1
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Wang L, Zhang X, Ma C, Wu N. 1-Phosphate receptor agonists: A promising therapeutic avenue for ischemia-reperfusion injury management. Int Immunopharmacol 2024; 131:111835. [PMID: 38508097 DOI: 10.1016/j.intimp.2024.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Ischemia-reperfusion injury (IRI) - a complex pathological condition occurring when blood supply is abruptly restored to ischemic tissues, leading to further tissue damage - poses a significant clinical challenge. Sphingosine-1-phosphate receptors (S1PRs), a specialized set of G-protein-coupled receptors comprising five subtypes (S1PR1 to S1PR5), are prominently present in various cell membranes, including those of lymphocytes, cardiac myocytes, and endothelial cells. Increasing evidence highlights the potential of targeting S1PRs for IRI therapeutic intervention. Notably, preconditioning and postconditioning strategies involving S1PR agonists like FTY720 have demonstrated efficacy in mitigating IRI. As the synthesis of a diverse array of S1PR agonists continues, with FTY720 being a prime example, the body of experimental evidence advocating for their role in IRI treatment is expanding. Despite this progress, comprehensive reviews delineating the therapeutic landscape of S1PR agonists in IRI remain limited. This review aspires to meticulously elucidate the protective roles and mechanisms of S1PR agonists in preventing and managing IRI affecting various organs, including the heart, kidney, liver, lungs, intestines, and brain, to foster novel pharmacological approaches in clinical settings.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Hu G, Xie D, Chen C, Wang W, Li PL, Ritter JK, Li N. Renal Medullary Overexpression of Sphingosine-1-Phosphate Receptor 1 Transgene Attenuates Deoxycorticosterone Acetate (DOCA)-Salt Hypertension. Am J Hypertens 2023; 36:509-516. [PMID: 37171128 PMCID: PMC10403973 DOI: 10.1093/ajh/hpad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Our previous studies showed that renal medullary sphingosine-1-phosphate receptor 1 (S1PR1) mediated sodium excretion, high salt intake increased S1PR1 level, deoxycorticosterone acetate (DOCA) blocked high salt-induced S1PR1 in the renal medulla, and that conditional knockout of S1PR1 in the collecting duct aggravated DOCA-salt hypertension. The present study tested the hypothesis that overexpression of S1PR1 transgene in the renal medulla attenuates the sodium retention and hypertension in DOCA-salt mouse model. METHODS Male C57BL/6J mice received renal medullary transfection of control or S1PR1-expressing plasmids and then DOCA-salt treatment. Renal sodium excretion and arterial pressure were compared between control and S1PR1-overexpressed mice in response to high salt loading or pressure natriuresis. RESULTS S1PR1-transfected mice showed significantly enhanced urinary sodium excretion in response to acute sodium loading (0.93 ± 0.27 in control vs. 4.72 ± 1.12 µmol/min/gKW in S1PR1-overexpressed mice, P < 0.05) and the pressure natriuresis (3.58 ± 1.77 vs. 9.52 ± 1.38, P < 0.05), less positive sodium balance in response to chronic high-salt intake (3.05 ± 0.39 vs. 1.65 ± 0.39 mmol/72 hr, P < 0.05), and consequently, the attenuation of DOCA-salt hypertension (134.2 ± 6.79 vs. 109.8 ± 3.54 mm Hg, P < 0.05). The αENaC protein amount in the renal medulla was not changed, however, the βENaC was significantly decreased and the γENaC was significantly increased in S1PR1-overexpressed mice. The immunostaining showed apical membrane translocation of γENaC, while no change of αENaC and βENaC in control mice, and that the apical membrane translocation of γENaC was blocked in S1PR1-treasffected mice. CONCLUSIONS These results suggested that activation of S1PR1 in the renal medulla attenuates DOCA-induced sodium retention and salt-sensitive hypertension associated with inhibition of ENaC.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Weili Wang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
4
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: a narrative review. Ther Adv Neurol Disord 2022; 15:17562864221133163. [PMID: 36437849 PMCID: PMC9685213 DOI: 10.1177/17562864221133163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2024] Open
Abstract
UNLABELLED Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators have a complex mechanism of action, which are among the most efficient therapeutic options in multiple sclerosis (MS) and represent a promising approach for other immune-mediated diseases. The S1P signaling pathway involves the activation of five extracellular S1PR subtypes (S1PR1-S1PR5) that are ubiquitous and have a wide range of effects. Besides the immunomodulatory beneficial outcome in MS, S1P signaling regulates the cardiovascular function via S1PR1-S1PR3 subtypes, which reside on cardiac myocytes, endothelial, and vascular smooth muscle cells. In our review, we describe the mechanisms and clinical effects of S1PR modulators on the cardiovascular system. In the past, mostly short-term effects of S1PR modulators on the cardiovascular system have been studied, while data on long-term effects still need to be investigated. Immediate effects detected after treatment initiation are due to parasympathetic overactivation. In contrast, long-term effects may arise from a shift of the autonomic regulation toward sympathetic predominance along with S1PR1 downregulation. A mild increase in blood pressure has been reported in long-term studies, as well as decreased baroreflex sensitivity. In most studies, sustained hypertension was found to represent a significant adverse event related to treatment. The shift in the autonomic control and blood pressure values could not be just a consequence of disease progression but also related to S1PR modulation. Reduced cardiac autonomic activation and decreased heart rate variability during the long-term treatment with S1PR modulators may increase the risk for subsequent cardiac events. For second-generation S1PR modulators, this observation has to be confirmed in further studies with longer follow-ups. The periodic surveillance of cardiovascular function and detection of any cardiac autonomic dysfunction can help predict cardiac outcomes not only after the first dose but also throughout treatment. PLAIN LANGUAGE SUMMARY What is the cardiovascular effect of S1P receptor modulator therapy in multiple sclerosis? Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators are among the most efficient therapies for multiple sclerosis. As small molecules, they are not only acting on the immune but on cardiovascular and nervous systems as well. Short-term effects of S1PR modulators on the cardiovascular system have already been extensively described, while long-term effects are less known. Our review describes the mechanisms of action and the short- and long-term effects of these therapeutic agents on the cardiovascular system in different clinical trials. We systematically reviewed the literature that had been published by January 2022. One hundred seven articles were initially identified by title and abstract using targeted keywords, and thirty-nine articles with relevance to cardiovascular effects of S1PR therapy in multiple sclerosis patients were thereafter considered, including their references for further accurate clarification. Studies on fingolimod, the first S1PR modulator approved for treating multiple sclerosis, primarily support the safety profile of this therapeutic class. The second-generation therapeutic agents along with a different treatment initiation approach helped mitigate several of the cardiovascular adverse effects that had previously been observed at the start of treatment. The heart rate may decrease when initiating S1PR modulators and, less commonly, the atrioventricular conduction may be prolonged, requiring cardiac monitoring for the first 6 h of medication. Continuous therapy with S1PR modulators can increase blood pressure values; therefore, the presence of arterial hypertension should be checked during long-term treatment. Periodic surveillance of the cardiovascular and autonomic functions can help predict cardiac outcomes and prevent possible adverse events in S1PR modulators treatment. Further studies with longer follow-ups are needed, especially for the second-generation of S1PR modulators, to confirm the safety profile of this therapeutic class.
Collapse
Affiliation(s)
- Victor Constantinescu
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Rocco Haase
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
6
|
Hu G, Li G, Huang D, Zou Y, Yuan X, Ritter JK, Li N, Li PL. Renomedullary exosomes produce antihypertensive effects in reversible two-kidney one-clip renovascular hypertensive mice. Biochem Pharmacol 2022; 204:115238. [PMID: 36055382 PMCID: PMC10777442 DOI: 10.1016/j.bcp.2022.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
The rapid fall in blood pressure following unclipping of the stenotic renal artery in the Goldblatt two-kidney one-clip (2K1C) model of renovascular hypertension is proposed to be due to release of renomedullary vasodepressor lipids, but the mechanism has remained unclear. In this study, we hypothesized that the hypotensive response to unclipping is mediated by exosomes released from the renal medulla. In male C57BL6/J mice made hypertensive by the 2K1C surgery, unclipping of the renal artery after 10 days decreased mean arterial pressure (MAP) by 23 mmHg one hr after unclipping. This effect was accompanied by a 556% increase in the concentration of exosomes in plasma as observed by nanoparticle tracking analysis. Immunohistochemical analysis of exosome markers, CD63 and AnnexinII, showed increased staining in interstitial cells of the inner medulla of stenotic but not contralateral control kidney of clipped 2K1C mice. Treatment with rapamycin, an inducer of exosome release, blunted the hypertensive response to clipping, whereas GW-4869, an exosome biosynthesis inhibitor, prevented both the clipping-induced increase in inner medullary exosome marker staining and the unclipping-induced fall in MAP. Plasma exosomes isolated from unclipped 2K1C mice showed elevated neutral lipid content compared to sham mouse exosomes by flow cytometric analysis after Nile red staining. Exosomes from 2K1C but not sham control mice exerted potent MAP-lowering and diuretic-natriuretic effects in both 2K1C and angiotensin II-infused hypertensive mice. These results are consistent with increased renomedullary synthesis and release of exosomes with elevated antihypertensive neutral lipids in response to increased renal perfusion pressure.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States.
| |
Collapse
|
7
|
Hu G, Zhu Q, Wang W, Xie D, Chen C, Li PL, Ritter JK, Li N. Collecting duct-specific knockout of sphingosine-1-phosphate receptor 1 aggravates DOCA-salt hypertension in mice. J Hypertens 2021; 39:1559-1566. [PMID: 33534341 PMCID: PMC8249314 DOI: 10.1097/hjh.0000000000002809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We have previously reported that renal medullary sphingosine-1-phosphate (S1P) regulates sodium excretion via the S1P type-1 receptor (S1PR1). As S1PR1 is predominantly expressed in collecting ducts (CD), the present study tested the hypothesis that the CD-S1PR1 pathway plays a critical role in sodium excretion and contributes to salt-sensitive hypertension. METHODS CD-specific S1PR1 knockout mice were generated by crossing aquaporin-2-Cre mice with S1PR1-floxed mice. Renal sodium excretion and arterial pressure were compared between wild type and KO mice in response to high-salt challenges and treatment of deoxycorticosterone acetate (DOCA) salt. RESULTS Protein levels of renal medullary S1PR1 were increased by 100% after high-salt intake, whereas DOCA treatment with high-salt intake blocked the increase of S1PR1 levels. Urinary sodium excretions in knockout mice were decreased by 60% compared with wild type mice after acute intravenous sodium loading (0.84 ± 0.16 vs. 2.22 ± 0.62 μmole/min per g kwt). The pressure natriuresis was impaired in knockout mice compared with wild type mice (4.32 ± 1.04 vs. 8.73 ± 0.19 μmole/min per g kwt). The chronic high-salt intake-induced positive sodium balance was enhanced in knockout mice compared with wild type mice (5.27 ± 0.39 vs. 2.38 ± 1.04 mmol/100 g BW per 24 h). After 10-day DOCA-salt treatment, knockout mice developed more severe hypertension than wild type mice (SBP 142 ± 8 vs. 115 ± 4 mmHg). CONCLUSION The deletion of CD-S1PR1 reduced sodium excretion, promoted sodium retention, and accelerated DOCA-salt-induced salt-sensitive hypertension, suggesting that the CD-S1PR1 signaling is an important antihypertensive pathway by promoting sodium excretion and that impairment of renal medullary S1PR1 may represent a novel mechanism for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weili Wang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
8
|
Yokota R, Bhunu B, Toba H, Intapad S. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). KIDNEY360 2021; 2:534-541. [PMID: 35369015 PMCID: PMC8786006 DOI: 10.34067/kid.0006322020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of preeclampsia and IUGR conditions.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
9
|
Preventive preclinical efficacy of intravenously administered sphingosine-1-phosphate (S1P) in strengthening hypoxia adaptive responses to acute and sub-chronic hypobaric hypoxia. Eur J Pharmacol 2019; 870:172877. [PMID: 31866409 DOI: 10.1016/j.ejphar.2019.172877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Sphingosine-1-phosphate (S1P) is emerging as a hypoxia responsive bio-lipid; systemically raised levels of S1P are proposed to have potential hypoxia pre-conditioning effects. The study aims to evaluate the hypoxia pre-conditioning efficacy of exogenously administered S1P in rats exposed to acute (24-48 hs (h)) and sub-chronic (7 days) hypobaric hypoxia. Sprague-Dawley rats (200 ± 20 g) were preconditioned with 1 μg/kg body weight S1P intravenously for three consecutive days. On the third day, control and S1P preconditioned animals were exposed to hypobaric hypoxia equivalent to 7620 m for 24 h, 48 h and 7 days. Post exposure analysis included body weight quantitation, blood gas/chemistry analysis, vascular permeability assays, evaluation of oxidative stress/inflammation parameters, and estimation of hypoxia responsive molecules. S1P preconditioned rats exposed to acute HH display a significant reduction in body weight loss, as a culmination of improved oxygen carrying capacity, increased 2,3- diphosphoglycerate levels and recuperation from energy deficit. Pathological disturbances such as vascular leakage in the lungs and brain, oxidative stress, pro-inflammatory milieu and raised level of endothelin-1 were also reined. The adaptive and protective advantage conferred by S1P in the acute phase of hypobaric hypoxia exposure, is observed to precipitate into an improved sustenance even after sub-chronic (7d) hypobaric hypoxia exposure as indicated by decreased body weight loss, lower edema index and improvement in general pathology biomarkers. Conclusively, administration of 1 μg/kg body weight S1P, in the aforementioned schedule, confer hypoxia pre-conditioning benefits, sustained up to 7 days of hypobaric hypoxia exposure.
Collapse
|
10
|
de Groot T, Ebert LK, Christensen BM, Andralojc K, Cheval L, Doucet A, Mao C, Baumgarten R, Low BE, Sandhoff R, Wiles MV, Deen PMT, Korstanje R. Identification of Acer2 as a First Susceptibility Gene for Lithium-Induced Nephrogenic Diabetes Insipidus in Mice. J Am Soc Nephrol 2019; 30:2322-2336. [PMID: 31558682 DOI: 10.1681/asn.2018050549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lithium, mainstay treatment for bipolar disorder, causes nephrogenic diabetes insipidus and hypercalcemia in about 20% and 10% of patients, respectively, and may lead to acidosis. These adverse effects develop in only a subset of patients treated with lithium, suggesting genetic factors play a role. METHODS To identify susceptibility genes for lithium-induced adverse effects, we performed a genome-wide association study in mice, which develop such effects faster than humans. On day 8 and 10 after assigning female mice from 29 different inbred strains to normal chow or lithium diet (40 mmol/kg), we housed the animals for 48 hours in metabolic cages for urine collection. We also collected blood samples. RESULTS In 17 strains, lithium treatment significantly elevated urine production, whereas the other 12 strains were not affected. Increased urine production strongly correlated with lower urine osmolality and elevated water intake. Lithium caused acidosis only in one mouse strain, whereas hypercalcemia was found in four strains. Lithium effects on blood pH or ionized calcium did not correlate with effects on urine production. Using genome-wide association analyses, we identified eight gene-containing loci, including a locus containing Acer2, which encodes a ceramidase and is specifically expressed in the collecting duct. Knockout of Acer2 led to increased susceptibility for lithium-induced diabetes insipidus development. CONCLUSIONS We demonstrate that genome-wide association studies in mice can be used successfully to identify susceptibility genes for development of lithium-induced adverse effects. We identified Acer2 as a first susceptibility gene for lithium-induced diabetes insipidus in mice.
Collapse
Affiliation(s)
- Theun de Groot
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Lena K Ebert
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Karolina Andralojc
- Molecular Biology.,Biochemistry, and.,Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lydie Cheval
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France.,Physiology of Renal and Tubulopathies, CNRS (Centre National de la Recherche Scientifique) ERL 8228, Cordeliers Research Center, INSERM, Sorbonne University, Sorbonne Paris Cité University, Paris Descartes University, Paris Diderot University, Paris, France
| | - Alain Doucet
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York.,Stony Brook Cancer Center, Stony Brook, New York
| | | | | | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; and.,Centre for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| | | | | | | |
Collapse
|
11
|
Intapad S. Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Renal Physiol 2019; 317:F638-F640. [PMID: 31390266 DOI: 10.1152/ajprenal.00572.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids were originally believed to play a role only as a backbone of mammalian cell membranes. However, sphingolipid metabolites, especially sphingosine-1-phosphate (S1P), are now recognized as new bioactive signaling molecules that are critically involved in numerous cellular functions of multiple systems including the immune system, central nervous system, and cardiovascular system. S1P research has accelerated in the last decade as new therapeutic drugs have emerged that target the S1P signaling axis to treat diseases of the immune and central nervous systems. There is limited knowledge of the specific effects on cardiovascular disease. This review discusses the current state of knowledge regarding the role of S1P on the regulation of blood pressure, vascular tone, and renal functions.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Pharmacology Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
12
|
Walsh DA, Borges da Silva H, Beura LK, Peng C, Hamilton SE, Masopust D, Jameson SC. The Functional Requirement for CD69 in Establishment of Resident Memory CD8 + T Cells Varies with Tissue Location. THE JOURNAL OF IMMUNOLOGY 2019; 203:946-955. [PMID: 31243092 DOI: 10.4049/jimmunol.1900052] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
Recent studies have characterized populations of memory CD8+ T cells that do not recirculate through the blood but are, instead, retained in nonlymphoid tissues. Such CD8+ tissue resident memory T cells (TRM) are critical for pathogen control at barrier sites. Identifying TRM and defining the basis for their tissue residency is therefore of considerable importance for understanding protective immunity and improved vaccine design. Expression of the molecule CD69 is widely used as a definitive marker for TRM, yet it is unclear whether CD69 is universally required for producing or retaining TRM Using multiple mouse models of acute immunization, we found that the functional requirement for CD69 was highly variable, depending on the tissue examined, playing no detectable role in generation of TRM at some sites (such as the small intestine), whereas CD69 was critical for establishing resident cells in the kidney. Likewise, forced expression of CD69 (but not expression of a CD69 mutant unable to bind the egress factor S1PR1) promoted CD8+ TRM generation in the kidney but not in other tissues. Our findings indicate that the functional relevance of CD69 in generation and maintenance of CD8+ TRM varies considerably, chiefly dependent on the specific nonlymphoid tissue studied. Together with previous reports that suggest uncoupling of CD69 expression and tissue residency, these findings prompt caution in reliance on CD69 expression as a consistent marker of CD8+ TRM.
Collapse
Affiliation(s)
- Daniel A Walsh
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Henrique Borges da Silva
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Lalit K Beura
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455.,Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Changwei Peng
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - David Masopust
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455.,Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; .,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| |
Collapse
|
13
|
Daneva Z, Dempsey SK, Ahmad A, Li N, Li PL, Ritter JK. Diuretic, Natriuretic, and Vasodepressor Activity of a Lipid Fraction Enhanced in Medium of Cultured Mouse Medullary Interstitial Cells by a Selective Fatty Acid Amide Hydrolase Inhibitor. J Pharmacol Exp Ther 2019; 368:187-198. [PMID: 30530623 PMCID: PMC6337005 DOI: 10.1124/jpet.118.252320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The relationship between the endocannabinoid system in the renal medulla and the long-term regulation of blood pressure is not yet understood. To investigate the possible role of the endocannabinoid system in renomedullary interstitial cells, mouse medullary interstitial cells (MMICs) were obtained, cultured, and characterized for their responses to treatment with a selective inhibitor of fatty acid amide hydrolase, PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide). Treatment of MMICs with PF-3845 increased cytoplasmic lipid granules detected by Sudan Black B staining and multilamellar bodies identified by transmission electron microscopy. High-performance liquid chromatography (HPLC) analyses of lipid extracts of MMIC culture medium revealed a 205-nm absorbing peak that showed responsiveness to PF-3845 treatment. The biologic activities of the PF-3845-induced product (PIP) isolated by HPLC were investigated in anesthetized, normotensive surgically instrumented mice. Intramedullary and intravenous infusion of PIP at low dose rates (0.5-1 area units under the peak/10 min) stimulated diuresis and natriuresis, whereas these parameters returned toward baseline at higher doses but mean arterial pressure (MAP) was lowered. Whereas intravenous bolus doses of PIP stimulated diuresis, the glomerular filtration rate, and medullary blood flow (MBF) and reduced or had no effect on MAP, an intraperitoneal bolus injection of PIP reduced MAP, increased MBF, and had no effect on urine parameters. These data support a model whereby PF-3845 treatment of MMICs results in increased secretion of a neutral lipid that acts directly to promote diuresis and natriuresis and indirectly through metabolites to produce vasodepression. Efforts to identify the structure of the PF-3845-induced lipid and its relationship to the previously proposed renomedullary antihypertensive lipids are ongoing.
Collapse
Affiliation(s)
- Zdravka Daneva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sara K Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ashfaq Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
14
|
Ahmad A, Dempsey SK, Daneva Z, Li N, Poklis JL, Li PL, Ritter JK. Modulation of mean arterial pressure and diuresis by renomedullary infusion of a selective inhibitor of fatty acid amide hydrolase. Am J Physiol Renal Physiol 2018; 315:F967-F976. [PMID: 29846106 DOI: 10.1152/ajprenal.00090.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The kidneys contribute to the control of body fluid and electrolytes and the long-term regulation of blood pressure through various systems, including the endocannabinoid system. Previously, we showed that inhibition of the two major endocannabinoid-hydrolyzing enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, in the renal medulla increased the rate of urine excretion (UV) and salt excretion without affecting mean arterial pressure (MAP). The present study evaluated the effects of a selective FAAH inhibitor, N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidine carboxamide (PF-3845) on MAP and renal functions. Infusion of PF-3845 into the renal medulla of C57BL/6J mice reduced MAP during the posttreatment phases and increased UV at 15 and 30 nmol/min per gram kidney weight (g kwt), relative to the pretreatment control phase. Intravenous PF-3845 administration reduced MAP at the 7.5, 15, and 30 doses and increased UV at the 15 and 30 nmol⋅min-1⋅g-1 kwt doses. PF-3845 treatment elevated sodium and potassium urinary excretion and medullary blood flow. Homozygous FAAH knockout mice were refractory to intramedullary PF-3845-induced changes in MAP, but UV was increased. Both MAP and UV responses to intramedullary PF-3845 in C57BL/6J mice were diminished by pretreatment with the cannabinoid type 1 receptor-selective antagonist, rimonabant (3 mg/kg, ip) but not the cyclooxygenase 2-selective inhibitor, celecoxib (15 mg/kg, iv). Liquid chromatography-tandem mass spectrometry analyses showed increased anandamide in kidney tissue and 2-arachidonoyl glycerol in plasma after intramedullary PF-3845. These data suggest that inhibition of FAAH in the renal medulla leads to both a diuretic and blood pressure-lowering response mediated by elevated anandamide in kidney tissue or 2-arachidonoyl glycerol in plasma.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Sara K Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Zdravka Daneva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine , Richmond, Virginia
| |
Collapse
|
15
|
Bhat OM, Yuan X, Li G, Lee R, Li PL. Sphingolipids and Redox Signaling in Renal Regulation and Chronic Kidney Diseases. Antioxid Redox Signal 2018; 28:1008-1026. [PMID: 29121774 PMCID: PMC5849286 DOI: 10.1089/ars.2017.7129] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023]
Abstract
Significance: Sphingolipids play critical roles in the membrane biology and intracellular signaling events that influence cellular behavior and function. Our review focuses on the cellular mechanisms and functional relevance of the cross talk between sphingolipids and redox signaling, which may be critically implicated in the pathogenesis of different renal diseases. Recent Advances: Reactive oxygen species (ROS) and sphingolipids can regulate cellular redox homeostasis through the regulation of NADPH oxidase, mitochondrial integrity, nitric oxide synthase (NOS), and antioxidant enzymes. Over the last two decades, there have been significant advancements in the field of sphingolipid research, and it was in 2010 for the first time that sphingolipid receptor modulator was exploited as a therapeutic in humans. The cross talk of sphingolipids with redox signaling pathways becomes an important mechanism in the development of many different diseases such as renal diseases. Critical Issues: The critical issues to be addressed in this review are how sphingolipids interact with the redox signaling pathway to regulate renal function and even result in chronic kidney diseases. Ceramide, sphingosine, and sphingosine-1-phosphate (S1P) as main signaling sphingolipids are discussed in more detail. Future Directions: Although sphingolipids and ROS may mediate or modulate cellular responses to physiological and pathological stimuli, more translational studies and mechanistic pursuit in a tissue- or cell-specific way are needed to enhance our understanding of this important topic and to develop effective therapeutic strategies to treat diseases associated with redox signaling and sphingolipid cross talk. Antioxid. Redox Signal. 28, 1008-1026.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - RaMi Lee
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
16
|
Jensen BL. Sphingosine-1-phosphate and renal vasoconstriction. Acta Physiol (Oxf) 2018; 222. [PMID: 28887906 DOI: 10.1111/apha.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. L. Jensen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| |
Collapse
|
17
|
Guan Z, Wang F, Cui X, Inscho EW. Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles. Acta Physiol (Oxf) 2018. [PMID: 28640982 DOI: 10.1111/apha.12913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM Sphingosine-1-phosphate (S1P) influences resistance vessel function and is implicated in renal pathological processes. Previous studies revealed that S1P evoked potent vasoconstriction of the pre-glomerular microvasculature, but the underlying mechanisms remain incompletely defined. We postulated that S1P-mediated pre-glomerular microvascular vasoconstriction involves activation of voltage-dependent L-type calcium channels (L-VDCC) and the rho/rho kinase pathway. METHODS Afferent arteriolar reactivity was assessed in vitro using the blood-perfused rat juxtamedullary nephron preparation, and diameter was measured during exposure to physiological and pharmacological agents. RESULTS Exogenous S1P (10-9 -10-5 mol L-1 ) evoked concentration-dependent vasoconstriction of afferent arterioles. Superfusion with nifedipine, a L-VDCC blocker, increased arteriolar diameter by 39 ± 18% of baseline and significantly attenuated the S1P-induced vasoconstriction. Superfusion with the rho kinase inhibitor, Y-27632, increased diameter by 60 ± 12% of baseline and also significantly blunted vasoconstriction by S1P. Combined nifedipine and Y-27632 treatment significantly inhibited S1P-induced vasoconstriction over the entire concentration range tested. In contrast, depletion of intracellular Ca2+ stores with the Ca2+ -ATPase inhibitors, thapsigargin or cyclopiazonic acid, did not alter the S1P-mediated vasoconstrictor profile. Scavenging reactive oxygen species (ROS) or inhibition of nicotinamide adenine dinucleotide phosphate oxidase activity significantly attenuated S1P-mediated vasoconstriction. CONCLUSION Exogenous S1P elicits potent vasoconstriction of rat afferent arterioles. These data also demonstrate that S1P-mediated pre-glomerular vasoconstriction involves activation of L-VDCC, the rho/rho kinase pathway and ROS. Mobilization of Ca2+ from intracellular stores is not required for S1P-mediated vasoconstriction. These studies reveal a potential role for S1P in the modulation of renal microvascular tone.
Collapse
Affiliation(s)
- Z. Guan
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - F. Wang
- Department of Biostatistics; Ryals School of Public Health; University of Alabama at Birmingham; Birmingham AL USA
| | - X. Cui
- Department of Biostatistics; Ryals School of Public Health; University of Alabama at Birmingham; Birmingham AL USA
| | - E. W. Inscho
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
18
|
Shahin MH, Gong Y, Frye RF, Rotroff DM, Beitelshees AL, Baillie RA, Chapman AB, Gums JG, Turner ST, Boerwinkle E, Motsinger-Reif A, Fiehn O, Cooper-DeHoff RM, Han X, Kaddurah-Daouk R, Johnson JA. Sphingolipid Metabolic Pathway Impacts Thiazide Diuretics Blood Pressure Response: Insights From Genomics, Metabolomics, and Lipidomics. J Am Heart Assoc 2017; 7:e006656. [PMID: 29288159 PMCID: PMC5778957 DOI: 10.1161/jaha.117.006656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Although hydrochlorothiazide (HCTZ) is a well-established first-line antihypertensive in the United States, <50% of HCTZ treated patients achieve blood pressure (BP) control. Thus, identifying biomarkers that could predict the BP response to HCTZ is critically important. In this study, we utilized metabolomics, genomics, and lipidomics to identify novel pathways and biomarkers associated with HCTZ BP response. METHODS AND RESULTS First, we conducted a pathway analysis for 13 metabolites we recently identified to be significantly associated with HCTZ BP response. From this analysis, we found the sphingolipid metabolic pathway as the most significant pathway (P=5.8E-05). Testing 78 variants, within 14 genes involved in the sphingolipid metabolic canonical pathway, with the BP response to HCTZ identified variant rs6078905, within the SPTLC3 gene, as a novel biomarker significantly associated with the BP response to HCTZ in whites (n=228). We found that rs6078905 C-allele carriers had a better BP response to HCTZ versus noncarriers (∆SBP/∆DBP: -11.4/-6.9 versus -6.8/-3.5 mm Hg; ∆SBP P=6.7E-04; ∆DBP P=4.8E-04). Additionally, in blacks (n=148), we found genetic signals in the SPTLC3 genomic region significantly associated with the BP response to HCTZ (P<0.05). Last, we observed that rs6078905 significantly affects the baseline level of 4 sphingomyelins (N24:2, N24:3, N16:1, and N22:1; false discovery rate <0.05), from which N24:2 sphingomyelin has a significant correlation with both HCTZ DBP-response (r=-0.42; P=7E-03) and SBP-response (r=-0.36; P=2E-02). CONCLUSIONS This study provides insight into potential pharmacometabolomic and genetic mechanisms underlying HCTZ BP response and suggests that SPTLC3 is a potential determinant of the BP response to HCTZ. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00246519.
Collapse
Affiliation(s)
- Mohamed H Shahin
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Daniel M Rotroff
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | | | | | | | - John G Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | | | - Eric Boerwinkle
- Human Genetics Center and Institute for Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | | | - Oliver Fiehn
- Genome Center, University of California at Davis, CA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi-Arabia
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences and Department of Medicine, Duke University, Durham, NC
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| |
Collapse
|
19
|
Ahmad A, Daneva Z, Li G, Dempsey SK, Li N, Poklis JL, Lichtman A, Li PL, Ritter JK. Stimulation of diuresis and natriuresis by renomedullary infusion of a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase. Am J Physiol Renal Physiol 2017; 313:F1068-F1076. [PMID: 28768662 DOI: 10.1152/ajprenal.00196.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/22/2022] Open
Abstract
The renal medulla, considered critical for the regulation of salt and water balance and long-term blood pressure control, is enriched in anandamide and two of its major metabolizing enzymes, cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH). Infusion of anandamide (15, 30, and 60 nmol·min-1·kg-1) into the renal medulla of C57BL/6J mice stimulated diuresis and salt excretion in a COX-2- but not COX-1-dependent manner. To determine whether endogenous endocannabinoids in the renal medulla can elicit similar effects, the effects of intramedullary isopropyl dodecyl fluorophosphate (IDFP), which inhibits the two major endocannabinoid hydrolases, were studied. IDFP treatment increased the urine formation rate and sodium excretion in a COX-2- but not COX-1-dependent manner. Neither anandamide nor IDFP affected the glomerular filtration rate. Neither systemic (0.625 mg·kg-1·30 min-1 iv) nor intramedullary (15 nmol·min-1·kg-1·30 min-1) IDFP pretreatment before intramedullary anandamide (15-30 nmol·min-1·kg-1) strictly blocked effects of anandamide, suggesting that hydrolysis of anandamide was not necessary for its diuretic effect. Intramedullary IDFP had no effect on renal blood flow but stimulated renal medullary blood flow. The effects of IDFP on urine flow rate and medullary blood flow were FAAH-dependent as demonstrated using FAAH knockout mice. Analysis of mouse urinary PGE2 concentrations by HPLC-electrospray ionization tandem mass spectrometry showed that IDFP treatment decreased urinary PGE2 These data are consistent with a role of FAAH and endogenous anandamide acting through a COX-2-dependent metabolite to regulate diuresis and salt excretion in the mouse kidney.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Zdravka Daneva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sara K Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Aron Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
20
|
Wang Z, Zhu Q, Wang W, Yi F, Li PL, Boini KM, Li N. Infusion of Valproic Acid Into the Renal Medulla Activates Stem Cell Population and Attenuates Salt-Sensitive Hypertension in Dahl S Rats. Cell Physiol Biochem 2017; 42:1264-1273. [PMID: 28693025 DOI: 10.1159/000478955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Our previous study has detected a stem cell deficiency in the renal medulla in Dahl salt-sensitive (S) rats. This study determined whether infusion of valproic acid (VA), an agent known to stimulate the stem cell function, attenuated salt-sensitive hypertension in Dahl S rats. METHODS Uninephrectomized Dahl S rats were infused with vehicle or VA (50mg/kg/d) into the renal medulla and fed with a low (LS) or high salt diet (HS). Stem cell marker and number were analyzed by immunohistochemistry, Real-time RT-PCR and Western blot. Sodium excretion and blood pressure were measured. RESULTS VA significantly increased the mRNA and protein levels of FGF2, a stem cell niche factor, and CD133, a stem cell marker. The number of CD133+ cells was significantly increased in the renal medulla in VA-treated rats. Meanwhile, high salt-induced increases in the mRNA level of proinflammatory factors interleukin-1β and interleukin-6 were blocked in VA-treated rats. Functionally, sodium excretion in response to the blood pressure increase and acute sodium loading was significantly enhanced, sodium retention attenuated, high salt-induced increase of blood pressure reduced in VA-treated rats. CONCLUSION Activation of stem cell function by VA inhibits the activation of proinflammatory factors and attenuates salt-sensitive hypertension in Dahl S rats.
Collapse
Affiliation(s)
- Zhengchao Wang
- Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Krishna M Boini
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
21
|
FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. Mediators Inflamm 2017; 2017:3701385. [PMID: 28270699 PMCID: PMC5320072 DOI: 10.1155/2017/3701385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022] Open
Abstract
FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines.
Collapse
|
22
|
Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed) 2016; 21:1296-313. [PMID: 27100508 DOI: 10.2741/4458] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA,
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
23
|
Xia M, Abais JM, Koka S, Meng N, Gehr TW, Boini KM, Li PL. Characterization and Activation of NLRP3 Inflammasomes in the Renal Medulla in Mice. Kidney Blood Press Res 2016; 41:208-21. [PMID: 27010539 DOI: 10.1159/000443424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Recent studies have indicated that local inflammatory mediators are importantly involved in the regulation of renal function. However, it remains unknown how such local inflammation is triggered intracellularly in the kidney. The present study was designed to characterize the inflammasome centered by Nlrp3 in the kidney and also test the effect of its activation in the renal medulla. METHODS AND RESULTS By immunohistochemistry analysis, we found that inflammasome components, Nlrp3, Asc and caspase-1, were ubiquitously distributed in different kidney areas. The caspase-1 activity and IL-1β production were particularly high in the renal outer medulla compared to other kidney regions. Further confocal microscopy and RT-PCR analysis showed that Nlrp3, Asc and caspase-1 were particularly enriched in the thick ascending limb of Henle's loop. In anesthetized mice, medullary infusion of Nlrp3 inflammasome activator, monosodium urate (MSU), induced significant decreases in sodium excretion and medullary blood flow without changes in mean arterial blood pressure and renal cortical blood flow. Caspase-1 inhibitor, Ac-YVAD-CMK and deletion of Nlrp3 or Asc gene abolished MSU-induced decreases in renal sodium excretion and MBF. CONCLUSION Our results indicate that renal medullary Nlrp3 inflammasomes represent a new regulatory mechanism of renal MBF and sodium excretion which may not depend on classical inflammatory response.
Collapse
Affiliation(s)
- Min Xia
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Morla L, Edwards A, Crambert G. New insights into sodium transport regulation in the distal nephron: Role of G-protein coupled receptors. World J Biol Chem 2016; 7:44-63. [PMID: 26981195 PMCID: PMC4768124 DOI: 10.4331/wjbc.v7.i1.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
The renal handling of Na+ balance is a major determinant of the blood pressure (BP) level. The inability of the kidney to excrete the daily load of Na+ represents the primary cause of chronic hypertension. Among the different segments that constitute the nephron, those present in the distal part (i.e., the cortical thick ascending limb, the distal convoluted tubule, the connecting and collecting tubules) play a central role in the fine-tuning of renal Na+ excretion and are the target of many different regulatory processes that modulate Na+ retention more or less efficiently. G-protein coupled receptors (GPCRs) are crucially involved in this regulation and could represent efficient pharmacological targets to control BP levels. In this review, we describe both classical and novel GPCR-dependent regulatory systems that have been shown to modulate renal Na+ absorption in the distal nephron. In addition to the multiplicity of the GPCR that regulate Na+ excretion, this review also highlights the complexity of these different pathways, and the connections between them.
Collapse
|
25
|
Zhu Q, Li XX, Wang W, Hu J, Li PL, Conley S, Li N. Mesenchymal stem cell transplantation inhibited high salt-induced activation of the NLRP3 inflammasome in the renal medulla in Dahl S rats. Am J Physiol Renal Physiol 2016; 310:F621-F627. [PMID: 26764201 DOI: 10.1152/ajprenal.00344.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes activate caspase-1 to produce interleukin (IL)-1β. Activation of the NLRP3 inflammasome is involved in various renal pathological conditions. It remains unknown whether the NLRP3 inflammasome activation participates in the abnormal renal response to high-salt (HS) diet in Dahl salt-sensitive (S) rats. In addition, our lab recently showed that transplantation of mesenchymal stem cells (MSCs) attenuated HS-induced inflammation in the renal medulla in Dahl S rat. However, it is unclear whether the anti-inflammatory action of MSCs is associated with inhibition of the NLRP3 inflammasome. The present study determined the response of the NLRP3 inflammasome to HS intake and the effect of MSC transplantation on the NLRP3 inflammasome in the renal medulla in Dahl S rats. Immunostaining showed that the inflammasome components NLRP3, ASC, and caspase-1 were mainly present in distal tubules and collecting ducts. Interestingly, the renal medullary levels of these inflammasome components were remarkably increased after a HS diet in Dahl S rats, while remaining unchanged in normal rats. This HS-induced activation of the NLRP3 inflammasome was significantly blocked by MSC transplantation into the renal medulla in Dahl S rats. Furthermore, infusion of a caspase-1 inhibitor into the renal medulla significantly attenuated HS-induced hypertension in Dahl S rats. These data suggest that HS-induced activation of the NLRP3 inflammasome may contribute to renal medullary dysfunction in Dahl S rats and that inhibition of inflammasome activation may be one of the mechanisms for the anti-inflammatory and anti-hypertensive effects of stem cells in the renal medulla in Dahl S rats.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Xiao-Xue Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Junping Hu
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Sabena Conley
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
26
|
Wang Z, Sims CR, Patil NK, Gokden N, Mayeux PR. Pharmacologic targeting of sphingosine-1-phosphate receptor 1 improves the renal microcirculation during sepsis in the mouse. J Pharmacol Exp Ther 2014; 352:61-6. [PMID: 25355645 DOI: 10.1124/jpet.114.219394] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Microvascular failure is hallmark of sepsis in humans and is recognized as a strong predictor of mortality. In the mouse subjected to cecal ligation and puncture (CLP) to induce a clinically relevant sepsis, renal microvascular permeability increases and peritubular capillary perfusion declines rapidly in the kidney leading to acute kidney injury (AKI). Sphingosine-1-phosphate (S1P) is a key regulator of microvascular endothelial function. To investigate the role of S1P in the development of microvascular permeability and peritubular capillary hypoperfusion in the kidney during CLP-induced AKI, we used a pharmacologic approach and a clinically relevant delayed dosing paradigm. Evans blue dye was used to measure renal microvascular permeability and intravital video microscopy was used to quantitate renal cortical capillary perfusion. The S1P receptor 1 (S1P1) agonist SEW2871 [5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-(trifluoromethyl)phenyl]-1,2,4-oxadiazole] and S1P2 antagonist JTE-013 [N-(2,6-dichloro-4-pyridinyl)-2-[1,3-dimethyl-4-(1-methylethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl]-hydrazinecarboxamide] were administered at the time of CLP and produced a dose-dependent but partial reduction in renal microvascular permeability at 6 hours after CLP. However, neither agent improved capillary perfusion at 6 hours. With delayed administration at 6 hours after CLP, only SEW2871 reversed microvascular permeability when measured at 18 hours. Importantly, SEW2871 also restored capillary perfusion and improved renal function. These data suggest that S1P1 and S1P2 do not regulate the early decline in renal capillary perfusion. However, later in the course of sepsis, pharmacologic stimulation of S1P1, even when delaying therapy until after injury has occurred, improves capillary and renal function, suggesting this approach should be evaluated as an adjunct therapy during sepsis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Clark R Sims
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Naeem K Patil
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman Gokden
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
27
|
Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects. PLoS One 2014; 9:e98025. [PMID: 24887065 PMCID: PMC4041657 DOI: 10.1371/journal.pone.0098025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022] Open
Abstract
Background The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P) to improve acclimatization to simulated hypobaric hypoxia. Experimental Approach Efficacy of intravenously administered S1P in improving haematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620m for 6 hours) following S1P pre-treatment for three days. Major Findings Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation) and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing haemoglobin, haematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1α mediated erythropoiesis and renal S1P receptor 1 mediated haemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation. Conclusion The study findings highlight S1P’s merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes.
Collapse
|
28
|
Guan Z, Singletary ST, Cook AK, Hobbs JL, Pollock JS, Inscho EW. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. J Am Soc Nephrol 2014; 25:1774-85. [PMID: 24578134 DOI: 10.1681/asn.2013060656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, has been implicated in regulating vascular tone and participating in chronic and acute kidney injury. However, little is known about the role of S1P in the renal microcirculation. Here, we directly assessed the vasoresponsiveness of preglomerular and postglomerular microvascular segments to exogenous S1P using the in vitro blood-perfused juxtamedullary nephron preparation. Superfusion of S1P (0.001-10 μM) evoked concentration-dependent vasoconstriction in preglomerular microvessels, predominantly afferent arterioles. After administration of 10 μM S1P, the diameter of afferent arterioles decreased to 35%±5% of the control diameter, whereas the diameters of interlobular and arcuate arteries declined to 50%±12% and 68%±6% of the control diameter, respectively. Notably, efferent arterioles did not respond to S1P. The S1P receptor agonists FTY720 and FTY720-phosphate and the specific S1P1 receptor agonist SEW2871 each evoked modest afferent arteriolar vasoconstriction. Conversely, S1P2 receptor inhibition with JTE-013 significantly attenuated S1P-mediated afferent arteriolar vasoconstriction. Moreover, blockade of L-type voltage-dependent calcium channels with diltiazem or nifedipine attenuated S1P-mediated vasoconstriction. Intravenous injection of S1P in anesthetized rats reduced renal blood flow dose dependently. Western blotting and immunofluorescence revealed S1P1 and S1P2 receptor expression in isolated preglomerular microvessels and microvascular smooth muscle cells. These data demonstrate that S1P evokes segmentally distinct preglomerular vasoconstriction via activation of S1P1 and/or S1P2 receptors, partially via L-type voltage-dependent calcium channels. Accordingly, S1P may have a novel function in regulating afferent arteriolar resistance under physiologic conditions.
Collapse
Affiliation(s)
| | | | | | - Janet L Hobbs
- Experimental Medicine, Georgia Regents University, Augusta, Georgia
| | | | | |
Collapse
|
29
|
Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin Exp Nephrol 2014; 18:844-52. [PMID: 24463961 DOI: 10.1007/s10157-014-0933-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is reportedly involved in the pathogenesis of kidney disease; however, the precise role played by S1P in renal disorders still remains controversial. Rho kinase plays an important role in the development of diabetic nephropathy by inducing glomerular and tubulointerstitial fibrosis. Rho kinase is known to be stimulated by S1P through its specific receptor, S1P2 receptor (S1P2). Hence, we investigated whether S1P-S1P2 signaling plays a role in the epithelial-mesenchymal transition (EMT) through Rho kinase activation in renal tubules. METHOD To characterize the distribution of the S1P2, an immunohistochemical examination of the receptor was performed in the kidney of the non-diabetic and diabetic mice. Next, we examined Rho kinase activity as well as E-cadherin and alpha-smooth muscle actin (α-SMA) expression by real-time RT-PCR and western blotting in cultured rat tubular epithelial cells under S1P stimulation with and without a Rho kinase inhibitor and an S1P2 blocker. In addition, the distribution of E-cadherin and α-SMA was examined by immunocytochemistry. RESULT S1P2 was expressed mainly in the renal tubules; expression was intense in collecting ducts and distal tubules compared to other segments. S1P induced activation of Rho kinase through the S1P2, which changed the distribution of E-cadherin and increased the expression of α-SMA. CONCLUSION Rho kinase activation by S1P via S1P2 initiated EMT changes in cultured renal tubular cells. Our results suggest that excessive stimulation of S1P might facilitate renal fibrosis via activation of Rho kinase through S1P2.
Collapse
|
30
|
Ritter JK, Li C, Xia M, Poklis JL, Lichtman AH, Abdullah RA, Dewey WL, Li PL. Production and actions of the anandamide metabolite prostamide E2 in the renal medulla. J Pharmacol Exp Ther 2012; 342:770-9. [PMID: 22685343 DOI: 10.1124/jpet.112.196451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Medullipin has been proposed to be an antihypertensive lipid hormone released from the renal medulla in response to increased arterial pressure and renal medullary blood flow. Because anandamide (AEA) possesses characteristics of this purported hormone, the present study tested the hypothesis that AEA or one of its metabolites represents medullipin. AEA was demonstrated to be enriched in the kidney medulla compared with cortex. Western blotting and enzymatic analyses of renal cortical and medullary microsomes revealed opposite patterns of enrichment of two AEA-metabolizing enzymes, with fatty acid amide hydrolase higher in the renal cortex and cyclooxygenase-2 (COX-2) higher in the renal medulla. In COX-2 reactions with renal medullary microsomes, prostamide E2, the ethanolamide of prostaglandin E₂, was the major product detected. Intramedullarily infused AEA dose-dependently increased urine volume and sodium and potassium excretion (15-60 nmol/kg/min) but had little effect on mean arterial pressure (MAP). The renal excretory effects of AEA were blocked by intravenous infusion of celecoxib (0.1 μg/kg/min), a selective COX-2 inhibitor, suggesting the involvement of a prostamide intermediate. Plasma kinetic analysis revealed longer elimination half-lives for AEA and prostamide E2 compared with prostaglandin E₂. Intravenous prostamide E2 reduced MAP and increased renal blood flow (RBF), actions opposite to those of angiotensin II. Coinfusion of prostamide E2 inhibited angiotensin II effects on MAP and RBF. These results suggest that AEA and/or its prostamide metabolites in the renal medulla may represent medullipin and function as a regulator of body fluid and MAP.
Collapse
Affiliation(s)
- Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 E. Marshall St., Medical Sciences Bldg., Room 531, Richmond, VA 23298-0613, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Watson L, Tullus K, Marks SD, Holt RCL, Pilkington C, Beresford MW. Increased serum concentration of sphingosine-1-phosphate in juvenile-onset systemic lupus erythematosus. J Clin Immunol 2012; 32:1019-25. [PMID: 22648459 DOI: 10.1007/s10875-012-9710-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Sphingosine-1-phosphate (S1P) is an active sphingolipid with chemotactic abilities and has been linked to inflammatory mediators and autoimmune disease. The aim of this study was to assess whether children with juvenile-onset systemic lupus erythematosus (JSLE) express increased systemic and/or urinary concentrations of S1P. METHODS A subgroup of patients participating in the UK JSLE Cohort Study, were invited to participate. Cross sectional serum and urine samples were prospectively collected along with demographic and standard clinical data. Results were compared to a cohort of disease controls (Henoch Schonlein Purpura; HSP) and healthy controls (HC). RESULTS The median age of JSLE patients (n = 15) was 13.6 years (7.2-16.9 years). The serum concentrations of S1P in JSLE patients (7.4 uM, IQR 6.3-12.3 uM) were statistically significantly increased when compared to patients with HSP (n = 10; 5.2 uM, IQR 4.0-7.9 uM; p = 0.016) and HCs (n = 10; 3.8 uM, IQR 2.1-5.8 uM; p = 0.003). There was a trend towards increased serum S1P concentrations between patients with active lupus nephritis (n = 8; 8.7 uM, IQR 6.2-15.3 uM) compared to lupus non-nephritis (n = 7; 6.6 uM, IQR 6.3-10.6 uM; p = 0.355). No relationship was found between disease activity markers and S1P. Urine S1P concentrations were no different between JSLE patients (56.0 nM, IQR 40.3-96.6 nM) and HCs (58.7 nM, IQR 0-241.9 nM; p = 0.889). CONCLUSIONS We have demonstrated, for the first time, an increased serum concentration of S1P in a cohort of JSLE patients. These findings highlight a role of S1P in the pathophysiology of JSLE that warrants further investigation.
Collapse
Affiliation(s)
- L Watson
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Eaton Road, Liverpool, L12 2AP, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol Ther 2012; 134:139-55. [PMID: 22274552 DOI: 10.1016/j.pharmthera.2012.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
Abstract
One of the most frequent and serious complications to develop in septic patients is acute kidney injury (AKI), a disorder characterized by a rapid failure of the kidneys to adequately filter the blood, regulate ion and water balance, and generate urine. AKI greatly worsens the already poor prognosis of sepsis and increases cost of care. To date, therapies have been mostly supportive; consequently there has been little change in the mortality rates over the last decade. This is due, at least in part, to the delay in establishing clinical evidence of an infection and the associated presence of the systemic inflammatory response syndrome and thus, a delay in initiating therapy. A second reason is a lack of understanding regarding the mechanisms leading to renal injury, which has hindered the development of more targeted therapies. In this review, we summarize recent studies, which have examined the development of renal injury during sepsis and propose how changes in the peritubular capillary microenvironment lead to and then perpetuate microcirculatory failure and tubular epithelial cell injury. We also discuss a number of potential therapeutic targets in the renal peritubular microenvironment, which may prevent or lessen injury and/or promote recovery.
Collapse
Affiliation(s)
- Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
33
|
Jackson EK. Role of sphingosine-1-phosphate in the renal medulla. Am J Physiol Renal Physiol 2011; 301:F33-4. [PMID: 21511695 DOI: 10.1152/ajprenal.00207.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|