1
|
Geiser A, Currie S, Al-Hasani H, Chadt A, McConnell G, Gould GW. A novel 3D imaging approach for quantification of GLUT4 levels across the intact myocardium. J Cell Sci 2024; 137:jcs262146. [PMID: 38958032 DOI: 10.1242/jcs.262146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm×5 mm×3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Susan Currie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical faculty, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical faculty, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Geraets IME, Glatz JFC, Luiken JJFP, Nabben M. Pivotal role of membrane substrate transporters on the metabolic alterations in the pressure-overloaded heart. Cardiovasc Res 2020; 115:1000-1012. [PMID: 30938418 DOI: 10.1093/cvr/cvz060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiac pressure overload (PO), such as caused by aortic stenosis and systemic hypertension, commonly results in cardiac hypertrophy and may lead to the development of heart failure. PO-induced heart failure is among the leading causes of death worldwide, but its pathological origin remains poorly understood. Metabolic alterations are proposed to be an important contributor to PO-induced cardiac hypertrophy and failure. While the healthy adult heart mainly uses long-chain fatty acids (FAs) and glucose as substrates for energy metabolism and to a lesser extent alternative substrates, i.e. lactate, ketone bodies, and amino acids (AAs), the pressure-overloaded heart is characterized by a shift in energy metabolism towards a greater reliance on glycolysis and alternative substrates. A key-governing kinetic step of both FA and glucose fluxes is at the level of their substrate-specific membrane transporters. The relative presence of these transporters in the sarcolemma determines the cardiac substrate preference. Whether the cardiac utilization of alternative substrates is also governed by membrane transporters is not yet known. In this review, we discuss current insight into the role of membrane substrate transporters in the metabolic alterations occurring in the pressure-overloaded heart. Given the increasing evidence of a role for alternative substrates in these metabolic alterations, there is an urgent need to disclose the key-governing kinetic steps in their utilization as well. Taken together, membrane substrate transporters emerge as novel targets for metabolic interventions to prevent or treat PO-induced heart failure.
Collapse
Affiliation(s)
- Ilvy M E Geraets
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, MD Maastricht, The Netherlands
| |
Collapse
|
3
|
Shriwas P, Chen X, Kinghorn AD, Ren Y. Plant-derived glucose transport inhibitors with potential antitumor activity. Phytother Res 2019; 34:1027-1040. [PMID: 31823431 DOI: 10.1002/ptr.6587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
Abstract
Glucose, a key nutrient utilized by human cells to provide cellular energy and a carbon source for biomass synthesis, is internalized in cells via glucose transporters that regulate glucose homeostasis throughout the human body. Glucose transporters have been used as important targets for the discovery of new drugs to treat cancer, diabetes, and heart disease, owing to their abnormal expression during these disease conditions. Thus far, several glucose transport inhibitors have been used in clinical trials, and increasing numbers of natural products have been characterized as potential anticancer agents targeting glucose transport. The present review focuses on natural product glucose transport inhibitors of plant origin, including alkaloids, flavonoids and other phenolic compounds, and isoprenoids, with their potential antitumor properties also discussed.
Collapse
Affiliation(s)
- Pratik Shriwas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Department of Biological Sciences, Ohio University, Athens, Ohio.,Edison Biotechnology Institute, Ohio University, Athens, Ohio.,Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, Ohio.,Edison Biotechnology Institute, Ohio University, Athens, Ohio.,Molecular and Cellular Biology Program, Ohio University, Athens, Ohio.,Department of Biomedical Sciences, Ohio University, Athens, Ohio
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient’s age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
5
|
Shoop S, Maria Z, Campolo A, Rashdan N, Martin D, Lovern P, Lacombe VA. Glial Growth Factor 2 Regulates Glucose Transport in Healthy Cardiac Myocytes and During Myocardial Infarction via an Akt-Dependent Pathway. Front Physiol 2019; 10:189. [PMID: 30971932 PMCID: PMC6445869 DOI: 10.3389/fphys.2019.00189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
Neuregulin (NRG), a paracrine factor in myocytes, promotes cardiac development via the ErbB receptors. NRG-1β also improves cardiac function and cell survival after myocardial infarction (MI), although the mechanisms underlying these cardioprotective effects are not well elucidated. Increased glucose uptake has been shown to be cardio-protective during MI. We hypothesized that treatment with a recombinant version of NRG-1β, glial growth factor 2 (GGF2), will enhance glucose transport in the healthy myocardium and during MI. Cardiac myocytes were isolated from MI and healthy adult rats, and subsequently incubated with or without insulin or GGF2. Glucose uptake was measured using a fluorescent D-glucose analog. The translocation of glucose transporter (GLUT) 4 to the cell surface, the rate-limiting step in glucose uptake, was measured using a photolabeled biotinylation assay in isolated myocytes. Similar to insulin, acute in vitro GGF2 treatment increased glucose uptake in healthy cardiac myocytes (by 40 and 49%, respectively, P = 0.002). GGF2 treatment also increased GLUT4 translocation in healthy myocytes by 184% (P < 0.01), while ErbB 2/4 receptor blockade (by afatinib) abolished these effects. In addition, GGF2 treatment enhanced Akt phosphorylation (at both threonine and serine sites, by 75 and 139%, respectively, P = 0.029 and P = 0.01), which was blunted by ErbB 2/4 receptor blockade. GGF2 treatment increased the phosphorylation of AS160 (an Akt effector) by 72% (P < 0.05), as well as the phosphorylation of PDK-1 and PKC (by 118 and 92%, respectively, P < 0.05). During MI, cardiac GLUT4 translocation was downregulated by 44% (P = 0.004) and was partially rescued by both in vitro insulin and GGF2 treatment. Our data demonstrate that acute GGF2 treatment increased glucose transport in cardiac myocytes by activating the ErbB 2/4 receptors and subsequent key downstream effectors (i.e., PDK-1, Akt, AS160, and PKC). These findings highlight novel mechanisms of action of GGF2, which warrant further investigation in patients with heart failure.
Collapse
Affiliation(s)
- Shanell Shoop
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States.,Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Zahra Maria
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, OK, United States
| | - Allison Campolo
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, OK, United States
| | - Nabil Rashdan
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Dominic Martin
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Pamela Lovern
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Véronique A Lacombe
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, United States.,Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Parriman M, Campolo A, Waller AP, Lacombe VA. Adverse Metabolic Effects of Diltiazem Treatment During Diabetic Cardiomyopathy. J Cardiovasc Pharmacol Ther 2018; 24:193-203. [PMID: 30458627 DOI: 10.1177/1074248418808392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes is a global epidemic disease, which leads to multiorgan dysfunction, including heart disease. Diabetes results from the limited absorption of glucose into insulin-sensitive tissues. The heart is one of the main organs to utilize glucose as an energy substrate. Glucose uptake into striated muscle is regulated by a family of membrane proteins called glucose transporters (GLUTs). Although calcium channel blockers, including diltiazem, are widely prescribed drugs for cardiovascular diseases, including in patients with diabetes, their pharmacological effects on glucose metabolism are somewhat controversial. We hypothesized that diltiazem treatment will exhibit detrimental effects on whole body glucose homeostasis and glucose transport in the striated muscle of patients with diabetes. Healthy and streptozotocin-treated rats were randomly assigned to receive diltiazem treatment or a placebo for 8 weeks. Blood glucose was significantly increased in the untreated diabetic groups, which worsened after diltiazem treatment. Diabetes decreased protein content of both GLUT4 (the predominate insulin-sensitive glucose transporter) and AS160 (Akt Substrate at 160 kDa, the downstream protein in the signaling cascade that regulates GLUT4 trafficking) in striated muscle of diabetic rats, with a more pronounced alteration after diltiazem treatment. We additionally reported that diabetic rodents displayed marked systolic dysfunction, which was not rescued by diltiazem treatment. In conclusion, diltiazem treatment worsened the effects of diabetes-induced hyperglycemia and diabetes-induced alterations in the regulation of glucose transport in striated muscle.
Collapse
Affiliation(s)
- Matt Parriman
- College of Pharmacy, The Ohio State University, OH, USA
| | - Allison Campolo
- Department of Physiological Sciences, Oklahoma State University, OK, USA
| | | | - Véronique A Lacombe
- College of Pharmacy, The Ohio State University, OH, USA.,Department of Physiological Sciences, Oklahoma State University, OK, USA
| |
Collapse
|
7
|
Heitmeier MR, Payne MA, Weinheimer C, Kovacs A, Hresko RC, Jay PY, Hruz PW. Metabolic and Cardiac Adaptation to Chronic Pharmacologic Blockade of Facilitative Glucose Transport in Murine Dilated Cardiomyopathy and Myocardial Ischemia. Sci Rep 2018; 8:6475. [PMID: 29691457 PMCID: PMC5915485 DOI: 10.1038/s41598-018-24867-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/11/2018] [Indexed: 01/14/2023] Open
Abstract
GLUT transgenic and knockout mice have provided valuable insight into the role of facilitative glucose transporters (GLUTs) in cardiovascular and metabolic disease, but compensatory physiological changes can hinder interpretation of these models. To determine whether adaptations occur in response to GLUT inhibition in the failing adult heart, we chronically treated TG9 mice, a transgenic model of dilated cardiomyopathy and heart failure, with the GLUT inhibitor ritonavir. Glucose tolerance was significantly improved with chronic treatment and correlated with decreased adipose tissue retinol binding protein 4 (RBP4) and resistin. A modest improvement in lifespan was associated with decreased cardiomyocyte brain natriuretic peptide (BNP) expression, a marker of heart failure severity. GLUT1 and -12 protein expression was significantly increased in left ventricular (LV) myocardium in ritonavir-treated animals. Supporting a switch from fatty acid to glucose utilization in these tissues, fatty acid transporter CD36 and fatty acid transcriptional regulator peroxisome proliferator-activated receptor α (PPARα) mRNA were also decreased in LV and soleus muscle. Chronic ritonavir also increased cardiac output and dV/dt-d in C57Bl/6 mice following ischemia-reperfusion injury. Taken together, these data demonstrate compensatory metabolic adaptation in response to chronic GLUT blockade as a means to evade deleterious changes in the failing heart.
Collapse
Affiliation(s)
- Monique R Heitmeier
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Maria A Payne
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Carla Weinheimer
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | - Attila Kovacs
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | - Richard C Hresko
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Patrick Y Jay
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - Paul W Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA. .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
8
|
Kinney N, Larsen TR, Kim DM, Varghese RT, Poelzing S, Garner HR, AlMahameed ST. Whole-exome sequencing reveals microsatellite DNA markers for response to dofetilide initiation in patients with persistent atrial fibrillation: A pilot study. Clin Cardiol 2018; 41:849-854. [PMID: 29671888 DOI: 10.1002/clc.22969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dofetilide is a class III antiarrhythmic drug effective for the treatment of atrial fibrillation (AF). Dofetilide initiation (DI) associates with corrected QT interval (QTc) prolongation. Significant QTc prolongation during DI mandates dose adjustment or discontinuation of the drug. Microsatellite DNA are novel genetic markers associated with congenital and acquired health conditions. HYPOTHESIS DNA microsatellite polymorphism may associate with QTc response to dofetilide initiation in patients with persistent AF. METHODS We performed whole-exome sequencing in a cohort of patients with persistent AF undergoing DI. Electrocardiographic variables and clinical data were assessed. We defined patients as eligible for DI when no significant QTc prolongation (>20% compared with baseline) was seen with a 500-μg dose. We defined patients as ineligible for DI when significant QTc prolongation was seen during DI with 500 μg. We investigated polymorphisms for 11 919 DNA microsatellite loci in relation to QTc response to DI. RESULTS During the study, 14 consecutive patients with persistent AF presenting for DI were enrolled. Whole-exome sequencing revealed 14 different microsatellite loci in the 2 groups. All genes or proximal genes that harbor these loci are known to have expression in the human heart. Two genes, MYH6 and TRAK2, are known to have expression in the atria. TRAK2 is known to interact with KCNJ2, the inward-rectifier potassium channel 1. CONCLUSIONS Microsatellite DNA polymorphisms seem to associate with QTc response to DI therapy in patients with persistent AF who are deemed otherwise eligible for dofetilide therapy.
Collapse
Affiliation(s)
- Nick Kinney
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
| | - Timothy R Larsen
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - David M Kim
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
| | - Steven Poelzing
- Virginia Tech Carilion Research Institute, and the Center for Heart and Regenerative Medicine, Virginia Polytechnic University, Roanoke, Virginia
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia
- Gibbs Cancer Center and Research Institute, Spartanburg, South Carolina
| | - Soufian T AlMahameed
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
- MetroHealth Medical Center and Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
9
|
Acute Metabolic Influences on the Natriuretic Peptide System in Humans. J Am Coll Cardiol 2016; 67:804-812. [PMID: 26892417 DOI: 10.1016/j.jacc.2015.11.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The cardiac natriuretic peptides (NPs), atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), have central roles in sodium and blood pressure regulation. Extracardiac factors (e.g., obesity and diabetes) influence NP production, potentially altering cardiovascular responses to volume and pressure stress. OBJECTIVES This study examined the effects of acute carbohydrate intake on the NP system in humans, and investigated underlying mechanisms. METHODS Normotensive subjects (N = 33) were given a high-carbohydrate shake. Venous blood was sampled to measure N-terminal (NT)-proANP and NT-proBNP levels. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and HepG2 cells were treated with glucose, and expression levels of NPs and micro ribonucleic acid 425 (miR-425), a negative regulator of ANP, were examined. The role of nuclear factor kappa B (NF-κB) in the glucose-mediated effects was investigated using a NF-κB inhibitor and expression plasmids encoding NF-κB subunits. RESULTS We observed a 27% reduction in the levels of circulating NT-proANP (p < 0.001, maximal at 6 h) after carbohydrate challenge, with no effect on NT-proBNP levels in our human subjects. Glucose treatment of hESC-CMs for 6 h and 24 h increased levels of the primary transcript of miR-425 (pri-miR-425) and mature miR-425. A corresponding decrease in NPPA messenger RNA levels was also observed at both time points. Overexpression of NF-κB subunits in H9c2 cardiomyocytes increased miR-425 levels, whereas inhibition of NF-κB abrogated the glucose-mediated increase in pri-miR-425 levels in HepG2 cells. CONCLUSIONS Acute carbohydrate challenge is associated with a reduction in ANP production. The mechanism appears to involve a glucose-induced increase in the expression of miR-425, mediated by NF-κB signaling.
Collapse
|
10
|
Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria. PLoS One 2015; 10:e0146033. [PMID: 26720696 PMCID: PMC4697822 DOI: 10.1371/journal.pone.0146033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/12/2015] [Indexed: 01/14/2023] Open
Abstract
Although diabetes has been identified as a major risk factor for atrial fibrillation, little is known about glucose metabolism in the healthy and diabetic atria. Glucose transport into the cell, the rate-limiting step of glucose utilization, is regulated by the Glucose Transporters (GLUTs). Although GLUT4 is the major isoform in the heart, GLUT8 has recently emerged as a novel cardiac isoform. We hypothesized that GLUT-4 and -8 translocation to the atrial cell surface will be regulated by insulin and impaired during insulin-dependent diabetes. GLUT protein content was measured by Western blotting in healthy cardiac myocytes and type 1 (streptozotocin-induced, T1Dx) diabetic rodents. Active cell surface GLUT content was measured using a biotinylated photolabeled assay in the perfused heart. In the healthy atria, insulin stimulation increased both GLUT-4 and -8 translocation to the cell surface (by 100% and 240%, respectively, P<0.05). Upon insulin stimulation, we reported an increase in Akt (Th308 and s473 sites) and AS160 phosphorylation, which was positively (P<0.05) correlated with GLUT4 protein content in the healthy atria. During diabetes, active cell surface GLUT-4 and -8 content was downregulated in the atria (by 70% and 90%, respectively, P<0.05). Akt and AS160 phosphorylation was not impaired in the diabetic atria, suggesting the presence of an intact insulin signaling pathway. This was confirmed by the rescued translocation of GLUT-4 and -8 to the atrial cell surface upon insulin stimulation in the atria of type 1 diabetic subjects. In conclusion, our data suggest that: 1) both GLUT-4 and -8 are insulin-sensitive in the healthy atria through an Akt/AS160 dependent pathway; 2) GLUT-4 and -8 trafficking is impaired in the diabetic atria and rescued by insulin treatment. Alterations in atrial glucose transport may induce perturbations in energy production, which may provide a metabolic substrate for atrial fibrillation during diabetes.
Collapse
|
11
|
Jiménez-Amilburu V, Jong-Raadsen S, Bakkers J, Spaink HP, Marín-Juez R. GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. J Endocrinol 2015; 224:1-15. [PMID: 25326603 DOI: 10.1530/joe-14-0539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiomyopathies-associated metabolic pathologies (e.g., type 2 diabetes and insulin resistance) are a leading cause of mortality. It is known that the association between these pathologies works in both directions, for which heart failure can lead to metabolic derangements such as insulin resistance. This intricate crosstalk exemplifies the importance of a fine coordination between one of the most energy-demanding organs and an equilibrated carbohydrate metabolism. In this light, to assist in the understanding of the role of insulin-regulated glucose transporters (GLUTs) and the development of cardiomyopathies, we have developed a model for glut12 deficiency in zebrafish. GLUT12 is a novel insulin-regulated GLUT expressed in the main insulin-sensitive tissues, such as cardiac muscle, skeletal muscle, and adipose tissue. In this study, we show that glut12 knockdown impacts the development of the embryonic heart resulting in abnormal valve formation. Moreover, glut12-deficient embryos also exhibited poor glycemic control. Glucose measurements showed that these larvae were hyperglycemic and resistant to insulin administration. Transcriptome analysis demonstrated that a number of genes known to be important in cardiac development and function as well as metabolic mediators were dysregulated in these larvae. These results indicate that glut12 is an essential GLUT in the heart where the reduction in glucose uptake due to glut12 deficiency leads to heart failure presumably due to the lack of glucose as energy substrate. In addition, the diabetic phenotype displayed by these larvae after glut12 abrogation highlights the importance of this GLUT during early developmental stages.
Collapse
Affiliation(s)
- Vanesa Jiménez-Amilburu
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Susanne Jong-Raadsen
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Jeroen Bakkers
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Herman P Spaink
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| | - Rubén Marín-Juez
- Institute of BiologyLeiden University, PO Box 9502, 2300 RA Leiden, The NetherlandsZF-screens BVJ.H. Oortweg 19, 2333 CH Leiden, The NetherlandsHubrecht Institute-KNAW and University Medical Center Utrecht and Interuniversity3584 CT Utrecht, The Netherlands
| |
Collapse
|
12
|
XU HEN, ZHOU RONG, MOON LILY, FENG MIN, LI LINZ. 3D IMAGING OF THE MITOCHONDRIAL REDOX STATE OF RAT HEARTS UNDER NORMAL AND FASTING CONDITIONS. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2014; 7:1350045. [PMID: 24917891 PMCID: PMC4048726 DOI: 10.1142/s1793545813500454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The heart requires continuous ATP availability that is generated in the mitochondria. Although studies using the cell culture and perfused organ models have been carried out to investigate the biochemistry in the mitochondria in response to a change in substrate supply, mitochondrial bioenergetics of heart under normal feed or fasting conditions has not been studied at the tissue level with a sub-millimeter spatial resolution either in vivo or ex vivo. Oxidation of many food-derived metabolites to generate ATP in the mitochondria is realized through the NADH/NAD+ couple acting as a central electron carrier. We employed the Chance redox scanner - the low-temperature fluorescence scanner to image the three-dimensional (3D) spatial distribution of the mitochondrial redox states in heart tissues of rats under normal feeding or an overnight starvation for 14.5 h. Multiple consecutive sections of each heart were imaged to map three redox indices, i.e., NADH, oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and the redox ratio NADH/Fp. The imaging results revealed the micro-heterogeneity and the spatial distribution of these redox indices. The quantitative analysis showed that in the fasted hearts the standard deviation of both NADH and Fp, i.e., SD_NADH and SD_Fp, significantly decreased with a p value of 0.032 and 0.045, respectively, indicating that the hearts become relatively more homogeneous after fasting. The fasted hearts contained 28.6% less NADH (p = 0.038). No significant change in Fp was found (p = 0.4). The NADH/Fp ratio decreased with a marginal p value (0.076). The decreased NADH in the fasted hearts is consistent with the cardiac cells' reliance of fatty acids consumption for energy metabolism when glucose becomes scarce. The experimental observation of NADH decrease induced by dietary restriction in the heart at tissue level has not been reported to our best knowledge. The Chance redox scanner demonstrated the feasibility of 3D imaging of the mitochondrial redox state in the heart and provides a useful tool to study heart metabolism and function under normal, dietary-change and pathological conditions at tissue level.
Collapse
Affiliation(s)
- HE N. XU
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - RONG ZHOU
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - LILY MOON
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MIN FENG
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - LIN Z. LI
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Karim S, Adams DH, Lalor PF. Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol 2012; 18:6771-81. [PMID: 23239915 PMCID: PMC3520166 DOI: 10.3748/wjg.v18.i46.6771] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 02/06/2023] Open
Abstract
Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules. To date 14 members of this family, also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3). The expression of these different receptor subtypes varies between different species, tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin. The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis, storage and redistribution of carbohydrates. Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure, confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis. There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes, the most import cells in glucose regulation and glycogen storage. However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver, all of which require carbohydrate to function. A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis. This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required.
Collapse
|
14
|
GLUT12 functions as a basal and insulin-independent glucose transporter in the heart. Biochim Biophys Acta Mol Basis Dis 2012; 1832:121-7. [PMID: 23041416 DOI: 10.1016/j.bbadis.2012.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/31/2012] [Accepted: 09/28/2012] [Indexed: 01/08/2023]
Abstract
Glucose uptake from the bloodstream is the rate-limiting step in whole body glucose utilization, and is regulated by a family of membrane proteins called glucose transporters (GLUTs). Although GLUT4 is the predominant isoform in insulin-sensitive tissues, there is recent evidence that GLUT12 could be a novel second insulin-sensitive GLUT. However, its physiological role in the heart is not elucidated and the regulation of insulin-stimulated myocardial GLUT12 translocation is unknown. In addition, the role of GLUT12 has not been investigated in the diabetic myocardium. Thus, we hypothesized that, as for GLUT4, insulin regulates GLUT12 translocation to the myocardial cell surface, which is impaired during diabetes. Active cell surface GLUT (-4 and -12) content was quantified (before and after insulin stimulation) by a biotinylated photolabeled assay in both intact perfused myocardium and isolated cardiac myocytes of healthy and type 1 diabetic rodents. GLUT localization was confirmed by immunofluorescent confocal microscopy, and total GLUT protein expression was measured by Western blotting. Insulin stimulation increased translocation of GLUT-4, but not -12, in the healthy myocardium. Total GLUT4 content of the heart was decreased during diabetes, while there was no difference in total GLUT12. Active cell surface GLUT12 content was increased in the diabetic myocardium, potentially as a compensatory mechanism for the observed downregulation of GLUT4. Collectively, our data suggest that, in contrast to GLUT4, insulin does not mediate GLUT12 translocation, which may function as a basal GLUT located primarily at the cell surface in the myocardium.
Collapse
|
15
|
The facilitative glucose transporter GLUT12: what do we know and what would we like to know? J Physiol Biochem 2012; 69:325-33. [DOI: 10.1007/s13105-012-0213-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/12/2012] [Indexed: 12/22/2022]
|
16
|
Kranstuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, Lacombe VA. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front Physiol 2012; 3:292. [PMID: 22934044 PMCID: PMC3429064 DOI: 10.3389/fphys.2012.00292] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/04/2012] [Indexed: 01/11/2023] Open
Abstract
Diabetic heart disease is a distinct clinical entity that can progress to heart failure and sudden death. However, the mechanisms responsible for the alterations in excitation-contraction coupling leading to cardiac dysfunction during diabetes are not well known. Hyperglycemia, the landmark of diabetes, leads to the formation of advanced glycation end products (AGEs) on long-lived proteins, including sarcoplasmic reticulum (SR) Ca2+ regulatory proteins. However, their pathogenic role on SR Ca2+ handling in cardiac myocytes is unknown. Therefore, we investigated whether an AGE cross-link breaker could prevent the alterations in SR Ca2+ cycling that lead to in vivo cardiac dysfunction during diabetes. Streptozotocin-induced diabetic rats were treated with alagebrium chloride (ALT-711) for 8 weeks and compared to age-matched placebo-treated diabetic rats and healthy rats. Cardiac function was assessed by echocardiographic examination. Ventricular myocytes were isolated to assess SR Ca2+ cycling by confocal imaging and quantitative Western blots. Diabetes resulted in in vivo cardiac dysfunction and ALT-711 therapy partially alleviated diastolic dysfunction by decreasing isovolumetric relaxation time and myocardial performance index (MPI) (by 27 and 41% vs. untreated diabetic rats, respectively, P < 0.05). In cardiac myocytes, diabetes-induced prolongation of cytosolic Ca2+ transient clearance by 43% and decreased SR Ca2+ load by 25% (P < 0.05); these parameters were partially improved after ALT-711 therapy. SERCA2a and RyR2 protein expression was significantly decreased in the myocardium of untreated diabetic rats (by 64 and 36% vs. controls, respectively, P < 0.05), but preserved in the treated diabetic group compared to controls. Collectively, our results suggest that, in a model of type 1 diabetes, AGE accumulation primarily impairs SR Ca2+ reuptake in cardiac myocytes and that long-term treatment with an AGE cross-link breaker partially normalized SR Ca2+ handling and improved diabetic cardiomyopathy.
Collapse
|
17
|
Aerni-Flessner L, Abi-Jaoude M, Koenig A, Payne M, Hruz PW. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc Diabetol 2012; 11:63. [PMID: 22681646 PMCID: PMC3416696 DOI: 10.1186/1475-2840-11-63] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/08/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The heart derives energy from a wide variety of substrates including fatty acids, carbohydrates, ketones, and amino acids. The healthy heart generates up to 30% of its ATP from glucose. Under conditions of cardiac injury or stress, the heart relies even more heavily on glucose as a source of fuel. Glucose is transported into the heart by members of the family of facilitative glucose transporters (GLUTs). While research examining the transport of glucose into the heart has primarily focused on the roles of the classical glucose transporters GLUT1 and GLUT4, little is known about the functions of more newly identified GLUT isoforms in the myocardium. METHODS In this study the presence and relative RNA message abundance of each of the known GLUT isoforms was determined in left ventricular tissue from two commonly used inbred laboratory mouse strains (C57BL/6J and FVB/NJ) by quantitative real time PCR. Relative message abundance was also determined in GLUT4 null mice and in murine models of dilated and hypertrophic cardiomyopathy. RESULTS GLUT4, GLUT1, and GLUT8 were found to be the most abundant GLUT transcripts in the normal heart, while GLUT3, GLUT10, and GLUT12 are present at relatively lower levels. Assessment of relative GLUT expression in left ventricular myocardium from mice with dilated cardiomyopathy revealed increased expression of GLUT1 with reduced levels of GLUT4, GLUT8, and GLUT12. Compensatory increase in the expression of GLUT12 was observed in genetically altered mice lacking GLUT4. CONCLUSIONS Glucose transporter expression varies significantly among murine models of cardiac dysfunction and involves several of the class III GLUT isoforms. Understanding how these more newly identified GLUT isoforms contribute to regulating myocardial glucose transport will enhance our comprehension of the normal physiology and pathophysiology of the heart.
Collapse
Affiliation(s)
- Lauren Aerni-Flessner
- Department of Pediatrics, Washington University School of Medicine, St, Louis, MO, USA
| | | | | | | | | |
Collapse
|