1
|
Kobashi M, Shimatani Y, Fujita M. Oxytocin increased intragastric pressure in the forestomach of rats via the dorsal vagal complex. Physiol Behav 2023; 261:114087. [PMID: 36646162 DOI: 10.1016/j.physbeh.2023.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
We previously reported that appetite-enhancing peptides facilitated phasic contractions of the distal stomach and relaxed the forestomach via the dorsal vagal complex (DVC). The present study investigated the effects of anorectic substances on gastric reservoir function. The effects of oxytocin on the motility of the forestomach were examined in rats anesthetized with urethane-chloralose. Gastric motor responses were measured using an intragastric balloon. The fourth ventricular administration of oxytocin (0.1 - 1.0 nmol) increased intragastric pressure (IGP) in the forestomach in a dose-dependent manner. Conversely, the administration of oxytocin (0.3 nmol) suppressed phasic contractions of the distal stomach. These responses were opposite to those of appetite-enhancing peptides in previous studies. The oxytocin response in the forestomach was not observed after bilateral cervical vagotomy. The effects of oxytocin on forestomach motility were examined in animals that underwent ablation of the area postrema (AP) to clarify its involvement. Although the magnitude of the response to the fourth ventricular administration of oxytocin decreased, a significant response was still observed. A microinjection of oxytocin (3 pmol) into the AP, the left medial nucleus of the nucleus tractus solitarius (mNTS), the left commissural part of the NTS, or the left dorsal motor nucleus of the vagus was performed. The oxytocin injection into the AP and/or mNTS induced a rapid and large increase in IGP in the forestomach. Prior injection of L-368,899, an oxytocin receptor antagonist, into both the AP and mNTS attenuated the oxytocin response of the forestomach induced by fourth ventricular administration of oxytocin. These results indicate that oxytocin acts on the AP and/or mNTS to increase IGP in the forestomach via vagal preganglionic neurons.
Collapse
Affiliation(s)
- Motoi Kobashi
- Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, 700-8525, Japan.
| | - Yuichi Shimatani
- Department of Medical Engineering, Faculty of Engineering, Tokyo City University, Tokyo, 158-8557, Japan
| | - Masako Fujita
- Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, 700-8525, Japan
| |
Collapse
|
2
|
Kobashi M, Shimatani Y, Fujita M, Mitoh Y, Yoshida R, Matsuo R. The Effects of Mutual Interaction of Orexin-A and Glucagon-Like Peptide-1 on Reflex Swallowing Induced by SLN Afferents in Rats. Int J Mol Sci 2020; 21:ijms21124422. [PMID: 32580304 PMCID: PMC7352520 DOI: 10.3390/ijms21124422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Our previous studies revealed that orexin-A, an appetite-increasing peptide, suppressed reflex swallowing via the commissural part of the nucleus tractus solitarius (cNTS), and that glucagon-like peptide-1 (GLP-1), an appetite-reducing peptide, also suppressed reflex swallowing via the medial nucleus of the NTS (mNTS). In this study, we examined the mutual interaction between orexin-A and GLP-1 in reflex swallowing. (2) Methods: Sprague–Dawley rats under urethane–chloralose anesthesia were used. Swallowing was induced by electrical stimulation of the superior laryngeal nerve (SLN) and was identified by the electromyographic (EMG) signals obtained from the mylohyoid muscle. (3) Results: The injection of GLP-1 (20 pmol) into the mNTS reduced the swallowing frequency and extended the latency of the first swallow. These suppressive effects of GLP-1 were not observed after the fourth ventricular administration of orexin-A. After the injection of an orexin-1 receptor antagonist (SB334867) into the cNTS, an ineffective dose of GLP-1 (6 pmol) into the mNTS suppressed reflex swallowing. Similarly, the suppressive effects of orexin-A (1 nmol) were not observed after the injection of GLP-1 (6 pmol) into the mNTS. After the administration of a GLP-1 receptor antagonist (exendin-4(5-39)), an ineffective dose of orexin-A (0.3 nmol) suppressed reflex swallowing. (4) Conclusions: The presence of reciprocal inhibitory connections between GLP-1 receptive neurons and orexin-A receptive neurons in the NTS was strongly suggested.
Collapse
Affiliation(s)
- Motoi Kobashi
- Department of Oral Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (M.F.); (Y.M.); (R.Y.); (R.M.)
- Correspondence: ; Tel.: +81-86-235-6641
| | - Yuichi Shimatani
- Department of Medical Engineering, Faculty of Science and Engineering, Tokyo City University, Tokyo 158-8557, Japan;
| | - Masako Fujita
- Department of Oral Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (M.F.); (Y.M.); (R.Y.); (R.M.)
| | - Yoshihiro Mitoh
- Department of Oral Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (M.F.); (Y.M.); (R.Y.); (R.M.)
| | - Ryusuke Yoshida
- Department of Oral Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (M.F.); (Y.M.); (R.Y.); (R.M.)
| | - Ryuji Matsuo
- Department of Oral Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan; (M.F.); (Y.M.); (R.Y.); (R.M.)
| |
Collapse
|
3
|
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol 2019; 320:113009. [PMID: 31299180 PMCID: PMC6716787 DOI: 10.1016/j.expneurol.2019.113009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of vertebrates is a heterogeneous organ system innervated to varying degrees by a local enteric neural network as well as extrinsic parasympathetic and sympathetic neural circuits located along the brainstem and spinal axis. This diverse organ system serves to regulate the secretory and propulsive reflexes integral to the digestion and absorption of nutrients. The quasi-segmental distribution of the neural circuits innervating the gastrointestinal (GI) tract produces varying degrees of dysfunction depending upon the level of spinal cord injury (SCI). At all levels of SCI, GI dysfunction frequently presents life-long challenges to individuals coping with injury. Growing attention to the profound changes that occur across the entire physiology of individuals with SCI reveals profound knowledge gaps in our understanding of the temporal dimensions and magnitude of organ-specific co-morbidities following SCI. It is essential to understand and identify these broad pathophysiological changes in order to develop appropriate evidence-based strategies for management by clinicians, caregivers and individuals living with SCI. This review summarizes the neurophysiology of the GI tract in the uninjured state and the pathophysiology associated with the systemic effects of SCI.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America.
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America
| |
Collapse
|
4
|
Central glucagon like peptide-1 inhibits reflex swallowing elicited by the superior laryngeal nerve via caudal brainstem in the rat. Brain Res 2017; 1671:26-32. [PMID: 28693820 DOI: 10.1016/j.brainres.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023]
Abstract
The effects of glucagon like peptide-1 (GLP-1) on reflex swallowing were examined using anaesthetized rats. GLP-1 was injected into the dorsal vagal complex (DVC) using glass micropipettes. Swallowing was induced by repeated electrical stimulation of the central cut end of the superior laryngeal nerve (SLN) and was identified by the electromyogram lead penetrated in the mylohyoide muscle through bipolar electrodes. Microinjection of GLP-1 into the medial DVC (M-DVC) increased the frequency of swallowing during the electrical stimulation of the SLN and extended the latency of the first swallowing. Microinjection of GLP-1 into the lateral DVC (L-DVC) did not change the frequency of swallowing or the latency of the first swallowing. Neither the injection of vehicle into the M-DVC nor L-DVC affected swallowing frequency. Pre-injection of exendin (5-39), a GLP-1 receptor antagonist, attenuated the degree of suppression of swallowing frequency induced by the administration of GLP-1 in addition to shortening the latency of the first swallowing. To identify the effective site of GLP-1, lesion experiments were performed. Electrical lesion of the commissural part of the NTS (cNTS) and the vacuum removal of the area postrema (AP) did not affect the inhibition of reflex swallowing induced by the injection of GLP-1 into the M-DVC. Electrical lesion of the medial nucleus of the NTS (mNTS) and its vicinity abolished the inhibitory effects of swallowing induced by the injection of GLP-1. These results suggest that GLP-1 inhibits reflex swallowing via the mNTS in the dorsal medulla.
Collapse
|
5
|
Grabauskas G, Owyang C. Plasticity of vagal afferent signaling in the gut. MEDICINA-LITHUANIA 2017; 53:73-84. [PMID: 28454890 PMCID: PMC6318799 DOI: 10.1016/j.medici.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Vagal sensory neurons mediate the vago-vagal reflex which, in turn, regulates a wide array of gastrointestinal functions including esophageal motility, gastric accommodation and pancreatic enzyme secretion. These neurons also transmit sensory information from the gut to the central nervous system, which then mediates the sensations of nausea, fullness and satiety. Recent research indicates that vagal afferent neurons process non-uniform properties and a significant degree of plasticity. These properties are important to ensure that vagally regulated gastrointestinal functions respond rapidly and appropriately to various intrinsic and extrinsic factors. Similar plastic changes in the vagus also occur in pathophysiological conditions, such as obesity and diabetes, resulting in abnormal gastrointestinal functions. A clear understanding of the mechanisms which mediate these events may provide novel therapeutic targets for the treatment of gastrointestinal disorders due to vago-vagal pathway malfunctions.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA.
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA
| |
Collapse
|
6
|
Grabauskas G, Wu X, Lu Y, Heldsinger A, Song I, Zhou SY, Owyang C. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J Physiol 2015; 593:3973-89. [PMID: 26174421 PMCID: PMC4575581 DOI: 10.1113/jp270788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological techniques, we show that ghrelin hyperpolarizes neurons and inhibits currents evoked by leptin and CCK-8. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition. The inhibitory actions of ghrelin were also abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K(+) conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Xiaoyin Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Yuanxu Lu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Andrea Heldsinger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Il Song
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Shi-Yi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
- Corresponding author C. Owyang: 3912 Taubman Center, SPC 5362, 1500 East Medical Center Drive, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Shirai M, Joe N, Tsuchimochi H, Sonobe T, Schwenke DO. Ghrelin Supresses Sympathetic Hyperexcitation in Acute Heart Failure in Male Rats: Assessing Centrally and Peripherally Mediated Pathways. Endocrinology 2015; 156:3309-16. [PMID: 26121343 DOI: 10.1210/en.2015-1333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hormone ghrelin prevents a dangerous increase in cardiac sympathetic nerve activity (SNA) after acute myocardial infarction (MI), although the underlying mechanisms remain unknown. This study aimed to determine whether ghrelin's sympathoinhibitory properties stem either from directly within the central nervous system, or via modulation of specific cardiac vagal inhibitory afferents. Cardiac SNA was recorded in urethane-anesthetized rats for 3 hours after the ligation of the left anterior descending coronary artery (ie, MI). Rats received ghrelin either sc (150 μg/kg) or intracerebroventricularly (5 μg/kg) immediately after the MI. In another two groups, the cervical vagi were denervated prior to the MI, followed by sc injection of either ghrelin or placebo. Acute MI induced a 188% increase in cardiac SNA, which was significantly attenuated in ghrelin-treated rats for both sc or intracerebroventricularly administration (36% and 76% increase, respectively). Consequently, mortality (47%) and the incidence of arrhythmic episodes (12 per 2 h) were improved with both routes of ghrelin administration (<13% and less than five per 2 h, respectively). Bilateral vagotomy significantly attenuated the cardiac SNA response to acute MI (99% increase). Ghrelin further attenuated the sympathetic response to MI in vagotomized rats so that the SNA response was comparable between vagotomized and vagal-intact MI rats treated with ghrelin. These results suggest that ghrelin may act primarily via a central pathway within the brain to suppress SNA after MI, although peripheral vagal afferent pathways may also contribute in part. The exact region(s) within the central nervous system whereby ghrelin inhibits SNA remains to be fully elucidated.
Collapse
Affiliation(s)
- Mikiyasu Shirai
- Department of Cardiac Physiology (M.S., H.T., T.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; and Department of Physiology-Heart Otago (N.J., D.O.S.), University of Otago, Dunedin 9054, New Zealand
| | - Natalie Joe
- Department of Cardiac Physiology (M.S., H.T., T.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; and Department of Physiology-Heart Otago (N.J., D.O.S.), University of Otago, Dunedin 9054, New Zealand
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology (M.S., H.T., T.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; and Department of Physiology-Heart Otago (N.J., D.O.S.), University of Otago, Dunedin 9054, New Zealand
| | - Takashi Sonobe
- Department of Cardiac Physiology (M.S., H.T., T.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; and Department of Physiology-Heart Otago (N.J., D.O.S.), University of Otago, Dunedin 9054, New Zealand
| | - Daryl O Schwenke
- Department of Cardiac Physiology (M.S., H.T., T.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; and Department of Physiology-Heart Otago (N.J., D.O.S.), University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
8
|
Yu AP, Pei XM, Sin TK, Yip SP, Yung BY, Chan LW, Wong CS, Siu PM. [D-Lys3]-GHRP-6 exhibits pro-autophagic effects on skeletal muscle. Mol Cell Endocrinol 2015; 401:155-64. [PMID: 25450862 DOI: 10.1016/j.mce.2014.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023]
Abstract
[D-Lys3]-GHRP-6 is regarded as a highly selective growth-hormone secretagogue receptor (GHSR) antagonist and has been widely used to investigate the dependency of GHSR-1a signalling mediated by acylated ghrelin. However, [D-Lys3]-GHRP-6 has been reported to influence other cellular processes which are unrelated to GHSR-1a. This study aimed to examine the effects of [D-Lys3]-GHRP-6 on autophagic and apoptotic cellular signalling in skeletal muscle. [D-Lys3]-GHRP-6 enhanced the autophagic signalling demonstrated by the increases in protein abundances of beclin-1 and LC3 II-to-LC3 1 ratio in both normal muscle and doxorubicin-injured muscle. [D-Lys3]-GHRP-6 reduced the activation of muscle apoptosis induced by doxorubicin. No histological abnormalities were observed in the [D-Lys3]-GHRP-6-treated muscle. Intriguingly, the doxorubicin-induced increase in centronucleated muscle fibres was not observed in muscle treated with [D-Lys3]-GHRP-6, suggesting the myoprotective effects of [D-Lys3]-GHRP-6 against doxorubicin injury. The [D-Lys3]-GHRP-6-induced activation of autophagy was found to be abolished by the co-treatment of CXCR4 antagonist, suggesting that the pro-autophagic effects of [D-Lys3]-GHRP-6 might be mediated through CXCR4. In conclusion, [D-Lys3]-GHRP-6 exhibits pro-autophagic effects on skeletal muscle under both normal and doxorubicin-injured conditions.
Collapse
Affiliation(s)
- Angus P Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiao M Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Thomas K Sin
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shea P Yip
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Benjamin Y Yung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lawrence W Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Cesar S Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Parco M Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B. Biochem Biophys Res Commun 2015; 458:140-7. [PMID: 25634696 DOI: 10.1016/j.bbrc.2015.01.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/17/2015] [Indexed: 01/14/2023]
|
10
|
Yang CG, Liao ZF, Qiu WC, Yan J, Wang ZG. Function of ghrelin and ghrelin receptors in the network regulation of gastric motility. Mol Med Rep 2014; 10:2453-8. [PMID: 25230765 DOI: 10.3892/mmr.2014.2571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 05/21/2014] [Indexed: 12/23/2022] Open
Abstract
Numerous previous studies have demonstrated that ghrelin promotes gastric motility when administered peripherally. This effect appears to be regulatory but not directly stimulatory, and therefore may involve a number of complex mechanisms. In the periphery, ghrelin may affect gastric motility through intercellular networks among interstitial cells of Cajal, myenteric nerve cells and smooth muscle cells. The aim of the present study was to investigate the effects and possible mechanisms underlying this hypothesis. The effects of ghrelin on the contraction force of gastric antrum smooth muscle strips of rats were studied in the presence or absence of carbachol (CCh), [D‑Lys3]‑GHRP‑6, atropine, tetrodotoxin (TTX) and nimodipine in vitro. The expression of ghrelin receptors (GHS‑Rs) on different cell types in gastric muscle layers was observed by means of immunofluorescence. Ghrelin enhanced smooth muscle strip contraction induced by CCh, but when CCh was absent, this effect was eliminated. Atropine and nimodipine eradicated the muscle strip contraction enhanced by ghrelin, while [D‑Lys3]‑GHRP‑6 was only able to partly block this effect and TTX had no effect on muscle strip contraction. It was identified that ghrelin had no effect on the contractive rhythm of the strips. GHS‑R1s were located differentially depending on the cell type, including myenteric nerve cells, interstitial cells of Cajal and smooth muscle cells. In conclusion the present study demonstrated that ghrelin may act as an adjuvant to regulate gastric smooth muscle contraction induced by CCh through GHS‑R1s, which are expressed on myenteric nerve cells, Cajal cells and smooth muscle cells. Ghrelin may exert its effects by influencing the functional status of different cell types in the gastric muscle layer to subsequently enhance the contractive effect of cholinergic neurotransmitters and enhance gastric motility.
Collapse
Affiliation(s)
- Cheng-Guang Yang
- Department of General Surgery, The Affiliated Tongren Hospital of Medical School, Shanghai Jiaotong University, Shanghai 200336, P.R. China
| | - Zuo-Fu Liao
- Department of General Surgery, The Affiliated Tongren Hospital of Medical School, Shanghai Jiaotong University, Shanghai 200336, P.R. China
| | - Wen-Cai Qiu
- Department of General Surgery, The Affiliated Sixth Hospital of Medical School, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Jun Yan
- Department of General Surgery, The Affiliated Sixth Hospital of Medical School, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Zhi-Gang Wang
- Department of General Surgery, The Affiliated Sixth Hospital of Medical School, Shanghai Jiaotong University, Shanghai 200233, P.R. China
| |
Collapse
|
11
|
Cabral A, Valdivia S, Fernandez G, Reynaldo M, Perello M. Divergent neuronal circuitries underlying acute orexigenic effects of peripheral or central ghrelin: critical role of brain accessibility. J Neuroendocrinol 2014; 26:542-54. [PMID: 24888783 PMCID: PMC4108543 DOI: 10.1111/jne.12168] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 11/27/2022]
Abstract
Ghrelin is an octanoylated peptide hormone that potently and rapidly increases food intake. The orexigenic action of ghrelin involves the hypothalamic arcuate nucleus (ARC), which is accessible to plasma ghrelin and expresses high levels of the ghrelin receptor. Local administration of ghrelin in a variety of other brain nuclei also increases food intake. It is currently unclear, however, whether these non-ARC ghrelin brain targets are impacted by physiological increases of plasma ghrelin. Thus, the present study aimed to clarify which ghrelin brain targets participate in the short-term orexigenic actions of ghrelin. First, c-Fos induction into mouse brains centrally or peripherally treated with ghrelin was analysed. It was confirmed that peripherally administered ghrelin dose-dependently increases food intake and mainly activates c-Fos in ARC neurones. By contrast, centrally administered ghrelin activates c-Fos in a larger number of brain nuclei. To determine which nuclei are directly accessible to ghrelin, mice were centrally or peripherally injected with a fluorescent ghrelin tracer. It was found that peripherally injected tracer mainly accesses the ARC, whereas centrally injected tracer reaches most brain areas known to express ghrelin receptors. Subsequently, the effects of ghrelin were tested in ARC-ablated mice and it was found that these mice failed to increase food intake in response to peripherally administered ghrelin but fully responded to centrally administered ghrelin. ARC-ablated mice showed patterns of ghrelin-induced c-Fos expression similar to those seen in control mice with the exception of the ARC, where no c-Fos was found. Thus, peripheral ghrelin mainly accesses the ARC, which is required for the orexigenic effects of the hormone. Central ghrelin accesses a variety of nuclei, which can mediate the orexigenic effects of the hormone, even in the absence of an intact ARC.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Spring Valdivia
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| |
Collapse
|
12
|
Mao Y, Tokudome T, Kishimoto I. Ghrelin as a treatment for cardiovascular diseases. Hypertension 2014; 64:450-4. [PMID: 24958496 DOI: 10.1161/hypertensionaha.114.03726] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuanjie Mao
- From the Department of Biochemistry (Y.M., T.T.) and Department of Endocrinology and Metabolism (I.K.), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takeshi Tokudome
- From the Department of Biochemistry (Y.M., T.T.) and Department of Endocrinology and Metabolism (I.K.), National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Ichiro Kishimoto
- From the Department of Biochemistry (Y.M., T.T.) and Department of Endocrinology and Metabolism (I.K.), National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
13
|
Kobashi M, Mizutani S, Fujita M, Mitoh Y, Shimatani Y, Matsuo R. Central orexin inhibits reflex swallowing elicited by the superior laryngeal nerve via caudal brainstem in the rat. Physiol Behav 2014; 130:6-12. [DOI: 10.1016/j.physbeh.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/28/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
14
|
Swartz EM, Browning KN, Travagli RA, Holmes GM. Ghrelin increases vagally mediated gastric activity by central sites of action. Neurogastroenterol Motil 2014; 26:272-82. [PMID: 24261332 PMCID: PMC3907172 DOI: 10.1111/nmo.12261] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vagally dependent gastric reflexes are mediated through vagal afferent fibers synapsing upon neurons of the nucleus tractus solitarius (NTS) which, in turn modulate the preganglionic parasympathetic dorsal motor nucleus of the vagus (DMV) neurons within the medullary dorsal vagal complex (DVC). The expression and transport of ghrelin receptors has been documented for the afferent vagus nerve, and functional studies have confirmed that vagal pathways are integral to ghrelin-induced stimulation of gastric motility. However, the central actions of ghrelin within the DVC have not been explored fully. METHODS We assessed the responses to ghrelin in fasted rats using: (i) in vivo measurements of gastric tone and motility following IVth ventricle application or unilateral microinjection of ghrelin into the DVC and (ii) whole cell recordings from gastric-projecting neurons of the DMV. KEY RESULTS (i) IVth ventricle application or unilateral microinjection of ghrelin into the DVC-elicited contractions of the gastric corpus via excitation of a vagal cholinergic efferent pathway and (ii) ghrelin facilitates excitatory, but not inhibitory, presynaptic transmission to DMV neurons. CONCLUSIONS & INFERENCES Our data indicate that ghrelin acts centrally by activating excitatory synaptic inputs onto DMV neurons, resulting in increased cholinergic drive by way of vagal motor innervation to the stomach.
Collapse
Affiliation(s)
| | | | | | - Gregory M. Holmes
- Corresponding Author: Dr. Gregory M. Holmes, Penn State University College of Medicine, 500 University Dr., H181, Hershey, PA 17033, Tel: +1 717 531-6413, fax; +1 717 531-5184,
| |
Collapse
|
15
|
Pei XM, Yung BY, Yip SP, Ying M, Benzie IF, Siu PM. Desacyl ghrelin prevents doxorubicin-induced myocardial fibrosis and apoptosis via the GHSR-independent pathway. Am J Physiol Endocrinol Metab 2014; 306:E311-23. [PMID: 24326424 DOI: 10.1152/ajpendo.00123.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Doxorubicin is an effective chemotherapeutic agent used to treat malignancies, but it causes cardiomyopathy. Preliminary evidence suggests that desacyl ghrelin might have protective effects on doxorubicin cardiotoxicity. This study examined the cellular effects of desacyl ghrelin on myocardial fibrosis and apoptosis in a doxorubicin cardiomyopathy experimental model. Adult C57BL/6 mice received an intraperitoneal injection of doxorubicin to induce cardiomyopathy, followed by 4-day treatment of saline (control) or desacyl ghrelin with or without [d-Lys3]-GHRP-6 (a growth hormone secretagogue receptor or GHSR1a antagonist). Ventricular structural and functional parameters were evaluated by transthoracic echocardiography. Molecular and cellular measurements were performed in ventricular muscle to examine myocardial fibrosis and apoptosis. Cardiac dysfunction was induced by doxorubicin, as indicated by significant decreases in ventricular fractional shortening and ejection fraction. This doxorubicin-induced cardiac dysfunction was prevented by the treatment of desacyl ghrelin no matter with or without the presence of [d-Lys3]-GHRP-6. Doxorubicin induced fibrosis (accumulated collagen deposition and increased CTGF), activated apoptosis (increased TUNEL index, apoptotic DNA fragmentation, and caspase-3 activity and decreased Bcl-2/Bax ratio), and suppressed phosphorylation status of prosurvival signals (ERK1/2 and Akt) in ventricular muscles. All these molecular and cellular alterations induced by doxorubicin were not found in the animals treated with desacyl ghrelin. Notably, the changes in the major markers of apoptosis, fibrosis, and Akt phosphorylation were found to be similar in the animals following the treatment of desacyl ghrelin with and without GHSR antagonist [d-Lys3]-GHRP-6. These findings demonstrate clearly that desacyl ghrelin protects the cardiomyocytes against the doxorubicin-induced cardiomyopathy by preventing the activation of cardiac fibrosis and apoptosis, and the effects are probably mediated through GHSR-independent mechanism.
Collapse
Affiliation(s)
- Xiao M Pei
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
16
|
Mao Y, Tokudome T, Kishimoto I, Otani K, Hosoda H, Nagai C, Minamino N, Miyazato M, Kangawa K. Hexarelin treatment in male ghrelin knockout mice after myocardial infarction. Endocrinology 2013; 154:3847-54. [PMID: 23861368 DOI: 10.1210/en.2013-1291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both ghrelin and the synthetic analog hexarelin are reported to possess cardioprotective actions that are mainly exerted through different receptors. However, their effects on acute myocardial infarction have not been compared in vivo. This study aimed to clarify whether hexarelin treatment can compensate for ghrelin deficiency in ghrelin-knockout mice and to compare the effects of hexarelin (400 nmol/kg/d, sc) and equimolar ghrelin treatment after myocardial infarction. Myocardial infarction was produced by left coronary artery ligation in male ghrelin-knockout mice, which then received ghrelin, hexarelin, or vehicle treatment for 2 weeks. The mortality within 2 weeks was significantly lower in the hexarelin group (6.7%) and ghrelin group (14.3%) than in the vehicle group (50%) (P < .05). A comparison of cardiac function 2 weeks after infarction showed that in the ghrelin and hexarelin treatment groups, cardiac output was greater, whereas systolic function, represented by ejection fraction, and diastolic function, represented by dP/dt min (peak rate of pressure decline), were significantly superior compared with the vehicle group (P < .05). Hexarelin treatment was more effective than ghrelin treatment, as indicated by the ejection fraction, dP/dt max (peak rate of pressure rise), and dP/dt min. Telemetry recording and heart rate variability analysis demonstrated that sympathetic nervous activity was clearly suppressed in the hexarelin and ghrelin groups relative to the vehicle group. Our data demonstrated that hexarelin treatment can result in better heart function than ghrelin treatment 2 weeks after myocardial infarction in ghrelin-knockout mice, although both hormones have similar effects on heart rate variability and mortality.
Collapse
Affiliation(s)
- Yuanjie Mao
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Avau B, Carbone F, Tack J, Depoortere I. Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol Motil 2013; 25:720-32. [PMID: 23910374 DOI: 10.1111/nmo.12193] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/26/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ghrelin, an orexigenic hormone secreted from the stomach, was soon after its discovery hypothesized to be a prokinetic agent, due to its homology to motilin. Studies in animals and humans, using ghrelin and ghrelin receptor agonists, confirmed this hypothesis, suggesting a therapeutic potential for the ghrelin receptor in the treatment of gastrointestinal motility disorders. Precilinical studies demonstrated that ghrelin can act directly on ghrelin receptors on the enteric nervous system, but the predominant route of action under physiological circumstances is signaling via the vagus nerve in the upper gastrointestinal tract and the pelvic nerves in the colon. Different pharmaceutical companies have designed stable ghrelin mimetics that revealed promising results in trials for the treatment of diabetic gastroparesis and post-operative ileus. Nevertheless, no drug was able to reach the market so far, facing problems proving superiority over placebo treatment in larger trials. PURPOSE This review aims to summarize the road that led to the current knowledge concerning the prokinetic properties of ghrelin with a focus on the therapeutic potential of ghrelin receptor agonists in the treatment of hypomotility disorders. In addition, we outline some of the problems that could be at the basis of the negative outcome of the trials with ghrelin agonists and question whether the right target groups were selected. It is clear that a new approach is needed to develop marketable drugs with this class of gastroprokinetic agents.
Collapse
Affiliation(s)
- B Avau
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
18
|
Mao Y, Tokudome T, Otani K, Kishimoto I, Miyazato M, Kangawa K. Excessive sympathoactivation and deteriorated heart function after myocardial infarction in male ghrelin knockout mice. Endocrinology 2013; 154:1854-63. [PMID: 23515286 DOI: 10.1210/en.2012-2132] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously demonstrated the protective role of endogenous ghrelin against malignant arrhythmias in the very acute phase of myocardial infarction (MI). However, the role of endogenous ghrelin in the chronic phase is unknown. Therefore, the aim of the current study was to focus on the effects of endogenous ghrelin on cardiac function and sympathetic activation after acute MI. In 46 ghrelin-knockout (KO) and 41 wild-type (WT) male mice, MI was produced by left coronary artery ligation. The mortality due to heart failure within 2 weeks was 0% in WT and 10.9% in KO (P < 0.05). At the end of this period, lung weight/tibial length, atrial natriuretic peptide and brain natriuretic peptide transcripts, end-systolic and end-diastolic volumes were all significantly greater in KO mice, whereas systolic function, represented by ejection fraction (16.4 ± 4.7% vs 25.3 ± 5.1%), end-systolic elastance, and preload-recruitable stroke work, was significantly inferior to that in WT mice (P < 0.05). Telemetry recording and heart rate variability analysis showed that KO mice had stronger sympathetic activation after MI than did WT mice. Metoprolol treatment and ghrelin treatment in KO mice prevented excessive sympathetic activation, decreased plasma epinephrine and norepinephrine levels, and improved heart function and survival rate after MI. Our data demonstrate that endogenous ghrelin plays a crucial role in protecting heart function and reducing mortality after myocardial infarction, and that these effects seem to be partly the result of sympathetic inhibition.
Collapse
Affiliation(s)
- Yuanjie Mao
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Stengel A, Rivier J, Taché Y. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes. Peptides 2013; 42:70-7. [PMID: 23287111 PMCID: PMC3633742 DOI: 10.1016/j.peptides.2012.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 01/06/2023]
Abstract
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences & Women's Health, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Psychosomatic Medicine & Obesity Center Berlin, Department of Medicine, Charité Medical Center and University, Berlin, Germany
| | - Jean Rivier
- Peptide Biology Laboratories, Salk Institute, La Jolla, California, USA
| | - Yvette Taché
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences & Women's Health, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Address: CURE: Digestive Diseases Research Center, Building 115, Room 117, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, Phone: 310-312-9275, Fax: 1-310-268-4963,
| |
Collapse
|
20
|
Yang CG, Wang WG, Yan J, Fei J, Wang ZG, Zheng Q. Gastric motility in ghrelin receptor knockout mice. Mol Med Rep 2012; 7:83-8. [PMID: 23128468 DOI: 10.3892/mmr.2012.1157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 10/11/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects and possible mechanisms of ghrelin receptor (GHS-R) deficiency on gastric motility in GHS-R deficient (Ghsr-/-) mice. Ghsr-/- and control (Ghsr+/+) mice were genotyped by PCR. The percentage of gastric emptying (GE%) was calculated following the intraperitoneal adminis-tration of ghrelin. In vitro, the contractile response of smooth muscle strips to ghrelin and electrical field stimulation (EFS) and the intraluminal pressure change of isolated stomach to carbachol were observed in an organ bath. The staining of nerve cells in the gastric muscle layer was performed by immunofluorescence. Delayed gastric emptying was observed in the Ghsr-/- mice; ghrelin enhanced the GE% in the Ghsr+/+ mice but had no effect on the GE% in the Ghsr-/- mice. In vitro, the response of the strips to ghrelin and EFS and the intraluminal pressure change to cabarchol was reduced in the Ghsr-/- mice. GHS-Rs were predominantly expressed on nerve cells in gastric muscle layers. The number of nerve cells was observed to be decreased in the Ghsr-/- mice. The delayed gastric emptying may relate to the loss of GHS-Rs and the reduction in the number of nerve cells in the gastric muscle layers of the GHS-R-deficient mice.
Collapse
Affiliation(s)
- Cheng-Guang Yang
- Department of General Surgery, The Affiliated Sixth Hospital of Medical School, Shanghai Jiaotong University, Shanghai 200233, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Food restriction, ghrelin, its antagonist and obestatin control expression of ghrelin and its receptor in chicken hypothalamus and ovary. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:141-53. [PMID: 22877785 DOI: 10.1016/j.cbpa.2012.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 12/29/2022]
Abstract
The purpose of the present study was to identify the role of age, nutritional state and some metabolic hormones in control of avian hypothalamic and ovarian ghrelin/ghrelin receptor system. We examined the effect of food restriction, administration of ghrelin 1-18, ghrelin antagonistic analogue (D-Lys-3)-GHRP-6, obestatin and combinations of them on the expression of ghrelin and ghrelin receptor (GHS-R1a) in hypothalamus and ovary of old (23months of age) and young (7months of age) chickens. Expression of mRNAs for ghrelin and GHS-R1a in both hypothalamus and largest ovarian follicle was measured by RT-PCR. It was observed that food restriction could promote the expression of ghrelin and GHS-R1a in hypothalamus and ovary of the old chickens, but in the young chickens it reduced expression of ghrelin and did not affect expression of GHS-R1a in the ovary. Administration of ghrelin 1-18 did not affect hypothalamic or ovarian ghrelin mRNA, but significantly increased the expression of GHS-R1a in hypothalamus, but not in ovary. (D-Lys-3)-GHRP-6, significantly stimulated accumulation of ghrelin, but not GHS-R1a mRNA in hypothalamus or ghrelin or GHS-R1a in the ovary. Ghrelin 1-18 and (D-Lys-3)-GHRP-6, when given together, were able either to prevent or to induce effect of these hormones. Obestatin administration increased expression of ghrelin gene in the hypothalamus, but not expression of hypothalamic GHS-R1a, ovarian ghrelin and GHS-R1a. Furthermore, obestatin was able to modify effect of both ghrelin and fasting on hypothalamic and ovarian mRNA for ghrelin GHS-R1a. Our results (1) confirm the existence of ghrelin and its functional receptors GHS-R1a in the chicken hypothalamus and ovary (2) confirm the age-dependent control of ovarian ghrelin by feeding, (3) demonstrate, that nutritional status can influence the expression of both ghrelin and GHS-R1a in hypothalamus and in the ovary (3) demonstrates for the first time, that ghrelin can promote generation of its functional receptor in the hypothalamus, but not in the ovary, (4) show that ghrelin1-18 and (D-Lys-3)-GHRP-6 could not only be antagonists in the action on chicken hypothalamus and ovaries, but also independent regulators and even agonists, and (5) provide first evidence for action of obestatin on hypothalamic ghrelin and on the response of hypothalamic and ovarian ghrelin/GHS-R1a system to food restriction. These data indicate the involvement of both hypothalamic and ovarian ghrelin/GHS-R1 systems in mediating the effects of nutritional status, ghrelin and obestatin on reproductive processes.
Collapse
|
22
|
Holmes GM. Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol 2012; 3:277. [PMID: 22934031 PMCID: PMC3429051 DOI: 10.3389/fphys.2012.00277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Despite the widely recognized prevalence of gastric, colonic, and anorectal dysfunction after spinal cord injury (SCI), significant knowledge gaps persist regarding the mechanisms leading to post-SCI gastrointestinal (GI) impairments. Briefly, the regulation of GI function is governed by a mix of parasympathetic, sympathetic, and enteric neurocircuitry. Unlike the intestines, the stomach is dominated by parasympathetic (vagal) control whereby gastric sensory information is transmitted via the afferent vagus nerve to neurons of the nucleus tractus solitarius (NTS). The NTS integrates this sensory information with signals from throughout the central nervous system. Glutamatergic and GABAergic NTS neurons project to other nuclei, including the preganglionic parasympathetic neurons of the dorsal motor nucleus of the vagus (DMV). Finally, axons from the DMV project to gastric myenteric neurons, again, through the efferent vagus nerve. SCI interrupts descending input to the lumbosacral spinal cord neurons that modulate colonic motility and evacuation reflexes. In contrast, vagal neurocircuitry remains anatomically intact after injury. This review presents evidence that unlike the post-SCI loss of supraspinal control which leads to colonic and anorectal dysfunction, gastric dysmotility occurs as an indirect or secondary pathology following SCI. Specifically, emerging data points toward diminished sensitivity of vagal afferents to GI neuroactive peptides, neurotransmitters and, possibly, macronutrients. The neurophysiological properties of rat vagal afferent neurons are highly plastic and can be altered by injury or energy balance. A reduction of vagal afferent signaling to NTS neurons may ultimately bias NTS output toward unregulated GABAergic transmission onto gastric-projecting DMV neurons. The resulting gastroinhibitory signal may be one mechanism leading to upper GI dysmotility following SCI.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Penn State University College of MedicineHershey, PA, USA
| |
Collapse
|
23
|
Mao Y, Tokudome T, Otani K, Kishimoto I, Nakanishi M, Hosoda H, Miyazato M, Kangawa K. Ghrelin prevents incidence of malignant arrhythmia after acute myocardial infarction through vagal afferent nerves. Endocrinology 2012; 153:3426-34. [PMID: 22535766 DOI: 10.1210/en.2012-1065] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin is a GH-releasing peptide mainly excreted from the stomach. Ghrelin administration has been shown to inhibit cardiac sympathetic nerve activity (CSNA), reduce malignant arrhythmia, and improve prognosis after acute myocardial infarction (MI). We therefore investigated the effects and potential mechanisms of the action of endogenous ghrelin on survival rate and CSNA after MI by using ghrelin-knockout (KO) mice. MI was induced by left coronary artery ligation in 46 KO mice and 41 wild-type mice. On the first day, malignant arrhythmia-induced mortality was observed within 30 min of the ligation and had an incidence of 2.4% in wild-type and 17.4% in KO mice (P < 0.05). We next evaluated CSNA by spectral analysis of heart rate variability. CSNA, represented by the low frequency/high frequency ratio, was higher in KO mice at baseline (2.18 ± 0.43 vs. 0.98 ± 0.09; P < 0.05), and especially after MI (25.5 ± 11.8 vs. 1.4 ± 0.3; P < 0.05), than in wild-type mice. Ghrelin (150 μg/kg, s.c.) 15 min before ligation suppressed the activation of CSNA and reduced mortality in KO mice. Further, this effect of ghrelin was inhibited by methylatropine bromide (1 mg/kg, i.p.) or by perineural treatment of both cervical vagal trunks with capsaicin (a specific afferent neurotoxin). Our data demonstrated that both exogenous and endogenous ghrelin suppressed CSNA, prevented the incidence of malignant arrhythmia, and improved the prognosis after acute MI. These effects are likely to be via the vagal afferent nerves.
Collapse
Affiliation(s)
- Yuanjie Mao
- Department of Biochemistry, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Greenwood-Van Meerveld B, Kriegsman M, Nelson R. Ghrelin as a target for gastrointestinal motility disorders. Peptides 2011; 32:2352-6. [PMID: 21453735 DOI: 10.1016/j.peptides.2011.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 12/26/2022]
Abstract
The therapeutic potential of ghrelin and synthetic ghrelin receptor (GRLN-R) agonists for the treatment of gastrointestinal (GI) motility disorders is based on their ability to stimulate coordinated patterns of propulsive GI motility. This review focuses on the latest findings that support the therapeutic potential of GRLN-R agonists for the treatment of GI motility disorders. The review highlights the preclinical and clinical prokinetic effects of ghrelin and a series of novel ghrelin mimetics to exert prokinetic effects on the GI tract. We build upon a series of excellent reviews to critically discuss the evidence that supports the potential of GRLN-R agonists to normalize GI motility in patients with GI hypomotility disorders such as gastroparesis, post-operative ileus (POI), idiopathic chronic constipation and functional bowel disorders.
Collapse
|
25
|
Sirotkin AV, Meszarošová M, Grossmann R, Benčo A, Valenzuela F. Effect of inhibitor and activator of ghrelin receptor (GHS-R1a) on porcine ovarian granulosa cell functions. Gen Comp Endocrinol 2011; 173:105-10. [PMID: 21600209 DOI: 10.1016/j.ygcen.2011.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 02/07/2023]
Abstract
It was previously shown, that ghrelin and its agonistic analogue, ghrelin 1-18, can be a stimulator of ovarian cell functions (promoter of proliferation, inhibitor of apoptosis and stimulator of hormones release). The aim of our studies was to compare the action of two ghrelin analogues - ghrelin 1-18, activator of ghrelin receptors (GHS-R1a), and (D-Lys3)-GHRP-6, its inhibitor, on porcine ovarian granulosa cell functions. Effects of (D-Lys3)-GHRP-6 added at doses of 0, 1, 10 or 100 ng/ml on the expression of markers of proliferation (PCNA, cyclin B1, MAPK/ERK1,2), apoptosis (bax, p53, caspase 3) and release of steroid hormones (progesterone, testosterone, estradiol) were examined. In addition, some effect of ghrelin 1-8 on some of these parameters (expression of MAPK/ERK1,2, bax, p53) were verified. It was shown, that (D-Lys3)-GHRP-6 promotes all markers of granulosa cell proliferation, inhibits all markers of apoptosis and stimulates the release of all three steroid hormones. Similar effects of (D-Lys3)-GHRP-6 (inhibitor of GHS-R1a) and ghrelin 1-18 (its stimulator) suggest that the examined effects of these substances on porcine ovaries are not mediated by GHS-R1a. Both chemical analogues could be potentially useful for stimulation of reproductive processes, at least in in vitro conditions.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Institute of Genetics and Reproduction, Animal Production Research Centre Nitra, 951 41 Lužianky near Nitra, Slovakia.
| | | | | | | | | |
Collapse
|
26
|
Ghrelin inhibits visceral afferent activation of catecholamine neurons in the solitary tract nucleus. J Neurosci 2011; 31:3484-92. [PMID: 21368060 DOI: 10.1523/jneurosci.3187-10.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Brainstem A2/C2 catecholamine (CA) neurons in the solitary tract nucleus (NTS) are thought to play an important role in the control of food intake and other homeostatic functions. We have previously demonstrated that these neurons, which send extensive projections to brain regions involved in the regulation of appetite, are strongly and directly activated by solitary tract (ST) visceral afferents. Ghrelin, a potent orexigenic peptide released from the stomach, is proposed to act in part through modulating NTS CA neurons but the underlying cellular mechanisms are unknown. Here, we identified CA neurons using transgenic mice that express enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). We then determined how ghrelin modulates TH-EGFP neurons using patch-clamp techniques in a horizontal brain slice preparation. Ghrelin inhibited the frequency of spontaneous glutamate inputs (spontaneous EPSCs) onto TH-EGFP neurons, including cholecystokinin-sensitive neurons, an effect blocked by the GHSR1 antagonist, d-Lys-3-GHRP-6. This resulted in a decrease in the basal firing rate of NTS TH-EGFP neurons, an effect blocked by the glutamate antagonist NBQX. Ghrelin also dose-dependently inhibited the amplitude of ST afferent evoked EPSCs (ST-EPSCs) in TH-EGFP NTS neurons, decreasing the success rate for ST-evoked action potentials. In addition, ghrelin decreased the frequency of mini-EPSCs suggesting its actions are presynaptic to reduce glutamate release. Last, inhibition by ghrelin of the ST-EPSCs was significantly increased by an 18 h fast. These results demonstrate a potential mechanism by which ghrelin inhibits NTS TH neurons through a pathway whose responsiveness is increased during fasting.
Collapse
|
27
|
Shimizu S, Akiyama T, Kawada T, Sonobe T, Kamiya A, Shishido T, Tokudome T, Hosoda H, Shirai M, Kangawa K, Sugimachi M. Centrally administered ghrelin activates cardiac vagal nerve in anesthetized rabbits. Auton Neurosci 2011; 162:60-5. [PMID: 21543266 DOI: 10.1016/j.autneu.2011.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 03/08/2011] [Accepted: 04/06/2011] [Indexed: 11/30/2022]
Abstract
Although central ghrelin has cardioprotective effect through inhibiting sympathetic nerve activity, the effects of central ghrelin on cardiac vagal nerve remain unknown. We investigated the effects of centrally administered ghrelin on cardiac autonomic nerve activities using microdialysis technique. A microdialysis probe was implanted in the right atrial wall adjacent to the sinoatrial node of an anesthetized rabbit and was perfused with Ringer's solution containing a cholinesterase inhibitor, eserine. After injection of ghrelin (1 nmol) into the right lateral cerebral ventricle, norepinephrine (NE) and acetylcholine (ACh) concentrations in the dialysate samples were measured as indices of NE and ACh release from nerve endings to the sinoatrial node using high-performance liquid chromatography. Heart rate was 270±4 bpm at baseline and decreased gradually after ghrelin injection to 234±9 bpm (P<0.01) at 60-80 min, followed by gradual recovery. Dialysate ACh concentration was 5.5±0.8 nM at baseline and increased gradually after ghrelin injection to 8.8±1.2 nM (P<0.01) at 60-80 min; the concentration started to decrease gradually from 100 to 120 min after injection reaching 5.6±0.8 nM at 160-180 min. Central ghrelin did not change mean arterial pressure or dialysate NE concentration. The elevated dialysate ACh concentration declined rapidly after transection of cervical vagal nerves. These results indicate that centrally administered ghrelin activates cardiac vagal nerve.
Collapse
Affiliation(s)
- Shuji Shimizu
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The prokinetic face of ghrelin. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20721347 PMCID: PMC2915793 DOI: 10.1155/2010/493614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/03/2009] [Indexed: 01/03/2023]
Abstract
This review evaluated published data regarding the effects of ghrelin on GI motility using the PubMed database for English articles from 1999 to September 2009. Our strategy was to combine all available information from previous literature, in order to provide a complete structured review on the prokinetic properties of exogenous ghrelin and its potential use for treatment of
various GI dysmotility ailments. We classified the literature into two major groups, depending on whether studies were done in health
or in disease. We sub-classified the studies into stomach, small intestinal and colon studies, and broke them down further into
studies done in vitro, in vivo (animals) and in humans. Further more, the reviewed studies were presented in a chronological order
to guide the readers across the scientific advances in the field. The review shows evidences that ghrelin and its (receptor)
agonists possess a strong prokinetic potential to serve in the treatment of diabetic, neurogenic or idiopathic gastroparesis and
possibly, chemotherapy-associated dyspepsia, postoperative, septic or post-burn ileus, opiate-induced bowel dysfunction and chronic
idiopathic constipation. Further research is necessary to close the gap in knowledge about the effect of ghrelin on the human
intestines in health and disease.
Collapse
|
29
|
Kobashi M, Xuan SY, Fujita M, Mitoh Y, Matsuo R. Central ghrelin inhibits reflex swallowing elicited by activation of the superior laryngeal nerve in the rat. ACTA ACUST UNITED AC 2010; 160:19-25. [DOI: 10.1016/j.regpep.2009.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 12/01/2009] [Accepted: 12/17/2009] [Indexed: 01/23/2023]
|
30
|
Qualls-Creekmore E, Tong M, Holmes GM. Gastric emptying of enterally administered liquid meal in conscious rats and during sustained anaesthesia. Neurogastroenterol Motil 2010; 22:181-5. [PMID: 19735361 PMCID: PMC2806511 DOI: 10.1111/j.1365-2982.2009.01393.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastric motility studies are frequently conducted with anaesthetized animal models. Some studies on the same animal species have reported differences in vagal control of the stomach that could not be explained solely by slightly different experimental conditions. A possible limitation in the comparison between similar studies relates to the use of different anaesthetic agents. Furthermore, anaesthetic effects may also limit generalizations between mechanistic studies of gastric function and the gastric function of conscious animals. In the present study, we used the [(13)C]-breath test following a liquid mixed-nutrient test meal (Ensure), 1 ml) with the aim to investigate the rate of gastric emptying in animals that were either conscious or anaesthetized with either Inactin or urethane. METHODS One week after determining the maximum (13)CO(2) concentration, time to peak [(13)C] recovery and gastric half emptying time in control, conscious rats, we repeated the experiment in the same rats anaesthetized with Inactin or urethane. KEY RESULTS Our data show that Inactin anaesthesia prolonged the time to peak [(13)C] recovery but did not significantly reduce the maximum (13)CO(2) concentration nor delay gastric half emptying time. Conversely, urethane anaesthesia resulted in a significant slowing of all parameters of gastric emptying as measured by the maximum (13)CO(2) concentration, time to peak [(13)C] recovery and half emptying time. CONCLUSIONS & INFERENCES Our data indicate that Inactin(R) anaesthesia does not significantly affect gastric emptying while urethane anaesthesia profoundly impairs gastric emptying. We suggest that Inactin(R), not urethane, is the more suitable anaesthetic for gastrointestinal research.
Collapse
Affiliation(s)
- E Qualls-Creekmore
- Neurotrauma and Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|