1
|
Mohammed R, Cavallaro G, Kessels CGA, Villamor E. Functional differences between the arteries perfusing gas exchange and nutritional membranes in the late chicken embryo. J Comp Physiol B 2015; 185:783-96. [PMID: 26119481 PMCID: PMC4568027 DOI: 10.1007/s00360-015-0917-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/28/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
Abstract
The chicken extraembryonic arterial system comprises the allantoic arteries, which irrigate the gas exchange organ (the chorioallantoic membrane, CAM) and the yolk sac (YS) artery, which irrigates the nutritional organ (the YS membrane). We compared, using wire myography, the reactivity of allantoic and YS arteries from 19-day chicken embryos (total incubation 21 days). The contractions induced by KCl, the adrenergic agonists norepinephrine (NE, nonselective), phenylephrine (α1), and oxymetazoline (α2), electric field stimulation (EFS), serotonin, U46619 (TP receptor agonist), and endothelin (ET)-1 and the relaxations induced by acetylcholine (ACh), sodium nitroprusside (SNP, NO donor), forskolin (adenylate cyclase activator), and isoproterenol (β-adrenergic agonist) were investigated. Extraembryonic allantoic arteries did not show α-adrenergic-mediated contraction (either elicited by exogenous agonists or EFS) or ACh-induced (endothelium-dependent) relaxation, whereas these responses were present in YS arteries. Interestingly, the intraembryonic segment of the allantoic artery showed EFS- and α-adrenergic-induced contraction and ACh-mediated relaxation. Moreover, glyoxylic acid staining showed the presence of catecholamine-containing nerves in the YS and the intraembryonic allantoic artery, but not in the extraembryonic allantoic artery. Isoproterenol- and forskolin-induced relaxation and ET-1-induced contraction were higher in YS than in allantoic arteries, whereas serotonin- and U46619-induced contraction and SNP-induced relaxation did not significantly differ between the two arteries. In conclusion, our study demonstrates a different pattern of reactivity in the arteries perfusing the gas exchange and the nutritional membranes of the chicken embryo.
Collapse
Affiliation(s)
- Riazudin Mohammed
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Research Institute Growth and Development (GROW) and Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Carolina G A Kessels
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Research Institute Growth and Development (GROW) and Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Research Institute Growth and Development (GROW) and Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Goyal R, Henderson DA, Chu N, Longo LD. Ovine middle cerebral artery characterization and quantification of ultrastructure and other features: changes with development. Am J Physiol Regul Integr Comp Physiol 2011; 302:R433-45. [PMID: 22116510 DOI: 10.1152/ajpregu.00519.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of tone, blood pressure, and blood flow in the cerebral vasculature is of vital importance, particularly in the developing infant. We tested the hypothesis that, in addition to accretion of smooth muscle cells (SMCs) in cell layers with vessel thickening, significant changes in smooth muscle structure, as well as phenotype, extracellular matrix, and membrane proteins, in the media of cerebral arteries (CAs) during the course of late fetal development account for associated changes in contractility. Using transmission electron, confocal, wide-field epifluorescence, and light microscopy, we examined the structure and ultrastructure of CAs. Also, we utilized wire myography, Western immunoblotting, and real-time quantitative PCR to examine several other features of these arteries. We compared the main branch ovine middle CAs of 95- and 140-gestational day (GD) fetuses with those of adults (n = 5 for each experimental group). We observed a graded increase in phenylephrine- and KCl-induced contractile responses with development. Structurally, lumen diameter, media thickness, and media cross-sectional area increased dramatically from one age group to the next. With maturation, the cross-sectional profiles of CA SMCs changed from flattened bands in the 95-GD fetus to irregular ovoid-shaped fascicles in the 140-GD fetus and adult. We also observed a change in the type of collagen, specific integrin molecules, and several other parameters of SMC morphology with maturation. Ovine CAs at 95 GD appeared morphologically immature and poorly equipped to respond to major hemodynamic adjustments with maturation.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
3
|
Rosenfeld CR, DeSpain K, Liu XT. Defining the differential sensitivity to norepinephrine and angiotensin II in the ovine uterine vasculature. Am J Physiol Regul Integr Comp Physiol 2011; 302:R59-67. [PMID: 22031783 DOI: 10.1152/ajpregu.00424.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intact ovine uterine vascular bed (UVB) is sensitive to α-agonists and refractory to angiotensin II (ANG II) during pregnancy; the converse occurs in the systemic circulation. The mechanism(s) responsible for these differences in uterine sensitivity are unclear and may reflect predominance of nonconstricting AT(2) receptors (AT(2)R) in uterine vascular smooth muscle (UVSM). The contribution of the placental vasculature also is unclear. Third generation and precaruncular/placental arteries from nonpregnant (n = 16) and term pregnant (n = 23) sheep were used to study contraction responses to KCl, norepinephrine (NE), and ANG II (with/without ATR specific inhibitors) and determine UVSM ATR subtype expression and contractile protein content. KCl and NE increased third generation and precaruncular/placental UVSM contractions in a dose- and pregnancy-dependent manner (P ≤ 0.001). ANG II only elicited modest contractions in third generation pregnant UVSM (P = 0.04) and none in precaruncular/placental UVSM. Moreover, compared with KCl and NE, ANG II contractions were diminished ≥ 5-fold. Whereas KCl and ANG II contracted third generation>>precaruncular/placental UVSM, NE-induced contractions were similar throughout the UVB. However, each agonist increased third generation contractions ≥ 2-fold at term, paralleling increased actin/myosin and cellular protein content (P ≤ 0.01). UVSM AT(1)R and AT(2)R expression was similar throughout the UVB and unchanged during pregnancy (P > 0.1). AT(1)R inhibition blocked ANG II-mediated contractions; AT(2)R blockade, however, did not enhance contractions. AT(2)R predominate throughout the UVB of nonpregnant and pregnant sheep, contributing to an inherent refractoriness to ANG II. In contrast, NE elicits enhanced contractility throughout the ovine UVB that exceeds ANG II and increases further at term pregnancy.
Collapse
Affiliation(s)
- Charles R Rosenfeld
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center at Dallas, 75390-9063, USA.
| | | | | |
Collapse
|
4
|
Camello-Almaraz C, Macias B, Gomez-Pinilla PJ, Alcon S, Martin-Cano FE, Baba A, Matsuda T, Camello PJ, Pozo MJ. Developmental changes in Ca2+ homeostasis and contractility in gallbladder smooth muscle. Am J Physiol Cell Physiol 2009; 296:C783-91. [PMID: 19211915 DOI: 10.1152/ajpcell.00452.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Relatively little is known about the contribution of Ca(2+)-dependent and -independent mechanisms in the contractility of neonatal gastrointestinal smooth muscle. We therefore studied Ca(2+) homeostasis and Ca(2+) sensitization mechanisms in 10-day-old and adult guinea pig gallbladder smooth muscle to elucidate developmental changes in these processes. Gallbladder contractility was evaluated by isometrical tension recordings from strips, intracellular Ca(2+) concentration was estimated by epifluorescence microscopy of fura-2-loaded isolated cells, and protein expression and phosphorylation were assessed by Western blot analysis. The neonatal gallbladder contracted significantly less to CCK than adult tissue, but this correlated with an increased Ca(2+) mobilization, suggesting immaturity of Ca(2+) sensitization mechanisms. The enhanced Ca(2+) release in the newborn gallbladder was the result of the increase in the size of the releasable Ca(2+) pool. Moreover, in neonatal smooth muscle cells, neither the plasma membrane Ca(2+) pump nor the Na(+)/Ca(2+) exchanger collaborate in the extrusion of Ca(2+). In contrast, in these cells, there is an increase in phospholamban phosphorylation, which could drive to an overactivity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase pump. The reduced Ca(2+) sensitivity in neonatal tissues was demonstrated by the lack of effect to Y-27362, an inhibitor of Rho kinase (ROCK), and GF-109203X, an inhibitor of PKC, on agonist-induced contraction. In addition, the neonatal gallbladder showed lower levels of RhoA, ROCK, PKC, and two effectors [C-kinase-dependent inhibitor of 17 kDa (CPI-17) and myosin phosphatase targetting 1 (MYPT1)] as well as an absence of CPI-17 and MYPT1 phosphorylation in response to agonists. In conclusion, our results indicate that the main mechanisms involved in smooth muscle contractility are under developmental regulation.
Collapse
|
5
|
Hutanu C, Cox BE, DeSpain K, Liu XT, Rosenfeld CR. Vascular development in early ovine gestation: carotid smooth muscle function, phenotype, and biochemical markers. Am J Physiol Regul Integr Comp Physiol 2007; 293:R323-33. [PMID: 17475675 DOI: 10.1152/ajpregu.00851.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vascular smooth muscle (VSM) maturation is developmentally regulated and differs between vascular beds. The maturation and contribution of VSM function to tissue blood flow and blood pressure regulation during early gestation are unknown. The carotid artery (CA) contributes to fetal cerebral blood flow regulation and well being. We studied CA VSM contractility, protein contents, and phenotype beginning in the midthird of ovine development. CAs were collected from early (88-101 day of gestation) and late (138-150 day; term = day 150) fetal (n = 14), newborn (6-8 day old; n = 7), and adult (n = 5) sheep to measure forces in endothelium-denuded rings with KCl, phenylephrine, and ANG II; changes in cellular proteins, including total and soluble protein, actin and myosin, myosin heavy chain isoforms (MHC), filamin, and proliferating cell nuclear antigen; and vascular remodeling. KCl and phenylephrine elicited age- and dose-dependent contraction responses (P < 0.001) at all ages except early fetal, which were unresponsive. In contrast, ANG II elicited dose responses only in adults, with contractility increasing greater than fivefold vs. that shown in fetal or neonatal animals (P < 0.001). Increased contractility paralleled age-dependent increases (P < 0.01) in soluble protein, actin and myosin, filamin, adult smooth muscle MHC-2 (SM2) and medial wall thickness and reciprocal decreases (P < 0.001) in nonmuscle MHC-B, proliferating cell nuclear antigen and medial cellular density. VSM nonreceptor- and receptor-mediated contractions are absent or markedly attenuated in midgestation and increase age dependently, paralleling the transition from synthetic to contractile VSM phenotype and, in the case of ANG II, paralleling the switch to the AT(1) receptor. The mechanisms regulating VSM maturation and thus blood pressure and tissue perfusion in early development remain to be determined.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Angiotensin II/pharmacology
- Animals
- Biomarkers
- Blood Vessels/embryology
- Blood Vessels/metabolism
- Blotting, Western
- Carotid Arteries/embryology
- Carotid Arteries/metabolism
- Carotid Arteries/physiology
- Female
- Immunohistochemistry
- Muscle Contraction/physiology
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myosin Heavy Chains/metabolism
- Phenotype
- Phenylephrine/pharmacology
- Potassium Chloride/pharmacology
- Pregnancy
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/physiology
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Sheep
Collapse
Affiliation(s)
- Catalina Hutanu
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| | | | | | | | | |
Collapse
|
6
|
Arens YH, Rosenfeld CR, Kamm KE. Maturational differences between vascular and bladder smooth muscle during ovine development. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1305-13. [PMID: 10801301 DOI: 10.1152/ajpregu.2000.278.5.r1305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maturation rates of vascular and visceral smooth muscle (SM) during ovine development were compared by quantifying contractile protein, myosin heavy chain (MHC) isoform contents, and contractile properties of aortas and bladders from female fetal (n = 19) and postnatal (n = 21) sheep. Actin, myosin, and protein contents rose progressively throughout development in both tissues (P </= 0.003); however, expression patterns differed. During the last trimester, i. e., 101-130 days (term approximately 145 days), bladder actin and MHC contents were approximately twofold greater (P < 0.04) than those in the aorta. Although the fractional content of 204-kDa SM1 MHC in the bladder decreased from 74 +/- 3% at midgestation to 48 +/- 2% 3 mo postnatal, the aorta exhibited an increase from 30 +/- 2% to 65 +/- 2%. Bladder MHC (MHC-B) migrating at 200 kDa contained only SM2 throughout development. In contrast, 200-kDa MHC in the aorta was predominantly nonmuscle MHC-B at midgestation, which was gradually replaced by SM2 as development progressed. Along with its early expression of SM2, bladder muscle obtained maximal stress generating capacity (1.7 x 10(5) N/m(2)) by term gestation, whereas the aorta exhibited no contractions until after birth. We conclude that whereas aortic SM maturation is delayed until after birth, bladder SM matures biochemically and functionally during prenatal development, thus supporting early requirements for micturition.
Collapse
Affiliation(s)
- Y H Arens
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | |
Collapse
|