1
|
Hurt RC, Garrett JC, Keifer OP, Linares A, Couling L, Speth RC, Ressler KJ, Marvar PJ. Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear. GENES BRAIN AND BEHAVIOR 2015; 14:526-33. [PMID: 26257395 DOI: 10.1111/gbb.12235] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 01/17/2023]
Abstract
Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1a R) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-releasing factor (CRF)-expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1a R signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1a R gene from its CRF-releasing cells (CRF-AT1a R((-/-)) ). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF-AT1a R((-/-)) mice exhibit less freezing than wild-type mice during tests of conditioned fear expression-an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1a R activity in CRF-expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1 R antagonists may act to modulate fear extinction.
Collapse
Affiliation(s)
- R C Hurt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - J C Garrett
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - O P Keifer
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA
| | - A Linares
- Farquhar College of Arts and Sciences.,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | - L Couling
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | - R C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine.,Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA.,Howard Hughes Medical Institute, Bethesda, MD
| | - P J Marvar
- Department of Pharmacology and Physiology, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| |
Collapse
|
2
|
Bourassa EA, Stedenfeld KA, Sved AF, Speth RC. Selective C1 Lesioning Slightly Decreases Angiotensin II Type I Receptor Expression in the Rat Rostral Ventrolateral Medulla (RVLM). Neurochem Res 2015; 40:2113-20. [PMID: 26138553 DOI: 10.1007/s11064-015-1649-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/16/2015] [Accepted: 06/20/2015] [Indexed: 01/28/2023]
Abstract
Cardiovascular homeostasis is regulated in large part by the rostral ventrolateral medulla (RVLM) in mammals. Projections from the RVLM to the intermediolateral column of the thoracolumbar spinal cord innervate preganglionic neurons of the sympathetic nervous system causing elevation of blood pressure and heart rate. A large proportion, but not all, of the neurons in the RVLM contain the enzymes necessary for the production of epinephrine and are identified as the C1 cell group. Angiotensin II (Ang II) activates the RVLM acting upon AT1 receptors. To assess the proportion of AT1 receptors that are located on C1 neurons in the rat RVLM this study employed an antibody to dopamine-beta-hydroxylase conjugated to saporin, to selectively destroy C1 neurons in the RVLM. Expression of tyrosine hydroxylase immunoreactive neurons in the RVLM was reduced by 57 % in the toxin injected RVLM compared to the contralateral RVLM. In contrast, densitometric analysis of autoradiographic images of (125)I-sarcosine(1), isoleucine(8) Ang II binding to AT1 receptors of the injected side RVLM revealed a small (10 %) reduction in AT1-receptor expression compared to the contralateral RVLM. These results suggest that the majority of AT1 receptors in the rat RVLM are located on non-C1 neurons or glia.
Collapse
Affiliation(s)
- Erick A Bourassa
- Mississippi College, 200 S Capitol St, Clinton, MS, 39058, USA.
- Department of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA.
| | - Kristen A Stedenfeld
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Robert C Speth
- Department of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA.
- College of Pharmacy, Nova Southeastern University, 3200 S. University Dr., Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
3
|
Speth RC, Carrera EJ, Bretón C, Linares A, Gonzalez-Reiley L, Swindle JD, Santos KL, Schadock I, Bader M, Karamyan VT. Distribution of non-AT1, non-AT2 binding of 125I-sarcosine1, isoleucine8 angiotensin II in neurolysin knockout mouse brains. PLoS One 2014; 9:e105762. [PMID: 25147932 PMCID: PMC4141804 DOI: 10.1371/journal.pone.0105762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 µM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (−2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology.
Collapse
Affiliation(s)
- Robert C. Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Eduardo J. Carrera
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Catalina Bretón
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Andrea Linares
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Luz Gonzalez-Reiley
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Jamala D. Swindle
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Kira L. Santos
- Farquhar College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
- College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Ines Schadock
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Vardan T. Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| |
Collapse
|
4
|
Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary. Int J Hypertens 2013; 2013:175428. [PMID: 23573410 PMCID: PMC3614054 DOI: 10.1155/2013/175428] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors.
Collapse
|
5
|
Bourassa EA, Fang X, Li X, Sved AF, Speth RC. AT₁ angiotensin II receptor and novel non-AT₁, non-AT₂ angiotensin II/III binding site in brainstem cardiovascular regulatory centers of the spontaneously hypertensive rat. Brain Res 2010; 1359:98-106. [PMID: 20807518 DOI: 10.1016/j.brainres.2010.08.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/14/2010] [Accepted: 08/24/2010] [Indexed: 02/07/2023]
Abstract
Spontaneously hypertensive rats (SHR) have an activated brain angiotensin system that contributes to the elevation of blood pressure in this animal model. Physiological and pharmacological studies suggest that hyperactivation of brain AT₁ angiotensin receptors is a major pathophysiological factor. Consistent with these observations, radioligand binding studies indicate widespread up-regulation of brain angiotensin receptors in SHR. One key brainstem site in which AT₁ receptor stimulation appears to contribute to the elevated blood pressure in SHR is the rostral ventrolateral medulla (RVLM). However, no quantitative comparison of AT₁ receptor binding in the RVLM has been made in SHR versus normotensive rats. A novel, non-AT₁, non-AT₂ binding site, specific for angiotensins II and III, has recently been discovered in the brain. To determine if radioligand binding to either AT₁ receptors or this novel angiotensin binding site is altered in the RVLM and other caudal brainstem regions of SHR, a quantitative densitometric autoradiographic comparison of radioligand binding in SHR versus normotensive Wistar-Kyoto rats was made. In both the RVLM and caudal ventrolateral medulla (CVLM) as well as dorsomedial medulla (DMM), there was increased expression of AT₁ receptor binding in SHR (13%, 9%, and 23%, respectively). Conversely, expression of the novel, non-AT₁, non-AT₂, angiotensin II and III binding site was decreased in the RVLM and DMM of SHR (37% and 13%, respectively). This increased AT₁ receptor binding in the RVLM may contribute to the hypertension of SHR. Reduced radioligand binding to the novel, non-AT₁, non-AT₂, angiotensin binding site in the RVLM of SHR may indicate a role for this binding site to reduce blood pressure via its interactions with angiotensins II and III.
Collapse
Affiliation(s)
- Erick A Bourassa
- Biological Sciences, Northwest Missouri State University, Maryville, MO 64468, USA
| | | | | | | | | |
Collapse
|
6
|
De Matteo R, Head GA, Mayorov DN. Angiotensin II in dorsomedial hypothalamus modulates cardiovascular arousal caused by stress but not feeding in rabbits. Am J Physiol Regul Integr Comp Physiol 2006; 290:R257-64. [PMID: 16141307 DOI: 10.1152/ajpregu.00372.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dorsomedial hypothalamus (DMH) is critically implicated in the cardiovascular response to emotional stress. This study aimed to determine whether the DMH is also important in cardiovascular arousal associated with appetitive feeding behavior and, if so, whether locally released angiotensin II and glutamate are important in this arousal. Emotional (air-jet) stress and feeding elicited similar tachycardic (+51 and +45 beats/min, respectively) and pressor (+16 and +9 mmHg, respectively) responses in conscious rabbits. Bilateral microinjection of GABAA agonist muscimol (500 pmol) into the DMH, but not nearby hypothalamic regions, attenuated pressor and tachycardic responses to air-jet by 56–63% and evoked anorexia. Conversely, stimulation of the DMH with the glutamate analog kainic acid (250 pmol) elicited hypertension (+25 mmHg) and tachycardia (+114 beats/min) and activated feeding behavior. Local microinjection of a glutamate receptor antagonist, kynurenic acid (10 nmol), decreased pressor responses to stress and eating by 46 and 72%, respectively, without affecting feeding behavior. Bilateral microinjection of a selective AT1-receptor antagonist, candesartan (500 pmol), into the DMH, but not nearby sites, attenuated pressor and tachycardic stress responses by 31 and 33%, respectively. Candesartan did not alter feeding behavior or circulatory response to feeding. These results indicate that, in addition to its role in mediating stress responses, the DMH may be important in regulating cardiovascular arousal associated with feeding. Local glutamatergic inputs appear to regulate cardiovascular response to both stress and feeding. Conversely, angiotensin II, acting via AT1 receptors, may selectively modulate, in the DMH, cardiovascular response to stress, but not feeding.
Collapse
Affiliation(s)
- Robert De Matteo
- Baker Heart Research Institute, P.O. Box 6492, St. Kilda Rd. Central, Melbourne, Victoria 8008, Australia
| | | | | |
Collapse
|
7
|
Speth RC, Smith MS, Grove KL. Brain angiotensinergic mediation of enhanced water consumption in lactating rats. Am J Physiol Regul Integr Comp Physiol 2002; 282:R695-701. [PMID: 11832388 DOI: 10.1152/ajpregu.00432.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which lactating rats increase fluid consumption to meet the demands of milk production is unknown. Because ANG II is the most potent dipsogenic stimulus known, this study examined whether angiotensinergic signaling plays a role in enhanced drinking in lactating rats. ANG II administered intracerebroventricularly caused a significantly greater dipsogenic response in lactating rats than in control rats, suggesting that dipsogenic responsivity to ANG II is enhanced in the brains of lactating rats. The angiotensin type 1 (AT1) ANG II receptor subtype antagonist SKF-108566, also given intracerebroventricularly, caused a significant reduction in water consumption in lactating rats, whereas it did not significantly affect water intake in control rats. In contrast, stimulation of drinking by the muscarinic agonist carbachol, also administered intracerebroventricularly, did not differ between lactating and control rats. Inhibition of drinking by the muscarinic antagonist atropine also did not differ significantly between lactating and control rats. These results suggest that the increased drinking in lactating rats involves an increased responsivity to ANG II in neurons that mediate dipsogenesis, as well as an enhancement in the amount of angiotensinergic input to these ANG II-responsive neurons.
Collapse
Affiliation(s)
- Robert C Speth
- Division of Neuroscience, Oregon Regional Primate Resesarch Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
8
|
Speth RC, Smith MS, Grove KL. Lactation decreases angiotensinogen mRNA expression in the midcaudal arcuate nucleus of the rat brain. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1169-76. [PMID: 11247841 DOI: 10.1152/ajpregu.2001.280.4.r1169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In lactating rats, ANG II receptor binding in the arcuate nucleus (ARH) and median eminence is decreased. To further evaluate brain angiotensinergic activity during lactation, we assessed angiotensinogen (AON) mRNA by in situ hybridization in forebrains of day 10 or 11 postpartum lactating and diestrous rats. AON mRNA was abundantly expressed in the ARH, preoptic, suprachiasmatic, supraoptic, paraventricular, and dorsomedial hypothalamic nuclei, and other regions, similar to that reported in male rat brains. AON mRNA levels were decreased 27% in the midcaudal ARH of lactating rats but did not differ between lactating or diestrous rats in any of the other brain areas examined. Immunofluorescence for AON and glial fibrillary acidic protein or tyrosine hydroxylase confirmed that the AON immunoreactivity in the ARH was limited to astrocytes. Confocal microscopy revealed close appositions of AON-positive astrocytes to dopaminergic neurons in the ARH. The decrease in AON mRNA in the midcaudal ARH during lactation coupled with decreased ARH ANG II receptor binding suggests that lactating rats are less subject to ANG II-mediated inhibition of prolactin secretion.
Collapse
Affiliation(s)
- R C Speth
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|