1
|
Chain FJJ, Meyer BS, Heckwolf MJ, Franzenburg S, Eizaguirre C, Reusch TBH. Epigenetic diversity of genes with copy number variations among natural populations of the three-spined stickleback. Evol Appl 2024; 17:e13753. [PMID: 39006007 PMCID: PMC11246597 DOI: 10.1111/eva.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection. In this scenario, newly duplicate genes may evade purifying selection if they are epigenetically silenced, at least temporarily, leading them to persist in populations as copy number variations (CNVs). In animals and plants, younger gene duplicates tend to have higher levels of DNA methylation and lower levels of gene expression, suggesting epigenetic regulation could promote the retention of gene duplications via expression repression or silencing. Here, we test the hypothesis that DNA methylation variation coincides with young duplicate genes that are segregating as CNVs in six populations of the three-spined stickleback that span a salinity gradient from 4 to 30 PSU. Using reduced-representation bisulfite sequencing, we found DNA methylation and CNV differentiation outliers rarely overlapped. Whereas lineage-specific genes and young duplicates were found to be highly methylated, just two gene CNVs showed a significant association between promoter methylation level and copy number, suggesting that DNA methylation might not interact with CNVs in our dataset. If most new duplications are regulated for dosage by epigenetic mechanisms, our results do not support a strong contribution from DNA methylation soon after duplication. Instead, our results are consistent with a preference to duplicate genes that are already highly methylated.
Collapse
Affiliation(s)
- Frédéric J J Chain
- Department of Biological Sciences University of Massachusetts Lowell Lowell Massachusetts USA
| | - Britta S Meyer
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
- Present address: Research Unit for Evolutionary Immunogenomics, Department of Biology University of Hamburg Hamburg Germany
| | - Melanie J Heckwolf
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
- Present address: Fish Ecology and Evolution, Leibniz Centre for Tropical Marine Research Bremen Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University Kiel Germany
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
| |
Collapse
|
2
|
Nobata S, Takei Y. Circulating Isotocin, not Angiotensin II, is the Major Dipsogenic Hormone in Eels. J Exp Biol 2022; 225:275574. [PMID: 35502793 DOI: 10.1242/jeb.244094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
Angiotensin II (AngII) is generally known as the most important dipsogenic hormone throughout vertebrates, while two other neurohypophysial hormones, vasopressin and oxytocin, are not dipsogenic in mammals. In this study, we found that systemic isotocin, but not vasotocin, is the potent dipsogenic hormone in eels. When injected intra-arterially into conscious eels, isotocin, vasotocin and AngII equally increased ventral aortic pressure dose-dependently at 0.03-1.0 nmol/kg, but only isotocin induced copious drinking. The dipsogenic effect was dose-dependent and occurred significantly at as low as 0.1 nmol/kg. By contrast, a sustained inhibition of drinking occurred after AngII, probably due to baroreflexogenic inhibition. No such inhibition was observed after isotocin despite similar concurrent hypertension. The baroreceptor may exist distal to the gill circulation because the vasopressor effect occurred at both ventral and dorsal aorta after AngII but only at ventral aorta after isotocin. By contrast, intra-cerebroventricular (i.c.v.) injection of isotocin had no effect on drinking or blood pressure, but AngII increased drinking and aortic pressure dose-dependently at 0.03-0.3 nmol/eel. Lesioning of the area postrema (AP), a sensory circumventricular organ, abolished drinking induced by peripheral isotocin, but not i.c.v. AngII. Collectively, isotocin seems to be a major circulating hormone that induces swallowing through its action on the AP, while AngII may be an intrinsic brain peptide that induces drinking through its action on a different circumventricular site, possibly a recently identified blood-brain barrier-deficient structure in the antero-ventral third ventricle of eels, as shown in birds and mammals.
Collapse
Affiliation(s)
- Shigenori Nobata
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
3
|
Ogoshi M, Takahashi M, Aoyagi K, Ukena K, Aizawa S, Takeuchi H, Takahashi S, Takeuchi S. Adrenomedullin 2 and 5 activate the calcitonin receptor-like receptor (clr) - Receptor activity-modifying protein 3 (ramp3) receptor complex in Xenopus tropicalis. Gen Comp Endocrinol 2021; 306:113752. [PMID: 33711314 DOI: 10.1016/j.ygcen.2021.113752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 01/24/2023]
Abstract
The adrenomedullin (AM) family is involved in diverse biological functions, including cardiovascular regulation and body fluid homeostasis, in multiple vertebrate lineages. The AM family consists of AM1, AM2, and AM5 in tetrapods, and the receptor for mammalian AMs has been identified as the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2) or RAMP3. However, the receptors for AM in amphibians have not been identified. In this study, we identified the cDNAs encoding calcrl (clr), ramp2, and ramp3 receptor components from the western clawed frog (Xenopus tropicalis). Messenger RNAs of amphibian clr and ramp2 were highly expressed in the heart, whereas that of ramp3 was highly expressed in the whole blood. In HEK293T cells expressing clr-ramp2, cAMP response element luciferase (CRE-Luc) reporter activity was activated by am1. In HEK293T cells expressing clr-ramp3, CRE-Luc reporter activity was increased by the treatment with am2 at the lowest dose, but with am5 and am1 at higher dose. Our results provided new insights into the roles of AM family peptides through CLR-RAMP receptor complexes in the tetrapods.
Collapse
Affiliation(s)
- Maho Ogoshi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| | - Mikoto Takahashi
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Kota Aoyagi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Kazuyoshi Ukena
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8511, Japan.
| | - Sayaka Aizawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan.
| | - Sumio Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| | - Sakae Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| |
Collapse
|
4
|
Drinking by amphibious fish: convergent evolution of thirst mechanisms during vertebrate terrestrialization. Sci Rep 2018; 8:625. [PMID: 29330516 PMCID: PMC5766589 DOI: 10.1038/s41598-017-18611-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Thirst aroused in the forebrain by angiotensin II (AngII) or buccal drying motivates terrestrial vertebrates to search for water, whereas aquatic fish can drink surrounding water only by reflex swallowing generated in the hindbrain. Indeed, AngII induces drinking through the hindbrain even after removal of the whole forebrain in aquatic fish. Here we show that AngII induces thirst also in the amphibious mudskipper goby without direct action on the forebrain, but through buccal drying. Intracerebroventricular injection of AngII motivated mudskippers to move into water and drink as with tetrapods. However, AngII primarily increased immunoreactive c-Fos at the hindbrain swallowing center where AngII receptors were expressed, as in other ray-finned fish, and such direct action on the forebrain was not found. Behavioural analyses showed that loss of buccal water on land by AngII-induced swallowing, by piercing holes in the opercula, or by water-absorptive gel placed in the cavity motivated mudskippers to move to water for refilling. Since sensory detection of water at the bucco-pharyngeal cavity like 'dry mouth' has recently been noted to regulate thirst in mammals, similar mechanisms seem to have evolved in distantly related species in order to solve osmoregulatory problems during terrestrialization.
Collapse
|
5
|
Sekiguchi T. The Calcitonin/Calcitonin Gene-Related Peptide Family in Invertebrate Deuterostomes. Front Endocrinol (Lausanne) 2018; 9:695. [PMID: 30555412 PMCID: PMC6283891 DOI: 10.3389/fendo.2018.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcitonin (CT)/CT gene-related peptide (CGRP) family peptides (CT/CGRP family peptides) including CT, CGRP, adrenomedullin, amylin, and CT receptor-stimulating peptide have been identified from various vertebrates and perform a variety of important physiological functions. These peptides bind to two types of receptors including CT receptor (CTR) and CTR-like receptor (CLR). Receptor recognition of CT/CGRP family peptides is determined by the heterodimer between CTR/CLR and receptor activity-modifying protein (RAMP). Comparative studies of the CT/CGRP family have been exclusively performed in vertebrates from teleost fishes to mammals and strongly manifest that the CGRP family system containing peptides, their receptors, and RAMPs was derived from a common ancestor. In addition, CT/CGRP family peptides and their receptors are also identified and inferred from various invertebrate species. However, the evolutionary process of the CT/CGRP family from invertebrates to vertebrates remains enigmatic. In this review, I principally summarize the CT/CGRP family peptides and their receptors in invertebrate deuterostomes, highlighting the study of invertebrate chordates including ascidians and amphioxi. The CT/CGRP family peptide that shows similar molecular structure and function with that of vertebrate CT has been identified from ascidian, Ciona intestinalis. Amphioxus, Branchiostoma floridae also possessed three CT/CGRP family peptides, one CTR/CLR receptor, and three RAMP-like proteins. The molecular function of the receptor complex formed by amphioxus CTR/CLR and a RAMP-like protein was clarified. Moreover, CT/CGRP family peptides have been identified in the superphylum Ambulacraria, which is close to Chordata. Finally, this review provides potential hypotheses of the evolution of CGRP family peptides and their receptors from invertebrates to vertebrates.
Collapse
|
6
|
Kusakabe M, Ishikawa A, Ravinet M, Yoshida K, Makino T, Toyoda A, Fujiyama A, Kitano J. Genetic basis for variation in salinity tolerance between stickleback ecotypes. Mol Ecol 2016; 26:304-319. [DOI: 10.1111/mec.13875] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Makoto Kusakabe
- Atmosphere and Ocean Research Institute; The University of Tokyo; Kashiwanoha 5-1-5 Kashiwa Chiba 277-8564 Japan
- Department of Biological Science; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Asano Ishikawa
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Mark Ravinet
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; P.O. Box 1066 Blindern Oslo NO-0316 Oslo Norway
| | - Kohta Yoshida
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Jun Kitano
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| |
Collapse
|
7
|
Ogoshi M, Kato K, Sakamoto T. Effect of environmental salinity on expression of adrenomedullin genes suggests osmoregulatory activity in the medaka, Oryzias latipes. ZOOLOGICAL LETTERS 2015; 1:12. [PMID: 26605057 PMCID: PMC4657274 DOI: 10.1186/s40851-015-0012-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/13/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The adrenomedullins (AMs) comprise a hormonal family in mammals and teleost fishes, with five members (AM1-5) found or predicted in most of the teleosts including Japanese medaka (Oryzias latipes). AM1 is known to have cardiovascular and osmoregulatory functions in mammals, but the roles of most AMs are yet to be determined. RESULTS Using medaka, we first analyzed the tissue distribution of all five AM genes and found detectable expression in all tissues examined, with relatively high levels of AM3 and AM5 in the liver and kidney. To assess the osmoregulatory roles of these AMs, mRNA levels were examined in the brain (including the eyes), gill, liver, kidney and spleen of medaka one week after transfer from isotonic saline (11 ppt) to freshwater (0 ppt) or seawater (33 ppt). Expression of AM1 in the brain-eye increased in freshwater. The central level of AM4 (the paralog of AM1) decreased in seawater; the branchial level of AM4 decreased in freshwater and seawater, but the renal level increased in freshwater. The branchial level of AM2 increased in seawater, whereas the renal level decreased in freshwater and seawater. Expression of AM3, the AM2 paralog, decreased in the brain-eye of seawater-acclimated fish. Expression of AM5 in the brain-eye and kidney decreased in seawater. CONCLUSIONS Except for branchial AM2, the members of AM family tend to be involved in promotion of hyper-osmoregulation and/or inhibition of hypo-osmoregulation, although each AM may play a distinct role during adaptation to different salinities.
Collapse
Affiliation(s)
- Maho Ogoshi
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Okayama 701-4303 Japan
| | - Kanoko Kato
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Okayama 701-4303 Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Okayama 701-4303 Japan
| |
Collapse
|
8
|
Cameron MS, Nobata S, Takei Y, Donald JA. Vasodilatory effects of homologous adrenomedullin 2 and adrenomedullin 5 on isolated blood vessels of two species of eel. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:157-63. [DOI: 10.1016/j.cbpa.2014.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 09/10/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
|
9
|
Wong MKS, Takei Y. Changes in plasma angiotensin subtypes in Japanese eel acclimated to various salinities from deionized water to double-strength seawater. Gen Comp Endocrinol 2012; 178:250-8. [PMID: 22705037 DOI: 10.1016/j.ygcen.2012.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/11/2012] [Accepted: 06/04/2012] [Indexed: 12/18/2022]
Abstract
Our knowledge of complexity of the renin-angiotensin system (RAS) has grown in recent years and various angiotensin peptides including Ang II, Ang III, Ang IV, and Ang (1-7) were found to have specific functions. Using a combination of HPLC and radioimmunoassay (RIA), we established a high resolution method to quantify various angiotensin subtypes in the plasma of eel acclimated to deionized water (dW), freshwater (FW), seawater (SW), and double-strength seawater (DSW). [Asn(1), Val(5)]-Ang II, [Asp(1), Val(5)]-Ang II, [Val(4)]-Ang III, and [Val(3)]-Ang IV are all present in the circulation and both Ang II subtypes were significantly higher in DSW eel. When the eel was transferred from FW to SW, plasma immunoreactive (ir) Ang II concentration increased and its levels were highly correlated to plasma osmolality, suggesting that the elevated plasma osmolality is the major stimulus for activating the RAS during high salinity transfer. To examine the conversion of [Asn(1)] to [Asp(1)] residue in vivo and in vitro, synthetic [Asn(1), Val(5)]-Ang II was injected into the circulation or incubated with plasma, but the production of [Asp(1), Val(5)]-Ang II was insignificant, which implies that the conversion may occur at the angiotensinogen level. An asparaginase assay was further developed for measuring asparaginase activity and the highest activity was in liver in both FW and SW eel. This new method of analysis can be extended to study the endogenous angiotensin ligands in the local RAS. The potential significance of [Asn(1)] to [Asp(1)] conversion on Ang II metabolism and function is discussed.
Collapse
Affiliation(s)
- Marty Kwok-Shing Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | | |
Collapse
|
10
|
Le Mével JC, Lancien F, Mimassi N, Kermorgant M, Conlon JM. Central ventilatory and cardiovascular actions of calcitonin gene-related peptide in unanesthetized trout. ACTA ACUST UNITED AC 2012; 215:1930-7. [PMID: 22573772 DOI: 10.1242/jeb.070177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcitonin gene-related peptide (CGRP) and its receptors are widely distributed in the tissues of teleost fish, including the brain, but little is known about the ventilatory and cardiovascular effects of the peptide in these vertebrates. The present study was undertaken to compare the central and peripheral actions of graded doses (5-50 pmol) of trout CGRP on ventilatory and cardiovascular variables in unanesthetized rainbow trout. Compared with vehicle, intracerebroventricular injection of CGRP significantly elevated the ventilation frequency (f(V)) and the ventilation amplitude (V(AMP)) and, consequently, the total ventilation (V(TOT)). The maximum hyperventilatory effect of CGRP (V(TOT): +300%), observed at a dose of 50 pmol, was mostly due to its stimulatory action on V(AMP) (+200%) rather than f(V) (+30%). In addition, CGRP produced a significant and dose-dependent increase in mean dorsal aortic blood pressure (P(DA)) (50 pmol: +40%) but the increase in heart rate (f(H)) was not significant. Intra-arterial injections of CGRP were without effect on the ventilatory variables but significantly and dose-dependently elevated P(DA) (50 pmol: +36%) without changing f(H). At the highest dose tested, this hypertensive phase was preceded by a rapid and transient hypotensive response. In conclusion, our study suggests that endogenous CGRP within the brain of the trout may act as a potent neurotransmitter and/or neuromodulator in the regulation of cardio-ventilatory functions. In the periphery, endogenous CGRP may act as a local and/or circulating hormone preferentially involved in vasoregulatory mechanisms.
Collapse
Affiliation(s)
- Jean-Claude Le Mével
- Université Européenne de Bretagne, Université de Brest, INSERM UMR101, Brest, CHU de Brest, France.
| | | | | | | | | |
Collapse
|
11
|
Haemodynamic, endocrine and renal actions of adrenomedullin 5 in an ovine model of heart failure. Clin Sci (Lond) 2012; 122:429-37. [PMID: 22087608 PMCID: PMC3259696 DOI: 10.1042/cs20110483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AM5 (adrenomedullin 5), a newly described member of the CGRP (calcitonin gene-related peptide) family, is reported to play a role in normal cardiovascular physiology. The effects of AM5 in HF (heart failure), however, have not been investigated. In the present study, we intravenously infused two incremental doses of AM5 (10 and 100 ng/min per kg of body weight each for 90 min) into eight sheep with pacing-induced HF. Compared with time-matched vehicle control infusions, AM5 produced progressive and dose-dependent increases in left ventricular dP/dt(max) [LD (low dose), +56 mmHg/s and HD (high dose), +152 mmHg/s] and cardiac output (+0.83 l/min and +1.81 l/min), together with decrements in calculated total peripheral resistance (−9.4 mmHg/min per litre and −14.7 mmHg/min per litre), mean arterial pressure (−2.8 mmHg and −8.4 mmHg) and LAP (left atrial pressure; −2.6 mmHg and −5.6 mmHg) (all P<0.001). HD AM5 significantly raised PRA (plasma renin activity) (3.5-fold increment, P<0.001), whereas plasma aldosterone levels were unchanged over the intra-infusion period and actually fell in the post-infusion period (70% decrement, P<0.01), resulting in a marked decrease in the aldosterone/PRA ratio (P<0.01). Despite falls in LAP, plasma atrial natriuretic peptide and B-type natriuretic peptide concentrations were maintained relative to controls. AM5 infusion also induced significant increases in urine volume (HD 2-fold increment, P<0.05) and urine sodium (2.7-fold increment, P<0.01), potassium (1.7-fold increment, P<0.05) and creatinine (1.4-fold increment, P<0.05) excretion and creatinine clearance (60% increment, P<0.05). In conclusion, AM5 has significant haemodynamic, endocrine and renal actions in experimental HF likely to be protective and compensatory in this setting. These results suggest that AM5 may have potential as a therapeutic agent in human HF.
Collapse
|
12
|
Le Mével JC, Lancien F, Mimassi N, Conlon JM. Brain neuropeptides in central ventilatory and cardiovascular regulation in trout. Front Endocrinol (Lausanne) 2012; 3:124. [PMID: 23115556 PMCID: PMC3483629 DOI: 10.3389/fendo.2012.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022] Open
Abstract
Many neuropeptides and their G-protein coupled receptors (GPCRs) are present within the brain area involved in ventilatory and cardiovascular regulation but only a few mammalian studies have focused on the integrative physiological actions of neuropeptides on these vital cardio-respiratory regulations. Because both the central neuroanatomical substrates that govern motor ventilatory and cardiovascular output and the primary sequence of regulatory peptides and their receptors have been mostly conserved through evolution, we have developed a trout model to study the central action of native neuropeptides on cardio-ventilatory regulation. In the present review, we summarize the most recent results obtained using this non-mammalian model with a focus on PACAP, VIP, tachykinins, CRF, urotensin-1, CGRP, angiotensin-related peptides, urotensin-II, NPY, and PYY. We propose hypotheses regarding the physiological relevance of the results obtained.
Collapse
Affiliation(s)
- Jean-Claude Le Mével
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
- *Correspondence: Jean-Claude Le Mével, INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de Brest, 22 avenue Camille Desmoulins, CS 93837, 29238 Brest Cedex 3, France. e-mail:
| | - Frédéric Lancien
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
| | - Nagi Mimassi
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
| | - J. Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
13
|
Nobata S, Donald JA, Balment RJ, Takei Y. Potent cardiovascular effects of homologous urotensin II (UII)-related peptide and UII in unanesthetized eels after peripheral and central injections. Am J Physiol Regul Integr Comp Physiol 2011; 300:R437-46. [DOI: 10.1152/ajpregu.00629.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned cDNAs encoding urotensin II (UII)-related peptide (URP) and UII in Japanese eel, Anguilla japonica , the former being the first such cloning in teleost fishes. Unlike the exclusive expression of UII in the urophysis, the URP gene was expressed most abundantly in the brain (medulla oblongata) followed by the urophysis. Peripheral injections of URP into eels increased blood pressure by 16.1 ± 0.8 mmHg at 0.1 nmol/kg in ventral aortic blood pressure (PVA) and with similar potency and efficacy to that of UII (relative potency of URP to UII = 0.83). URP/UII and ANG II preferentially acted on the branchial and systemic circulations, respectively, and the duration of effect was distinct among the three peptides in the order of UII (60 min) >URP (30 min) >ANG II (14 min) in PVA. Urantide, a mammalian UII receptor antagonist, inhibited the URP effect (−63.6 ± 5.2%) to a greater extent than for UII (−39.9 ± 5.0%). URP and UII constricted isolated eel branchial and systemic arteries, showing their direct actions on the vascular smooth muscle. Central injection of URP increased blood pressure by 12.3 ± 0.8 mmHg at 50 pmol/eel in PVA and with similar efficacy but less potency (relative potency = 0.47) and shorter duration compared with UII. The central actions of URP/UII were more potent on the branchial circulation than on the systemic circulation, again opposite the effects of ANG II. The similar responses to peripheral and central injections suggest that peripheral hormones may act on the brain. Taken together, in eels, URP and UII are potent cardiovascular hormones like ANG II, acting directly on the peripheral vasculature, as well as a central vasomotor site, and their actions are mediated to different degrees by the UII receptor.
Collapse
Affiliation(s)
- Shigenori Nobata
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - John A. Donald
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia; and
| | - Richard J. Balment
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| |
Collapse
|