations was higher in TGR. Application of sEHi and EET-A given alone and combined sEHi and EET-A treatment were all equally effective in reducing life-threatening ventricular fibrillation in TGR. CONCLUSION The findings indicate that chronic treatment with either sEHi or EET-A exerts distinct antihypertensive and antiarrhythmic actions in our ANG II-dependent model of hypertension whereas combined administration of sEHi and EET-A does not provide additive antihypertensive or cardioprotective effects.
Collapse
|
10
|
Vacková Š, Kopkan L, Kikerlová S, Husková Z, Sadowski J, Kompanowska-Jezierska E, Hammock BD, Imig JD, Táborský M, Melenovský V, Červenka L. Pharmacological Blockade of Soluble Epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats. Front Pharmacol 2019; 10:18. [PMID: 30728778 PMCID: PMC6351500 DOI: 10.3389/fphar.2019.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
An association between congestive heart failure (CHF) and chronic kidney disease (CKD) results in extremely poor patient survival rates. Previous studies have shown that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, improves the survival rate in CHF induced by aorto-caval fistula (ACF) and attenuates CKD progression. This prompted us to examine if sEH inhibitor treatment would improve the outcome if both experimental conditions are combined. Fawn-hooded hypertensive (FHH) rats, a genetic model showing early CKD development was employed, and CHF was induced by ACF. Treatment with an sEH inhibitor was initiated 4 weeks after ACF creation, in FHH and in fawn-hooded low-pressure (FHL) rats, a control strain without renal damage. The follow-up period was 20 weeks. We found that ACF FHH rats exhibited substantially lower survival rates (all the animals died by week 14) as compared with the 64% survival rate observed in ACF FHL rats. The former group showed pronounced albuminuria (almost 30-fold higher than in FHL) and reduced intrarenal EET concentrations. The sEH inhibitor treatment improved survival rate and distinctly reduced increases in albuminuria in ACF FHH and in ACF FHL rats, however, all the beneficial actions were more pronounced in the hypertensive strain. These data indicate that pharmacological blockade of sEH could be a novel therapeutic approach for the treatment of CHF, particularly under conditions when it is associated with CKD.
Collapse
Affiliation(s)
- Šárka Vacková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Bruce D Hammock
- Department of Entomology, UCD Cancer Center, University of California, Davis, Davis, CA, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc, Palacký University, Olomouc, Czechia
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
11
|
KALA P, SEDLÁKOVÁ L, ŠKAROUPKOVÁ P, KOPKAN L, VAŇOURKOVÁ Z, TÁBORSKÝ M, NISHIYAMA A, HWANG SH, HAMMOCK BD, SADOWSKI J, MELENOVSKÝ V, IMIG JD, ČERVENKA L. Effect of Angiotensin-Converting Enzyme Blockade, Alone or Combined With Blockade of Soluble Epoxide Hydrolase, on the Course of Congestive Heart Failure and Occurrence of Renal Dysfunction in Ren-2 Transgenic Hypertensive Rats With Aorto-Caval Fistula. Physiol Res 2018. [DOI: 10.33549/physiolres.933757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We showed recently that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, retarded the development of renal dysfunction and progression of aorto-caval fistula(ACF)-induced congestive heart failure (CHF) in Ren-2 transgenic hypertensive rats (TGR). In that study the final survival rate of untreated ACF TGR was only 14 % but increased to 41 % after sEH blockade. Here we examined if sEH inhibition added to renin-angiotensin system (RAS) blockade would further enhance protection against ACF-induced CHF in TGR. The treatment regimens were started one week after ACF creation and the follow-up period was 50 weeks. RAS was blocked using angiotensin-converting enzyme inhibitor (ACEi, trandolapril, 6 mg/l) and sEH with an sEH inhibitor (sEHi, c-AUCB, 3 mg/l). Renal hemodynamics and excretory function were determined two weeks post-ACF, just before the onset of decompensated phase of CHF. 29 weeks post-ACF no untreated animal survived. ACEi treatment greatly improved the survival rate, to 84 % at the end of study. Surprisingly, combined treatment with ACEi and sEHi worsened the rate (53 %). Untreated ACF TGR exhibited marked impairment of renal function and the treatment with ACEi alone or combined with sEH inhibition did not prevent it. In conclusion, addition of sEHi to ACEi treatment does not provide better protection against CHF progression and does not increase the survival rate in ACF TGR: indeed, the rate decreases significantly. Thus, combined treatment with sEHi and ACEi is not a promising approach to further attenuate renal dysfunction and retard progression of CHF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - L. ČERVENKA
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
12
|
Yazdani A, Yazdani A, Bowman TA, Marotta F, Cooke JP, Samiei A. Arachidonic acid as a target for treating hypertriglyceridemia reproduced by a causal network analysis and an intervention study. Metabolomics 2018; 14:78. [PMID: 30830364 DOI: 10.1007/s11306-018-1368-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/05/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Azam Yazdani
- University of Texas, Health Science Center, Houston, TX, 77030, USA.
- Climax Data Pattern, Houston, TX, USA.
| | - Akram Yazdani
- Climax Data Pattern, Houston, TX, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Thomas A Bowman
- Jarrow Formulas, Inc., 1824 S. Robertson Blvd, Los Angeles, CA, 90035, USA
| | | | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist, Houston, USA
| | - Ahmad Samiei
- Climax Data Pattern, Houston, TX, USA
- Hasso Plattner Institute, 14482, Potsdam, Germany
| |
Collapse
|
13
|
Čertíková Chábová V, Kujal P, Škaroupková P, Varňourková Z, Vacková Š, Husková Z, Kikerlová S, Sadowski J, Kompanowska-Jezierska E, Baranowska I, Hwang SH, Hammock BD, Imig JD, Tesař V, Červenka L. Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 2018. [PMID: 29529602 DOI: 10.1159/000487902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS We found recently that increasing renal epoxyeicosatrienoic acids (EETs) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, shows renoprotective actions and retards the progression of chronic kidney disease (CKD) in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX). This prompted us to examine if additional protection is provided when sEH inhibitor is added to the standard renin-angiotensin system (RAS) blockade, specifically in rats with established CKD. METHODS For RAS blockade, an angiotensin-converting enzyme inhibitor along with an angiotensin II type receptor blocker was used. RAS blockade was compared to sEH inhibition added to the RAS blockade. Treatments were initiated 6 weeks after 5/6 NX in TGR and the follow-up period was 60 weeks. RESULTS Combined RAS and sEH blockade exhibited additional positive impact on the rat survival rate, further reduced albuminuria, further reduced glomerular and tubulointerstitial injury, and attenuated the decline in creatinine clearance when compared to 5/6 NX TGR subjected to RAS blockade alone. These additional beneficial actions were associated with normalization of the intrarenal EETs deficient and a further reduction of urinary angiotensinogen excretion. CONCLUSION This study provides evidence that addition of pharmacological inhibition of sEH to RAS blockade in 5/6 NX TGR enhances renoprotection and retards progression of CKD, notably, when applied at an advanced stage.
Collapse
Affiliation(s)
- Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeňka Varňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Šárka Vacková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Sung Hee Hwang
- Department of Entomology and UCD Cancer Center, University of California, Davis, California, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, California, USA
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vladimír Tesař
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludek Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Hammoud SH, Omar AG, Eid AA, El-Mas MM. CYP4A/CYP2C modulation of the interaction of calcium channel blockers with cyclosporine on EDHF-mediated renal vasodilations in rats. Toxicol Appl Pharmacol 2017; 334:110-119. [DOI: 10.1016/j.taap.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023]
|
15
|
Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J Hypertens 2017; 34:2008-25. [PMID: 27428043 DOI: 10.1097/hjh.0000000000001029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We evaluated the therapeutic effectiveness of a new, orally active epoxyeicosatrienoic acid analog (EET-A) in rats with angiotensin II (ANG II)-dependent malignant hypertension. METHODS Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. EET-A treatment was started either simultaneously with I3C induction process (early treatment) or 10 days later during established hypertension (late treatment). Blood pressure (BP) (radiotelemetry), indices of renal and cardiac injury, and plasma and kidney levels of the components of the renin-angiotensin system (RAS) were determined. RESULTS In I3C-induced hypertensive rats, early EET-A treatment attenuated BP increase (to 175 ± 3 versus 193 ± 4 mmHg, P < 0.05, on day 13), reduced albuminuria (15 ± 1 versus 28 ± 2 mg/24 h, P < 0.05), and cardiac hypertrophy as compared with untreated I3C-induced rats. This was associated with suppression of plasma and kidney ANG II levels (48 ± 6 versus 106 ± 9 and 122 ± 19 versus 346 ± 11 fmol ml or g, respectively, P < 0.05) and increases in plasma and kidney angiotensin (1-7) concentrations (84 ± 9 versus 37 ± 6 and 199 ± 12 versus 68 ± 9 fmol/ml or g, respectively, P < 0.05). Remarkably, late EET-A treatment did not lower BP or improve renal and cardiac injury; indices of RAS activity were not affected. CONCLUSION The new, orally active EET-A attenuated the development of experimental ANG II-dependent malignant hypertension, likely via suppression of the hypertensiogenic axis and augmentation of the vasodilatory/natriuretic axis of RAS.
Collapse
|
16
|
A novel mechanism of ascorbate direct modulation of soluble epoxide hydrolase. Prostaglandins Other Lipid Mediat 2017; 131:59-66. [DOI: 10.1016/j.prostaglandins.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/09/2022]
|
17
|
SPORKOVÁ A, HUSKOVÁ Z, ŠKAROUPKOVÁ P, RAMI REDDY N, FALCK JR, SADOWSKI J, ČERVENKA L. Vasodilatory Responses of Renal Interlobular Arteries to Epoxyeicosatrienoic Acids Analog Are Not Enhanced in Ren-2 Transgenic Hypertensive Rats: Evidence Against a Role of Direct Vascular Effects of Epoxyeicosatrienoic Acids in Progression of Experimental Heart Failure. Physiol Res 2017; 66:29-39. [DOI: 10.33549/physiolres.933350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathophysiological mechanisms underlying the development of renal dysfunction and progression of congestive heart failure (CHF) remain poorly understood. Recent studies have revealed striking differences in the role of epoxyeicosatrienoic acids (EETs), active products of cytochrome P-450-dependent epoxygenase pathway of arachidonic acid, in the progression of aorto-caval fistula (ACF)-induced CHF between hypertensive Ren-2 renin transgenic rats (TGR) and transgene-negative normotensive Hannover Sprague-Dawley (HanSD) controls. Both ACF TGR and ACF HanSD strains exhibited marked intrarenal EETs deficiency and impairment of renal function, and in both strains chronic pharmacologic inhibition of soluble epoxide hydrolase (sEH) (which normally degrades EETs) normalized EETs levels. However, the treatment improved the survival rate and attenuated renal function impairment in ACF TGR only. Here we aimed to establish if the reported improved renal function and attenuation of progression of CHF in ACF TGR observed after sEH blockade depends on increased vasodilatory responsiveness of renal resistance arteries to EETs. Therefore, we examined the responses of interlobar arteries from kidneys of ACF TGR and ACF HanSD rats to EET-A, a new stable 14,15-EET analog. We found that the arteries from ACF HanSD kidneys rats exhibited greater vasodilator responses when compared to the ACF TGR arteries. Hence, reduced renal vasodilatory responsiveness cannot be responsible for the lack of beneficial effects of chronic sEH inhibition on the development of renal dysfunction and progression of CHF in ACF HanSD rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - L. ČERVENKA
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Xu X, Li R, Chen G, Hoopes SL, Zeldin DC, Wang DW. The Role of Cytochrome P450 Epoxygenases, Soluble Epoxide Hydrolase, and Epoxyeicosatrienoic Acids in Metabolic Diseases. Adv Nutr 2016; 7:1122-1128. [PMID: 28140329 PMCID: PMC5105036 DOI: 10.3945/an.116.012245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metabolic diseases are associated with an increased risk of developing cardiovascular disease. The features comprising metabolic diseases include obesity, insulin resistance, hyperglycemia, hyperlipidemia, and hypertension. Recent evidence has emerged showcasing a role for cytochrome P450 epoxygenases, soluble epoxide hydrolase, and epoxyeicosatrienoic acids (EETs) in the development and progression of metabolic diseases. This review discusses the current knowledge related to the modulation of cytochrome P450 epoxygenases and soluble epoxide hydrolase to alter concentrations of biologically active EETs, resulting in effects on insulin resistance, lipid metabolism, obesity, and diabetes. Future areas of research to address current deficiencies in the understanding of these enzymes and their eicosanoid metabolites in various aspects of metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Xizhen Xu
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Rui Li
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Guangzhi Chen
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| | - Samantha L Hoopes
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Dao Wen Wang
- Department of Internal Medicine and the Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
19
|
Zhang K, Liu Y, Liu X, Chen J, Cai Q, Wang J, Huang H. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids. Oncotarget 2016; 6:24699-708. [PMID: 26322503 PMCID: PMC4694789 DOI: 10.18632/oncotarget.5084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/07/2015] [Indexed: 12/28/2022] Open
Abstract
Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Yu Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Xiaoqiang Liu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.,Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Hui Huang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| |
Collapse
|
20
|
Sporková A, Reddy RN, Falck JR, Imig JD, Kopkan L, Sadowski J, Červenka L. Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats' Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids. Am J Med Sci 2016; 351:513-9. [PMID: 27140711 PMCID: PMC5021442 DOI: 10.1016/j.amjms.2016.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Small renal arteries have a significant role in the regulation of renal hemodynamics and blood pressure (BP). To study potential changes in the regulation of vascular function in hypertension, we examined renal vasodilatory responses of small arteries from nonclipped kidneys of the 2-kidney, 1-clip Goldblatt hypertensive rats to native epoxyeicosatrienoic acids (EETs) that are believed to be involved in the regulation of renal vascular function and BP. A total of 2 newly synthesized EET analogues were also examined. MATERIALS AND METHODS Renal interlobular arteries isolated from the nonclipped kidneys on day 28 after clipping were preconstricted with phenylephrine, pressurized and the effects of a 14,15-EET analogue, native 14,15-EET and 11,12-ether-EET-8ZE, an analogue of 11,12-EET, on the vascular diameter were determined and compared to the responses of arteries from the kidneys of sham-operated rats. RESULTS In the arteries from nonclipped kidneys isolated in the maintenance phase of Goldblatt hypertension, the maximal vasodilatory response to 14,15-EET analogue was 30.1 ± 2.8% versus 49.8 ± 7.2% in sham-operated rats; the respective values for 11,12-ther-EET-8ZE were 31.4 ± 6.4% versus 80.4 ± 6%, and for native EETs they were 41.7 ± 6.6% versus 62.8 ± 4.4% (P ≤ 0.05 for each difference). CONCLUSIONS We propose that reduced vasodilatory action and decreased intrarenal bioavailability of EETs combined with intrarenal angiotensin II levels that are inappropriately high for hypertensive rats underlie functional derangements of the nonclipped kidneys of 2-kidney, 1-clip Goldblatt hypertensive rats. These derangements could play an important role in pathophysiology of sustained BP elevation observed in this animal model of human renovascular hypertension.
Collapse
Affiliation(s)
- Alexandra Sporková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Rami N Reddy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
21
|
Tong X, Khandelwal AR, Wu X, Xu Z, Yu W, Chen C, Zhao W, Yang J, Qin Z, Weisbrod RM, Seta F, Ago T, Lee KSS, Hammock BD, Sadoshima J, Cohen RA, Zeng C. Pro-atherogenic role of smooth muscle Nox4-based NADPH oxidase. J Mol Cell Cardiol 2016; 92:30-40. [PMID: 26812119 PMCID: PMC5008453 DOI: 10.1016/j.yjmcc.2016.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE Our goal was to investigate the role of smooth muscle Nox4 in atherosclerosis. APPROACH AND RESULTS Atherosclerosis-prone conditions (disturbed blood flow and Western diet) increased Nox4 mRNA level in smooth muscle of arteries. To address whether upregulated smooth muscle Nox4 under atherosclerosis-prone conditions was directly involved in the development of atherosclerosis, mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), specifically in smooth muscle, were generated on a FVB/N ApoE deficient genetic background to counter the effect of increased smooth muscle Nox4. Nox4DN significantly decreased aortic stiffness and atherosclerotic lesions, with no effect on blood pressure. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly downregulated in Nox4DN smooth muscle cells (SMC), at both mRNA and protein levels. Downregulation of sEH by siRNA decreased SMC proliferation and migration, and suppressed inflammation and macrophage adhesion to SMC. CONCLUSIONS Downregulation of smooth muscle Nox4 inhibits atherosclerosis by suppressing sEH, which, at least in part, accounts for inhibition of SMC proliferation, migration and inflammation.
Collapse
Affiliation(s)
- Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China.
| | - Alok R Khandelwal
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaojuan Wu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Weimin Yu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wanzhou Zhao
- The Nanjing Han & Zaenker Cancer Institute, OG Pharmaceuticals, Nanjing 210019, China
| | - Jian Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhexue Qin
- Department of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Robert M Weisbrod
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 812-8581, Japan
| | - Kin Sing Stephen Lee
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
22
|
Martinez JT, Rogers LK, Kellogg C, Iazbik MC, Couto CG, Pressler BM, Hoepf TM, Radin MJ. Plasma Vasoprotective Eicosanoid Concentrations in Healthy Greyhounds and Non-Greyhound Dogs. J Vet Intern Med 2016; 30:583-90. [PMID: 26806473 PMCID: PMC4913591 DOI: 10.1111/jvim.13833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/09/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypertension and albuminuria often coexist in Greyhounds, suggesting generalized vascular dysfunction that could contribute to the development of a variety of diseases in this breed. Eicosanoid metabolites of arachidonic acid (AA) mediate endothelial function, vascular reactivity, and proteinuria in humans and in rodent models. HYPOTHESIS The eicosanoid profile of Greyhounds is shifted toward metabolites that promote vascular dysfunction, hypertension, and proteinuria. ANIMALS Healthy Greyhounds (n = 20) and non-Greyhound (n = 20) dogs that were consecutively enrolled in a blood donor program. METHODS Prospective study. Plasma eicosanoid metabolites were assayed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) and compared to systolic blood pressure (SP) measurements and urine albumin concentration. RESULTS Isomers of hydroxyeicosatetraenoic acid (HETE) were higher in Greyhounds than non-Greyhounds (median, range in pmol/mL: 5(S)HETE 19.82, 8.55-32.95 versus 13.54, 4.33-26.27, P = .033; 8(S)HETE 9.39, 3.28-19.84 versus 5.80, 2.25-17.66, P = .002; 9(S)HETE 9.46, 2.43-13.79 versus 5.82, 1.50-17.16, P = .026; 12(S)HETE 10.17, 3.81-40.06 versus 7.24, 2.9-16.16, P = .022). Dihydroxyeicosatrienoic acid (DHET) isomers also were higher in Greyhounds compared to non-Greyhounds (mean ± SD in pmol/mL: 8,9DHET 5.78 ± 2.13 versus 4.03 ± 1.36, P = .004; 11,12DHET 11.98 ± 2.86 versus 8.90 ± 3.48, P = .004; 14,15DHET 7.23 ± 2.19 versus 5.76 ± 1.87, P = .028). Albuminuria correlated with total DHET (rs = 0.46, P = .003). SP was positively correlated with 11,12EET (rs = 0.42, P = .006) and 20(S)HETE (rs = 0.38, P = .017). SP and 8,9EET were inversely correlated (rs = -0.49, P = .001). CONCLUSIONS AND CLINICAL IMPORTANCE Plasma eicosanoid profile in Greyhounds was consistent with activation of metabolic pathways known to promote vascular dysfunction and might contribute to higher blood pressures and albuminuria. Inhibition of these eicosanoid pathways should be evaluated as therapeutic targets in Greyhounds.
Collapse
Affiliation(s)
- J T Martinez
- Department of Veterinary Biosciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | - L K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - C Kellogg
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | | | - C G Couto
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | - B M Pressler
- Department of Veterinary Clinical Sciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | - T M Hoepf
- Department of Veterinary Biosciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| | - M J Radin
- Department of Veterinary Biosciences, Ohio State University College of Veterinary Medicine, Columbus, OH
| |
Collapse
|
23
|
Renal Ischemia/Reperfusion Injury in Soluble Epoxide Hydrolase-Deficient Mice. PLoS One 2016; 11:e0145645. [PMID: 26727266 PMCID: PMC4699807 DOI: 10.1371/journal.pone.0145645] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
AIM 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-dependent eicosanoids that play opposite roles in the regulation of vascular tone, inflammation, and apoptosis. 20-HETE aggravates, whereas EETs ameliorate ischemia/reperfusion (I/R)-induced organ damage. EETs are rapidly metabolized to dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH). We hypothesized that sEH gene (EPHX2) deletion would increase endogenous EET levels and thereby protect against I/R-induced acute kidney injury (AKI). METHODS Kidney damage was evaluated in male wildtype (WT) and sEH-knockout (KO)-mice that underwent 22-min renal ischemia followed by two days of reperfusion. CYP-eicosanoids were analyzed by liquid chromatography tandem mass spectrometry. RESULTS Contrary to our initial hypothesis, renal function declined more severely in sEH-KO mice as indicated by higher serum creatinine and urea levels. The sEH-KO-mice also featured stronger tubular lesion scores, tubular apoptosis, and inflammatory cell infiltration. Plasma and renal EET/DHET-ratios were higher in sEH-KO than WT mice, thus confirming the expected metabolic consequences of sEH deficiency. However, CYP-eicosanoid profiling also revealed that renal, but not plasma and hepatic, 20-HETE levels were significantly increased in sEH-KO compared to WT mice. In line with this finding, renal expression of Cyp4a12a, the murine 20-HETE-generating CYP-enzyme, was up-regulated both at the mRNA and protein level, and Cyp4a12a immunostaining was more intense in the renal arterioles of sEH-KO compared with WT mice. CONCLUSION These results indicate that the potential beneficial effects of reducing EET degradation were obliterated by a thus far unknown mechanism leading to kidney-specific up-regulation of 20-HETE formation in sEH-KO-mice.
Collapse
|
24
|
Sporková A, Jíchová S, Husková Z, Kopkan L, Nishiyama A, Hwang SH, Hammock BD, Imig JD, Kompanowska-Jezierska E, Sadowski J, Kramer HJ, Cervenka L. Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol 2015; 41:1003-13. [PMID: 25224811 DOI: 10.1111/1440-1681.12310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 01/13/2023]
Abstract
Recent studies have shown that the long-term antihypertensive action of soluble epoxide hydrolase inhibition (sEH) in angiotensin-II (AngII)-dependent hypertension might be mediated by the suppression of intrarenal AngII levels. To test this hypothesis, we examined the effects of acute (2 days) and chronic (14 days) sEH inhibition on blood pressure (BP) in transgenic rats with inducible AngII-dependent hypertension. AngII-dependent malignant hypertension was induced by 10 days' dietary administration of indole-3-carbinol (I3C), a natural xenobiotic that activates the mouse renin gene in Cyp1a1-Ren-2 transgenic rats. BP was monitored by radiotelemetry. Acute and chronic sEH inhibition was achieved using cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid, given at doses of 0.3, 3, 13, 26, 60 and 130 mg/L in drinking water. At the end of experiments, renal concentrations of epoxyeicosatrienoic acids, their inactive metabolites dihydroxyeicosatrienoic acids and AngII were measured. Acute BP-lowering effects of sEH inhibition in I3C-induced rats was associated with a marked increase in renal epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids ratio and acute natriuresis. Chronic treatment with cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid in I3C-induced rats elicited dose-dependent persistent BP lowering associated with a significant reduction of plasma and kidney AngII levels. Our findings show that the acute BP-lowering effect of sEH inhibition in I3C-induced Cyp1a1-Ren-2 transgenic rats is mediated by a substantial increase in intrarenal epoxyeicosatrienoic acids and their natriuretic action without altering intrarenal renin-angiotensin system activity. Long-term antihypertensive action of cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid in I3C-induced Cyp1a1-Ren-2 transgenic rats is mediated mostly by suppression of intrarenal AngII concentration.
Collapse
Affiliation(s)
- Alexandra Sporková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Červenka L, Melenovský V, Husková Z, Sporková A, Bürgelová M, Škaroupková P, Hwang SH, Hammock BD, Imig JD, Sadowski J. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol Res 2015; 64:857-73. [PMID: 26047375 DOI: 10.33549/physiolres.932977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto-caval fistula (ACF) in Hannover Sprague-Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP-450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis-4-[4-(3-adamantan-1-yl-ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/l in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs to levels observed in sham-operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin-converting enzyme inhibition (ACEi, trandolapril, 6 mg/l in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume overload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin-angiotensin system in the circulating blood and kidney tissue.
Collapse
Affiliation(s)
- L Červenka
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Faulkner J, Pye C, Al-Shabrawey M, Elmarakby AA. Inhibition of 12/15-Lipoxygenase Reduces Renal Inflammation and Injury in Streptozotocin-Induced Diabetic Mice. ACTA ACUST UNITED AC 2015; 6. [PMID: 26823989 DOI: 10.4172/2155-6156.1000555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies suggest that 12/15 lipoxygenase (12/15-LO) is implicated in diabetic vascular complications. We hypothesize that 12/15-LO inhibition attenuates renal inflammation and injury in streptozotocin-induced diabetes. Diabetes was induced in wild-type C57BL/6J (WT) and 12/15-LO deficient mice using streptozotocin. Additionally, four groups of WT mice were also used; control non diabetic, diabetic, diabetic treated with the 12/15-LO inhibitor baicalein for 10 weeks and diabetic treated with baicalein only for the last 4 weeks of the experiment. After 10 weeks of induction of diabetes with streptozotocin, WT diabetic mice exhibited marked elevation in proteinuria together with elevation in the excretion levels of thiobarbituric acid reactive substance (TBARs), a marker of oxidative stress, and monocyte chemoattractant protein-1 (MCP-1), a marker of inflammation and these changes were significantly reduced in 12/15-LO deficient diabetic mice (P<0.05). Similarly, pharmacological inhibition of 12/15-LO with baicalein prevented the elevation in renal 12-HETE production, the major murine metabolic product of 12/15-LO, in diabetic mice, and this effect was associated with decreased proteinuria, TBARs excretion and renal collagen deposition compared to untreated diabetic mice. Interestingly, the protective effects of baicalein were not noticed when only administered in the last 4 weeks of diabetes compared to untreated diabetic mice. WT diabetic mice displayed elevation in renal interleukin-6 (IL-6) levels and these changes were only reduced in diabetic mice treated with baicalein for 10 weeks (P<0.05). The anti-inflammatory effects of baicalein or 12/15-LO deficiency were further confirmed in lipopolysaccharide (LPS)-induced acute renal inflammation as inhibition of 12/15-LO reduced the elevation in renal soluble epoxide hydrolase expression in LPS-injected mice. These results suggest that increased 12/15-LO activity and 12-HETE production contribute to the elevation of renal oxidative stress, inflammation and injury in streptozotocin-induced diabetic mice.
Collapse
Affiliation(s)
- Jessica Faulkner
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Chelsey Pye
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA; Department of Ophthalmology and Culver Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA
| | - Ahmed A Elmarakby
- Department of Oral Biology, Georgia Regents University, Augusta, GA, USA; Department of Pharmacology & Toxicology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
27
|
Kujal P, Čertíková Chábová V, Škaroupková P, Husková Z, Vernerová Z, Kramer HJ, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Kitada K, Nishiyama A, Hwang SH, Hammock BD, Imig JD, Červenka L. Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Pharmacol Physiol 2014; 41:227-37. [PMID: 24471737 PMCID: PMC4038339 DOI: 10.1111/1440-1681.12204] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/18/2013] [Accepted: 12/20/2013] [Indexed: 01/13/2023]
Abstract
1. The aim of the present study was to test the hypothesis that increasing kidney tissue concentrations of epoxyeicosatrienoic acids (EETs) by preventing their degradation to the biologically inactive dihydroxyeicosatrienoic acids (DHETEs) using blockade of soluble epoxide hydrolase (sEH) would attenuate the progression of chronic kidney disease (CKD). 2. Ren-2 transgenic rats (TGR) after 5/6 renal mass reduction (5/6 NX) served as a model of CKD associated with angiotensin (Ang) II-dependent hypertension. Soluble epoxide hydrolase was inhibited using cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid (c-AUCB; 3 mg/L drinking water) for 20 weeks after 5/6 NX. Sham-operated normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats served as controls. 3. When applied in TGR subjected to 5/6 NX, c-AUCB treatment improved survival rate, prevented the increase in blood pressure, retarded the progression of cardiac hypertrophy, reduced proteinuria and the degree of glomerular and tubulointerstitial injury and reduced glomerular volume. All these organ-protective actions were associated with normalization of the intrarenal EETs : DHETEs ratio, an index of the availability of biologically active EETs, to levels observed in sham-operated HanSD rats. There were no significant concurrent changes of increased intrarenal AngII content. 4. Together, these results show that 5/6 NX TGR exhibit a profound deficiency of intrarenal availability of active epoxygenase metabolites (EETs), which probably contributes to the progression of CKD in this model of AngII-dependent hypertension, and that restoration of intrarenal availability of EETs using long-term c-AUCB treatment exhibits substantial renoprotective actions.
Collapse
Affiliation(s)
- Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Charles University, Prague, Czech Republic; Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fleming I. The Pharmacology of the Cytochrome P450 Epoxygenase/Soluble Epoxide Hydrolase Axis in the Vasculature and Cardiovascular Disease. Pharmacol Rev 2014; 66:1106-40. [DOI: 10.1124/pr.113.007781] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Aspromonte N, Monitillo F, Puzzovivo A, Valle R, Caldarola P, Iacoviello M. Modulation of cardiac cytochrome P450 in patients with heart failure. Expert Opin Drug Metab Toxicol 2014; 10:327-39. [DOI: 10.1517/17425255.2014.872240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Role of haem oxygenase in the renoprotective effects of soluble epoxide hydrolase inhibition in diabetic spontaneously hypertensive rats. Clin Sci (Lond) 2013; 125:349-59. [PMID: 23611540 DOI: 10.1042/cs20130003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have shown previously that inhibition of sEH (soluble epoxide hydrolase) increased EETs (epoxyeicosatrienoic acids) levels and reduced renal injury in diabetic mice and these changes were associated with induction of HO (haem oxygenase)-1. The present study determines whether the inhibition of HO negates the renoprotective effect of sEH inhibition in diabetic SHR (spontaneously hypertensive rats). After 6 weeks of induction of diabetes with streptozotocin, SHR were divided into the following groups: untreated, treated with the sEH inhibitor t-AUCB {trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid}, treated with the HO inhibitor SnMP (stannous mesoporphyrin), and treated with both inhibitors for 4 more weeks; non-diabetic SHR served as a control group. Induction of diabetes significantly increased renal sEH expression and decreased the renal EETs/DHETEs (dihydroxyeicosatrienoic acid) ratio without affecting HO-1 activity or expression in SHR. Inhibition of sEH with t-AUCB increased the renal EETs/DHETEs ratio and HO-1 activity in diabetic SHR; however, it did not significantly alter systolic blood pressure. Treatment of diabetic SHR with t-AUCB significantly reduced the elevation in urinary albumin and nephrin excretion, whereas co-administration of the HO inhibitor SnMP with t-AUCB prevented these changes. Immunohistochemical analysis revealed elevations in renal fibrosis as indicated by increased renal TGF-β (transforming growth factor β) levels and fibronectin expression in diabetic SHR and these changes were reduced with sEH inhibition. Co-administration of SnMP with t-AUCB prevented its ability to reduce renal fibrosis in diabetic SHR. In addition, SnMP treatment also prevented t-AUCB-induced decreases in renal macrophage infiltration, IL-17 expression and MCP-1 levels in diabetic SHR. These findings suggest that HO-1 induction is involved in the protective effect of sEH inhibition against diabetic renal injury.
Collapse
|
31
|
Askari A, Thomson SJ, Edin ML, Zeldin DC, Bishop-Bailey D. Roles of the epoxygenase CYP2J2 in the endothelium. Prostaglandins Other Lipid Mediat 2013; 107:56-63. [PMID: 23474289 DOI: 10.1016/j.prostaglandins.2013.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/19/2022]
Abstract
Cytochrome p450 (CYP)2J2 is an epoxygenase enzyme that metabolises arachidonic acid to epoxyeicosatrienoic acids (EETs). EETs are inactivated by soluble epoxide hydrolase (sEH), which converts them in to their corresponding dihydroxyeicosatrienoic acids (DHETs). CYP2J2 is highly expressed in cardiovascular tissue including the heart and vascular endothelial cells. CYP2J2 and the EETs it produces have been shown to have a diverse range of effects on the vasculature, including the regulation of inflammation, vascular tone, cellular proliferation, angiogenesis, and metabolism. This review will examine these established and emerging roles of CYP2J2 in the biology of vascular endothelial cells.
Collapse
Affiliation(s)
- Ara Askari
- Translational Medicine & Therapeutics, William Harvey Research Institute, Barts & the London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Jiang H, McGiff JC, Fava C, Amen G, Nesta E, Zanconato G, Quilley J, Minuz P. Maternal and fetal epoxyeicosatrienoic acids in normotensive and preeclamptic pregnancies. Am J Hypertens 2013; 26:271-8. [PMID: 23382413 DOI: 10.1093/ajh/hps011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 metabolites of arachidonic acid posited to act in the circulatory adaptation to pregnancy and the development of preeclampsia. Red blood cells (RBCs) may function as major contributors of cis- and trans-EETs. METHODS We performed paired analyses of EETs, dihydroxyeicosatrienoic acids (DHETs), and 20-HETE in RBCs, plasma, and urine from preeclamptic and normotensive pregnant and nonpregnant women. Blood from fetal and maternal circulation was collected. EETs, DHETs, and 20-HETE were analyzed by gas chromatography and liquid chromatography mass spectrometry. Vascular function and inflammation indices were analyzed. RESULTS Plasma EET is higher in normotensive (median, range; 9.9, 6.3-25.2ng/mL n = 29) and preeclamptic (10.9, 6.0-48.0ng/mL, n = 19) women than in nonpregnant controls (7.3, 3.7-10.2ng/mL, n = 19) and correlate with RBC EETs, C-reactive protein, and arterial stiffness. Renal production of EETs, measured as urinary DHETs, was reduced in preeclamptic (4.5, 1.6-24.5ng/mg creatinine) compared to normotensive (11.4, 1.6-44.5ng/mg creatinine) pregnancies. EETs are 3- to 5-fold greater in fetoplacental than in maternal circulation (RBCs 36.6, 13.1-69.4 vs. 12.5, 6.4-12.0ng/10(9) cells; plasma 31.6, 8.5-192.6 vs. 12.0, 6.8-48.0ng/mL). Both cis- and trans-EETs are present in fetal RBCs. CONCLUSIONS RBCs contribute to elevated levels of EETs in the fetoplacental circulation. EETs may modulate systemic and fetoplacental hemodynamics in normal and preeclamptic pregnancies. Decreased renal EET generation may be associated with the development of maternal renal dysfunction and hypertension in preeclampsia.
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang K, Wang J, Zhang H, Chen J, Zuo Z, Wang J, Huang H. Mechanisms of epoxyeicosatrienoic acids to improve cardiac remodeling in chronic renal failure disease. Eur J Pharmacol 2013; 701:33-9. [PMID: 23313758 DOI: 10.1016/j.ejphar.2012.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/05/2012] [Accepted: 12/18/2012] [Indexed: 01/20/2023]
Abstract
Both clinical and basic science studies have demonstrated that cardiac remodeling in patients with chronic renal failure (CRF) is very common. It is a key feature during the course of heart failure and an important risk factor for subsequent cardiac mortality. Traditional drugs or therapies rarely have effects on cardiac regression of CRF and cardiovascular events are still the first cause of death. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acids metabolized by cytochrome P450 epoxygenases. It has been found that EETs have important biological effects including anti-hypertension and anti-inflammation. Recent data suggest that EETs are involved in regulating cardiomyocyte injury, renal dysfunction, chronic kidney disease (CKD)-related risk factors and signaling pathways, all of which play key roles in cardiac remodeling induced by CRF. This review analyzes the literature to identify the possible mechanisms for EETs to improve cardiac remodeling induced by CRF and indicates the therapeutic potential of EETs in it.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Jiang H, Harrison FE, Jain K, Benjamin S, May JM, Graves JP, Zeldin DC, Falck JR, Hammock BD, McGiff JC. Vitamin C activation of the biosynthesis of epoxyeicosatrienoic acids. ACTA ACUST UNITED AC 2012; 3:204-218. [PMID: 24660109 DOI: 10.4236/abb.2012.33029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cardiovascular effects of vitamin C (VitC) could be mediated by epoxyeicosatrienoic acids (EETs). We aimed to study the mechanism of VitC-dependent microsomal formation of cis- and trans-EETs and the regulation of EET levels in rat isolated perfused kidneys and in vivo. VitC biphasically stimulated rat kidney microsomal cis- and trans-EET formation in a ratio of 1:2, involving the participation of lipid hydroperoxides (LOOHs), Fe2+, and cytochrome P450 (CYP). Levels of LOOHs correlated with microsomal EET production. LOOH stimulation of CYP isoforms resulted in preferred trans-over cis-EET formation from arachidonic acid and was associated with the cleavage of LOOHs, which indicated a CYP peroxygenase activity. EETs contributed to VitC-induced vasodilator responses in rat isolated perfused kidneys. VitC (1 mg/ml) given in the drinking water for 9 days doubled rat urinary EET excretion, increased plasma levels of EETs, mostly trans-EETs, by 40%, and reduced plasma levels of 20-hydroxyeicosatetraenoic acid. Depletion of VitC in brain cortex and kidney tissues by more than 20- and 50-fold, respectively, in gulonolactone oxidase-knockout mice was associated with mild increases in tissue EETs. These data suggest that LOOHs are a determinant factor for EET formation in vivo in which VitC exerts a key regulatory effect. VitC-activated CYP peroxygenase activity may represent a CYP interaction with lipoxygenases and cyclooxygenases to mediate the cardiovascular effects of VitC via formation of EETs.
Collapse
Affiliation(s)
- Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Kavita Jain
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Samantha Benjamin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - James M May
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Joan P Graves
- NIH/NIEHS, Research Triangle Park, North Carolina, USA
| | | | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce D Hammock
- Entomology and Cancer Center, University of California, Davis, California, USA
| | - John C McGiff
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|