1
|
Wang M, Chen Z, Tang Z, Tang S. Natural products derived from traditional Chinese medicines targeting ER stress for the treatment of kidney diseases. Ren Fail 2024; 46:2396446. [PMID: 39192602 PMCID: PMC11360642 DOI: 10.1080/0886022x.2024.2396446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Various factors, both internal and external, can disrupt endoplasmic reticulum (ER) homeostasis and increase the burden of protein folding, resulting in ER stress. While short periods of ER stress can help cells return to normal function, excessive or prolonged ER stress triggers a complex signaling network that negatively affects cells. Numerous studies have demonstrated the significant role of ER stress in various kidney diseases, such as immune-related kidney injury, diabetic kidney diseases, renal ischemia reperfusion injury, and renal fibrosis. To date, there is a severe shortage of medications for the treatment of acute and chronic kidney diseases of all causes. Natural products derived from various traditional Chinese medicines (TCM), which are a major source of new drugs, have garnered considerable attention. Recent research has revealed that many natural products have renoprotective effects by targeting ER stress-mediated events, such as apoptosis, oxidative stress, inflammation, autophagy, and epithelial-mesenchymal transition. This article provides a comprehensive review of the current research progress on natural products targeting ER stress for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Mengping Wang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ziru Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Gómez-Sierra T, Ortega-Lozano AJ, Rojas-Morales P, Medina-Reyes EI, Barrera-Oviedo D, Pedraza-Chaverri J. Isoliquiritigenin pretreatment regulates ER stress and attenuates cisplatin-induced nephrotoxicity in male Wistar rats. J Biochem Mol Toxicol 2023; 37:e23492. [PMID: 37561086 DOI: 10.1002/jbt.23492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Cisplatin (CP) is a chemotherapeutic drug used to treat solid tumors. However, studies have revealed its nephrotoxic effect. Oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are involved in CP-induced renal damage. Thus, preconditioning (hormetic effect) of ER stress is a strategy to prevent CP-induced renal damage. On the other hand, isoliquiritigenin (IsoLQ) is recognized as a flavonoid with antioxidant properties and an inducer of ER stress. Therefore, we evaluated the ER stress-inducing capacity of IsoLQ and its possible protective effect against CP-induced nephrotoxicity in adult male Wistar rats. The findings reflected that IsoLQ pretreatment might decrease renal damage by reducing plasma creatinine and blood urea nitrogen levels in animals with CP-induced nephrotoxicity. These may be associated with IsoLQ activating ER stress and unfolded protein response (UPR). We found increased messenger RNA levels of the ER stress marker glucose-related protein 78 kDa (GRP78). In addition, we also found that pretreatment with IsoLQ reduced the levels of CCAAT/enhancer-binding protein-homologous protein (CHOP) and X-box-binding protein 1 (XBP1) in the renal cortex, reflecting that IsoLQ can regulate the UPR and activation of the apoptotic pathway. Moreover, this preconditioning with IsoLQ of ER stress had oxidative stress-regulatory effects, as it restored the activity of glutathione peroxidase and glutathione reductase enzymes. Finally, IsoLQ modifies the protein expression of mitofusin 2 (Mfn-2) and voltage-dependent anion channel (VDAC). In conclusion, these data suggest that IsoLQ pretreatment has a nephroprotective effect; it could functionally regulate the ER and mitochondria and reduce CP-induced renal damage by attenuating hormesis-mediated ER stress.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Ariadna J Ortega-Lozano
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Pedro Rojas-Morales
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Estefany I Medina-Reyes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Diana Barrera-Oviedo
- Department of Pharmacology, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| |
Collapse
|
3
|
Tregub P, Motin Y, Kulikov V, Kovzelev P, Chaykovskaya A, Ibrahimli I. Ultrastructural Changes in Hippocampal Region CA1 Neurons After Exposure to Permissive Hypercapnia and/or Normobaric Hypoxia. Cell Mol Neurobiol 2023; 43:4209-4217. [PMID: 37716927 DOI: 10.1007/s10571-023-01407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Isolated exposure to intermittent hypoxia and permissive hypercapnia activates signaling mechanisms that induce ultrastructural changes in mitochondria and endoplasmic reticulum, accompanied by the development of maximal ischemic tolerance in neurons under the combined influence of these factors. However, there are a lack of data on the combined impact of these factors on the ultrastructure of neuronal organelles. The present study aims to comparatively assess the ultrastructural changes in neurons following isolated and combined exposure to hypoxia and hypercapnia, as well as to correlate these changes with the neuroprotective potential previously observed for these factors. Following a 15-session course of 30-min exposures to permissive hypercapnia (PCO2 ≈ 50 mmHg) and/or normobaric hypoxia (PO2 ≈ 150 mmHg), morphometric assessment was conducted to evaluate the extent of ultrastructural changes in hippocampal neurons (mitochondria, perinuclear space, and granular endoplasmic reticulum). It was found that in hippocampal neurons from the CA1 region, permissive hypercapnia resulted in increased mitochondrial size, expansion of membranous compartments of the granular endoplasmic reticulum, and perinuclear space. Normobaric hypoxia affected only mitochondrial size, while hypercapnic hypoxia specifically widened the perinuclear space. These ultrastructural changes objectively reflect varying degrees of the influence of hypoxia and hypercapnia on organelles responsible for energy metabolism, anti-apoptotic, and synthetic functions of neurons. This confirms the effect of potentiation of their neuroprotective effects under combined exposure and highlights the dominant role of the hypercapnic component in this mechanism.
Collapse
Affiliation(s)
- Pavel Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, P. 2, Moscow, Russian Federation, 119991.
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, Russian Federation, 117198.
- Research Center of Neurology, Moscow, Russian Federation, 125367.
| | - Yuri Motin
- Altai State Medical University, 40 Lenin Prospekt, Barnaul, Russian Federation, 656038
| | - Vladimir Kulikov
- Altai State Medical University, 40 Lenin Prospekt, Barnaul, Russian Federation, 656038
| | - Pavel Kovzelev
- V.A. Almazov National Medical Research Center, Akkuratov Str., P. 2, St. Petersburg, Russian Federation, 197341
| | - Aleksandra Chaykovskaya
- V.A. Almazov National Medical Research Center, Akkuratov Str., P. 2, St. Petersburg, Russian Federation, 197341
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, P. 2, Moscow, Russian Federation, 119991
| |
Collapse
|
4
|
Dwivedi S, Chavan A, Paul AT. SET7, a lysine-specific methyl transferase: An intriguing epigenetic target to combat diabetic nephropathy. Drug Discov Today 2023; 28:103754. [PMID: 37648018 DOI: 10.1016/j.drudis.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Diabetic nephropathy (DN) is a dreadful complication of diabetes that affects ∼50% of diabetics and is a leading cause of end-stage renal disease (ESRD). Studies have linked aberrant expression of lysine methyltransferases (KMTs) to the onset and progression of DN. SET7 is a KMT that methylates specific lysine residues of the histone and nonhistone proteins. It plays an important role in the transforming growth factor-β (TGF-β)-induced upregulation of extracellular matrix (ECM)-associated genes that are responsible for the inflammatory cascade observed in DN. Inhibiting SET7 has potential to attenuate renal disorders in animal studies. This review will focus on the role of SET7 in DN and its potential as a therapeutic target to combat DN.
Collapse
Affiliation(s)
- Samarth Dwivedi
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atharva Chavan
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atish T Paul
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India.
| |
Collapse
|
5
|
Pinky, Neha, Salman M, Kumar P, Khan MA, Jamal A, Parvez S. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia. Ageing Res Rev 2023; 90:102022. [PMID: 37490963 DOI: 10.1016/j.arr.2023.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by an adverse cellular environment and pathological alterations in distinct brain regions. The development is triggered or facilitated by a condition such as hypoxia or ischemia, or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Increasing evidence suggests that hypoxia may affect many pathological aspects of AD, including oxidative stress, mitochondrial dysfunction, ER stress, amyloidogenic processing of APP, and Aβ accumulation, which may collectively result in neurodegeneration. Further investigation into the relationship between hypoxia and AD may provide an avenue for the effective preservation and pharmacological treatment of this neurodegenerative disease. This review summarizes the effects of normoxia and hypoxia on AD pathogenesis and discusses the underlying mechanisms. Regulation of HIF-1α and the role of its key players, including P53, VEGF, and GLUT1, are also discussed.
Collapse
Affiliation(s)
- Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohd Salman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Pratika Kumar
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Gill NB, Dowker-Key PD, Hubbard K, Voy BH, Whelan J, Hedrick M, Bettaieb A. Ginsenoside Rc from Panax Ginseng Ameliorates Palmitate-Induced UB/OC-2 Cochlear Cell Injury. Int J Mol Sci 2023; 24:7345. [PMID: 37108509 PMCID: PMC10139021 DOI: 10.3390/ijms24087345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
By 2050, at least 700 million people will require hearing therapy while 2.5 billion are projected to suffer from hearing loss. Sensorineural hearing loss (SNHL) arises from the inability of the inner ear to convert fluid waves into neural electric signals because of injury to cochlear hair cells that has resulted in their death. In addition, systemic chronic inflammation implicated in other pathologies may exacerbate cell death leading to SNHL. Phytochemicals have emerged as a possible solution because of the growing evidence of their anti-inflammatory, antioxidant, and anti-apoptotic properties. Ginseng and its bioactive molecules, ginsenosides, exhibit effects that suppress pro-inflammatory signaling and protect against apoptosis. In the current study, we investigated the effects of ginsenoside Rc (G-Rc) on UB/OC-2 primary murine sensory hair cell survival in response to palmitate-induced injury. G-Rc promoted UB/OC-2 cell survival and cell cycle progression. Additionally, G-Rc enhanced the differentiation of UB/OC-2 cells into functional sensory hair cells and alleviated palmitate-induced inflammation, endoplasmic reticulum stress, and apoptosis. The current study offers novel insights into the effects of G-Rc as a potential adjuvant for SNHL and warrants further studies elucidating the molecular mechanisms.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Katelin Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Brynn H. Voy
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
| | - Mark Hedrick
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-1920, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
8
|
Zhen F, Zou T, Wang T, Zhou Y, Dong S, Zhang H. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front Neurosci 2023; 17:1132179. [PMID: 37077319 PMCID: PMC10106759 DOI: 10.3389/fnins.2023.1132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Rhodopsin is a light-sensitive G protein-coupled receptor that initiates the phototransduction cascade in rod photoreceptors. Mutations in the rhodopsin-encoding gene RHO are the leading cause of autosomal dominant retinitis pigmentosa (ADRP). To date, more than 200 mutations have been identified in RHO. The high allelic heterogeneity of RHO mutations suggests complicated pathogenic mechanisms. Here, we discuss representative RHO mutations as examples to briefly summarize the mechanisms underlying rhodopsin-related retinal dystrophy, which include but are not limited to endoplasmic reticulum stress and calcium ion dysregulation resulting from protein misfolding, mistrafficking, and malfunction. Based on recent advances in our understanding of disease mechanisms, various treatment methods, including adaptation, whole-eye electrical stimulation, and small molecular compounds, have been developed. Additionally, innovative therapeutic treatment strategies, such as antisense oligonucleotide therapy, gene therapy, optogenetic therapy, and stem cell therapy, have achieved promising outcomes in preclinical disease models of rhodopsin mutations. Successful translation of these treatment strategies may effectively ameliorate, prevent or rescue vision loss related to rhodopsin mutations.
Collapse
Affiliation(s)
- Fangyuan Zhen
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tongdan Zou
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongwei Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| |
Collapse
|
9
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
10
|
Vestuto V, Di Sarno V, Musella S, Di Dona G, Moltedo O, Gomez-Monterrey IM, Bertamino A, Ostacolo C, Campiglia P, Ciaglia T. New Frontiers on ER Stress Modulation: Are TRP Channels the Leading Actors? Int J Mol Sci 2022; 24:185. [PMID: 36613628 PMCID: PMC9820239 DOI: 10.3390/ijms24010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic structure, playing multiple roles including calcium storage, protein synthesis and lipid metabolism. During cellular stress, variations in ER homeostasis and its functioning occur. This condition is referred as ER stress and generates a cascade of signaling events termed unfolded protein response (UPR), activated as adaptative response to mitigate the ER stress condition. In this regard, calcium levels play a pivotal role in ER homeostasis and therefore in cell fate regulation since calcium signaling is implicated in a plethora of physiological processes, but also in disease conditions such as neurodegeneration, cancer and metabolic disorders. A large body of emerging evidence highlighted the functional role of TRP channels and their ability to promote cell survival or death depending on endoplasmic reticulum stress resolution, making them an attractive target. Thus, in this review we focused on the TRP channels' correlation to UPR-mediated ER stress in disease pathogenesis, providing an overview of their implication in the activation of this cellular response.
Collapse
Affiliation(s)
- Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | - Giorgio Di Dona
- Pineta Grande Hospital, Via Domiziana, km 30/00, 81030 Castel Volturno, CE, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | | | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
- European Biomedical Research Institute of Salerno, Via S. De Renzi 50, 84125 Salerno, SA, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, SA, Italy
| |
Collapse
|
11
|
Giorgianni F, Beranova-Giorgianni S. Oxidized low-density lipoprotein causes ribosome reduction and inhibition of protein synthesis in retinal pigment epithelial cells. Biochem Biophys Rep 2022; 32:101345. [PMID: 36204727 PMCID: PMC9530482 DOI: 10.1016/j.bbrep.2022.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Retinal pigment epithelium (RPE) are specialized multifunctional cells indispensable for maintenance of vision. Dysfunction and death of the RPE cells is implicated in the genesis and progression of age-related macular degeneration (AMD). Oxidative stress and resulting cellular damage plays a critical mechanistic role in AMD pathogenesis. Oxidized low-density lipoprotein (oxLDL), derived from LDL in a pro-oxidative environment, is found adjacent to the RPE as part of drusen, extracellular deposits that are a characteristic clinical feature of AMD. OxLDL is cytotoxic and oxLDL-induced oxidative damage may contribute to functional impairment of the RPE. Therefore, knowledge of how the RPE respond to oxLDL exposure is important to understand the mechanisms underlying RPE dysfunction and death associated with AMD. The objective of this study was to characterize alterations in the RPE proteome triggered by exposure to non-cytotoxic levels of oxLDL. Protein identification and quantification were performed with a high -resolution LC-MS/MS-based proteomics workflow. In total, out of the ca 3000 RPE proteins quantified, oxLDL treatment caused expression changes of 303 proteins. As revealed by protein functional analysis, oxLDL uptake caused a multifaceted molecular response that involved numerous biological pathways. This response included up-regulation of anti-oxidative stress proteins whose expression is mediated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), confirming results of transcriptomics studies previously published by us and others. Significantly, and previously unreported, the oxLDL treatment induced down-regulation of ribosomal and translation initiation proteins, and up-regulation of proteins involved in autophagy, thus suggesting that a major cellular mechanism through which the RPE mitigate oxLDL-induced damage involves inhibition of protein synthesis and removal of misfolded proteins. OxLDL causes oxidative stress in the RPE. The proteome of the RPE is impacted by non-lethal doses of OxLDL. Differentially expressed proteins include oxidative stress response and proteins involved in protein synthesis and autophagy. Protein synthesis reduction and increase in autophagy suggest presence of misfolded proteins as a result of OxLDL exposure.
Collapse
|
12
|
Eo H, Valentine RJ. Saturated Fatty Acid-Induced Endoplasmic Reticulum Stress and Insulin Resistance Are Prevented by Imoxin in C2C12 Myotubes. Front Physiol 2022; 13:842819. [PMID: 35936891 PMCID: PMC9355746 DOI: 10.3389/fphys.2022.842819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In obesity, plasma free fatty acids (FFAs) levels are elevated due to enlarged adipose tissue mass. Saturated fatty acids can induce prolonged ER stress and insulin resistance. Double-stranded RNA-dependent Protein Kinase (PKR) is activated under stress conditions in skeletal muscle. The current study aimed to investigate the effect of imoxin (IMX), a selective PKR inhibitor, on palmitate-induced ER stress and insulin resistance in C2C12 myotubes. Cells were treated with 5 μM imoxin and exposed to 0.5 mM bovine serum albumin (BSA)-conjugated PA for 24 h. A subset of cells was stimulated with 50 nM insulin for the last 15 min. Glucose uptake was monitored and protein levels involved in ER stress and insulin signaling were measured by Western blotting. Palmitate stimulated PKR phosphorylation, which was prevented by imoxin. Moreover, imoxin reduced protein levels of ER stress-related markers including glucose-regulating protein 78 (GRP78), CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6) and spliced X-box binding protein 1 (XBP-1s) which were induced by palmitate. Furthermore, imoxin ameliorated palmitate-induced suppression of phospho-insulin receptor beta (p-IRβ) and Akt phosphorylation in myotubes. In addition, imoxin promoted glucose uptake in response to insulin under palmitate exposure. Furthermore, imoxin reduced phospho-c-Jun N-terminal kinase (p-JNK) induced by palmitate treatment. These findings suggest that imoxin may protect against saturated fatty acid-induced ER stress and insulin resistance in skeletal muscle, which are potentially mediated by PKR.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, IA, United States
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, IA, United States
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Rudy J Valentine,
| |
Collapse
|
13
|
Chen JH, Wu CH, Jheng JR, Chao CT, Huang JW, Hung KY, Liu SH, Chiang CK. The down-regulation of XBP1, an unfolded protein response effector, promotes acute kidney injury to chronic kidney disease transition. J Biomed Sci 2022; 29:46. [PMID: 35765067 PMCID: PMC9241279 DOI: 10.1186/s12929-022-00828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background The activation of the unfolded protein response (UPR) is closely linked to the pathogenesis of renal injuries. However, the role of XBP1, a crucial regulator of adaptive UPR, remains unclear during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD). Methods We characterized XBP1 expressions in different mouse models of kidney injuries, including unilateral ischemia–reperfusion injury (UIRI), unilateral ureteral obstruction, and adenine-induced CKD, followed by generating proximal tubular XBP1 conditional knockout (XBP1cKO) mice for examining the influences of XBP1. Human proximal tubular epithelial cells (HK-2) were silenced of XBP1 to conduct proteomic analysis and investigate the underlying mechanism. Results We showed a tripartite activation of UPR in injured kidneys. XBP1 expressions were attenuated after AKI and inversely correlated with the severity of post-AKI renal fibrosis. XBP1cKO mice exhibited more severe renal fibrosis in the UIRI model than wide-type littermates. Silencing XBP1 induced HK-2 cell cycle arrest in G2M phase, inhibited cell proliferation, and promoted TGF-β1 secretion. Proteomic analysis identified TNF receptor associated protein 1 (Trap1) as the potential downstream target transcriptionally regulated by XBP1s. Trap1 overexpression can alleviate silencing XBP1 induced profibrotic factor expressions and cell cycle arrest. Conclusion The loss of XBP1 in kidney injury was profibrotic, and the process was mediated by autocrine and paracrine regulations in combination. The present study identified the XBP1-Trap1 axis as an instrumental mechanism responsible for post-AKI fibrosis, which is a novel regulatory pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00828-9.
Collapse
Affiliation(s)
- Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Chia-Hsien Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Jia-Rong Jheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ter Chao
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jenq-Wen Huang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan. .,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Passos E, Pereira C, Gonçalves IO, Faria A, Ascensão A, Monteiro R, Magalhães J, Martins MJ. Physical exercise positively modulates nonalcoholic steatohepatitis-related hepatic endoplasmic reticulum stress. J Cell Biochem 2022; 123:1647-1662. [PMID: 35467032 DOI: 10.1002/jcb.30250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Obesity is a predictive factor for the development of nonalcoholic steatohepatitis (NASH). Although some of the mechanisms associated with NASH development are still elusive, its pathogenesis relies on a complex broad spectrum of (interconnected) metabolic-based disorders. We analyzed the effects of voluntary physical activity (VPA) and endurance training (ET), as preventive and therapeutic nonpharmacological strategies, respectively, against hepatic endoplasmic reticulum (ER) stress, ER-related proapoptotic signaling, and oxidative stress in an animal model of high-fat diet (HFD)-induced NASH. Adult male Sprague-Dawley rats were divided into standard control liquid diet (SCLD) or HFD groups, with sedentary, VPA, and ET subgroups in both (sedentary animals with access to SCLD [SS], voluntarily physically active animals with access to SCLD [SV], and endurance-trained animals with access to SCLD [ST] in the former and sedentary animals with access to liquid HFD [HS], voluntarily physically active animals with access to liquid HFD [HV], and endurance-trained animals with access to liquid HFD [HT] in the latter, respectively). Hepatic ER stress and ER-related proapoptotic signaling were evaluated by Western blot and reverse transcriptase-polymerase chain reaction; redox status was evaluated through quantification of lipid peroxidation, protein carbonyls groups, and glutathione levels as well as antioxidant enzymes activity. In SCLD-treated animals, VPA significantly decreased eukaryotic initiation factor-2 alpha (eIF2α). In HFD-treated animals, VPA significantly decreased eIF2α and phospho-inositol requiring enzyme-1 alpha (IRE1α) but ET significantly decreased eIF2α and significantly increased both spliced X-box binding protein 1 (sXBP1) and unspliced X-box binding protein 1; a significant increase of phosphorylated-eIF2α (p-eIF2α) to eIF2α ratio occurred in ET versus VPA. HS compared to SS disclosed a significant increase of total and reduced glutathione, HV compared to SV a significant increase of oxidized glutathione, HT compared to ST a significant increase of p-eIF2α to eIF2α ratio and sXBP1. Physical exercise counteracts NASH-related ER stress and its associated deleterious consequences through a positive and dynamical modulation of the hepatic IRE1α-X-box binding protein 1 pathway.
Collapse
Affiliation(s)
- Emanuel Passos
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,National Anti-Doping Organization of Cape Verde, Praia, Cabo Verde.,Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Cidália Pereira
- School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal.,CiTechCare-Centre for Innovative Care and Health Technology, Polytechnic of Leiria, Leiria, Portugal
| | - Inês O Gonçalves
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Faria
- Nutrition and Metabolism, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,CINTESIS-Center for Health Technology Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Comprehensive Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - António Ascensão
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rosário Monteiro
- CINTESIS-Center for Health Technology Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Unidade de Saúde Familiar Homem do Leme, Agrupamento de Centros de Saúde Porto Ocidental, ARS Norte, Porto, Portugal.,MEDCIDS-Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Maria J Martins
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Chen CA, Chang JM, Chen HC, Chang EE. Generation of endoplasmic reticulum stress-dependent reactive oxygen species mediates TGF-β1-induced podocyte migration. J Biochem 2021; 171:305-314. [PMID: 34993544 DOI: 10.1093/jb/mvab128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Podocyte migration results in proteinuria and glomerulonephropathy. Transforming growth factor-β1 (TGF-β1), endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) can mediate podocyte migration; however, the crosstalk between them is unclear. ThisGraphical Abstract study determined the relationships between these factors. ER stress biomarkers (GRP78, p-eIF2α or CHOP), intracellular ROS generation, integrin-β3 and cell adhesion and migration were studied in a treatment of experiment using TGF-β1 with and without the ER stress inhibitors: 4-phenylbutyric acid (4-PBA, a chemical chaperone), salubrinal (an eIF2α dephosphorylation inhibitor) and N-acetylcysteine (NAC, an antioxidant). ER stress biomarkers (p-eIF2α/eIF2α and GRP78), ROS generation and intergrin-β3 expression increased after TGF-β1 treatment. NAC down-regulated the expression of GRP78 after TGF-β1 treatment. 4-PBA attenuated TGF-β1-induced p-eIF2α/eIF2α, CHOP, ROS generation and intergrin-β3 expression. However, salubrinal did not inhibit TGF-β1-induced p-eIF2α/eIF2α, CHOP, ROS generation or integrin-β3 expression. NAC abrogated TGF-β1-induced integrin-β3 expression. At 24 h after treatment with TGF-β1, podocyte adhesion and migration increased. Furthermore, NAC, 4-PBA and an anti-interin-β3 antibody attenuated TGF-β1-induced podocyte adhesion and migration. This study demonstrated that TGF-β1-induced ER stress potentiates the generation of intracellular ROS to a high degree through the PERK/eIF2α/CHOP pathway. This intracellular ROS then mediates integrin-β3 expression, which regulates podocyte migration.
Collapse
Affiliation(s)
- Chien-An Chen
- Department of Nephrology, Tainan Sinlau Hospital, Tainan 701, Taiwan.,Department of Health Care Administration, College of Health Discipline, Chang Jung Christian University, Tainan 711, Taiwan
| | - Jer-Ming Chang
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Chun Chen
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Eddy-Essen Chang
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Wang WW, Liu YL, Wang MZ, Li H, Liu BH, Tu Y, Yuan CC, Fang QJ, Chen JX, Wang J, Fu Y, Wan ZY, Wan YG, Wu W. Inhibition of Renal Tubular Epithelial Mesenchymal Transition and Endoplasmic Reticulum Stress-Induced Apoptosis with Shenkang Injection Attenuates Diabetic Tubulopathy. Front Pharmacol 2021; 12:662706. [PMID: 34408650 PMCID: PMC8367077 DOI: 10.3389/fphar.2021.662706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The proximal renal tubule plays a critical role in diabetic kidney disease (DKD) progression. Early glomerular disease in DKD triggers a cascade of injuries resulting in renal tubulointerstitial disease. These pathophysiological responses are collectively described as diabetic tubulopathy (DT). Thus, therapeutic strategies targeting DT hold significant promise for early DKD treatment. Shenkang injection (SKI) has been widely used to treat renal tubulointerstitial fibrosis in patients with chronic kidney disease in China. However, it is still unknown whether SKI can alleviate DT. We designed a series of experiments to investigate the beneficial effects of SKI in DT and the mechanisms that are responsible for its effect on epithelial-to-mesenchymal transition (EMT) and endoplasmic reticulum (ER) stress-induced apoptosis in DT. Methods: The modified DKD rat models were induced by uni-nephrectomy, streptozotocin intraperitoneal injection, and a high-fat diet. Following the induction of renal injury, these animals received either SKI, rosiglitazone (ROS), or vehicle, for 42 days. For in vitro research, we exposed NRK-52E cells to high glucose (HG) and 4-phenylbutyric acid (4-PBA) with or without SKI or ROS. Changes in parameters related to renal tubular injury and EMT were analyzed in vivo. Changes in the proportion of apoptotic renal tubular cells and ER stress, and the signaling pathways involved in these changes, were analyzed both in vivo and in vitro. Results: SKI and ROS improved the general condition, the renal morphological appearance and the key biochemical parameters, and attenuated renal injury and EMT in the rat model of DKD. In addition, SKI and ROS alleviated apoptosis, inhibited ER stress, and suppressed PERK-eIF2α-ATF4-CHOP signaling pathway activation both in vivo and in vitro. Notably, our data showed that the regulatory in vitro effects of SKI on PERK-eIF2α-ATF4-CHOP signaling were similar to those of 4-PBA, a specific inhibitor of ER stress. Conclusion: This study confirmed that SKI can alleviate DT in a similar manner as ROS, and SKI achieves this effect by inhibiting EMT and ER stress-induced apoptosis. Our findings thereby provide novel information relating to the clinical value of SKI in the treatment of DT.
Collapse
Affiliation(s)
- Wen-Wen Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Nephrology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mei-Zi Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huan Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bu-Hui Liu
- Nephrology Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Can-Can Yuan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Xin Chen
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Fu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Yue Wan
- Graduate School of Social Sciences, Faculty of Social Sciences, Hitotsubashi University, Tokyo, Japan
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
17
|
Novel Insight into the Role of Endoplasmic Reticulum Stress in the Pathogenesis of Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529810. [PMID: 33854692 PMCID: PMC8019635 DOI: 10.1155/2021/5529810] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Impaired function of the endoplasmic reticulum (ER) is followed by evolutionarily conserved cell stress responses, which are employed by cells, including cardiomyocytes, to maintain and/or restore ER homeostasis. ER stress activates the unfolded protein response (UPR) to degrade and remove abnormal proteins from the ER lumen. Although the UPR is an intracellular defense mechanism to sustain cardiomyocyte viability and heart function, excessive activation initiates ER-dependent cardiomyocyte apoptosis. Myocardial ischemia/reperfusion (I/R) injury is a pathological process occurring during or after revascularization of ischemic myocardium. Several molecular mechanisms contribute to the pathogenesis of cardiac I/R injury. Due to the dual protective/degradative effects of ER stress on cardiomyocyte viability and function, it is of interest to understand the basic concepts, regulatory signals, and molecular processes involved in ER stress following myocardial I/R injury. In this review, therefore, we present recent findings related to the novel components of ER stress activation. The complex effects of ER stress and whether they mitigate or exacerbate myocardial I/R injury are summarized to serve as the basis for research into potential therapies for cardioprotection through control of ER homeostasis.
Collapse
|
18
|
Akita S, Suzuki K, Yoshimoto H, Ohtsuru A, Hirano A, Yamashita S. Cellular Mechanism Underlying Highly-Active or Antiretroviral Therapy-Induced Lipodystrophy: Atazanavir, a Protease Inhibitor, Compromises Adipogenic Conversion of Adipose-Derived Stem/Progenitor Cells through Accelerating ER Stress-Mediated Cell Death in Differentiating Adipocytes. Int J Mol Sci 2021; 22:ijms22042114. [PMID: 33672735 PMCID: PMC7924614 DOI: 10.3390/ijms22042114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Lipodystrophy is a common complication in human immunodeficiency virus (HIV)-infected patients receiving highly active antiretroviral therapy (HAART) or antiretroviral therapy (ART). Previous studies demonstrated that endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR) is involved in lipodystrophy; however, the detailed mechanism has not been fully described in human adipogenic cell lineage. We utilized adipose tissue-derived stem cells (ADSCs) obtained from human subcutaneous adipose tissue, and atazanavir (ATV), a protease inhibitor (PI), was administered to ADSCs and ADSCs undergoing adipogenic conversion. Marked repression of adipogenic differentiation was observed when ATV was administered during 10 days of ADSC culture in adipogenic differentiation medium. Although ATV had no effect on ADSCs, it significantly induced apoptosis in differentiating adipocytes. ATV treatment also caused the punctate appearance of CCAAT-enhancer-binding (C/EBP) protein homologous protein (CHOP), and altered expression of CHOP and GRP78/Bip, which are the representation of ER stress, only in differentiating adipocytes. Administration of UPR inhibitors restored adipogenic differentiation, indicating that ER stress-mediated UPR was induced in differentiating adipocytes in the presence of ATV. We also observed autophagy, which was potentiated in differentiating adipocytes by ATV treatment. Thus, adipogenic cell atrophy leads to ATV-induced lipodystrophy, which is mediated by ER stress-mediated UPR and accelerated autophagy, both of which would cause adipogenic apoptosis. As our study demonstrated for the first time that ADSCs are unsusceptible to ATV and its deleterious effects are limited to the differentiating adipocytes, responsible target(s) for ATV-induced lipodystrophy may be protease(s) processing adipogenesis-specific protein(s).
Collapse
Affiliation(s)
- Sadanori Akita
- Department of Plastic Surgery, Wound Repair and Regeneration, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (A.H.); (H.Y.)
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Correspondence: Correspondence: ; Tel.: +81-95-819-7116
| | - Hiroshi Yoshimoto
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (A.H.); (H.Y.)
| | - Akira Ohtsuru
- Takashi Nagai Memorial International Hibakusha Medical Center, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Nagasaki, Nagasaki852-8523, Japan;
| | - Akiyoshi Hirano
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (A.H.); (H.Y.)
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Takashi Nagai Memorial International Hibakusha Medical Center, Nagasaki University Graduate School of Biomedical Science, 1-12-4 Nagasaki, Nagasaki852-8523, Japan;
- Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
- Center for Advanced Radiation Emergency Medicine at the National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
19
|
Mai X, Yin X, Chen P, Zhang M. Salvianolic Acid B Protects Against Fatty Acid-Induced Renal Tubular Injury via Inhibition of Endoplasmic Reticulum Stress. Front Pharmacol 2020; 11:574229. [PMID: 33384598 PMCID: PMC7770132 DOI: 10.3389/fphar.2020.574229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background/Aims: Obesity-related kidney disease is associated with elevated levels of saturated free fatty acids (SFA). SFA lipotoxicity in tubular cells contributes to significant cellular apoptosis and injury. Salvianolic acid B (SalB) is the most abundant bioactive molecule from Radix Salviae Miltiorrhizae. In this study, we investigated the effect of SalB on SFA-induced renal tubular injury and endoplasmic reticulum (ER) stress, in vivo and in vitro. Methods: C57BL/6 mice were assigned to five groups: a control group with normal diet (Nor), high-fat diet group (HFD), and HFD with three different SalB treatment doses, low (SalBL; 3 mg/kg), medium (SalBM; 6.25 mg/kg), and high (SalBH; 12.5 mg/kg) doses. SalB was intraperitoneally injected daily for 4 weeks after 8 weeks of HFD. After 12 weeks, mice were sacrificed and kidneys and sera were collected. Apoptosis and ER stress were induced in human proximal tubule epitelial (HK2) cells by palmitic acid (PA, 0.6 mM), tunicamycin (TM, 1 μg/ml), or thapsigargin (TG, 200 nM) in vitro. Results: C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks exhibited increased apoptosis (Bax and cleaved caspase-3) and ER stress (BIP, P-eIF2α, ATF4, CHOP, ATF6, IRE1α, and XBP1s) markers expression in the kidney, compared with control mice, which were remarkably suppressed by SalB treatment. In vitro studies showed that PA (0.6 mM) induced apoptosis and ER stress in cultured HK2 cells. SalB treatment attenuated all the adverse effects of PA. However, SalB failed to inhibit TM or TG-induced ER stress in HK2 cells. Conclusion: The study indicated that SalB may play an important role in obesity-related kidney injury via mediating SFA-induced ER stress.
Collapse
Affiliation(s)
- Xiaoyi Mai
- Department of Critical-care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Lab of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Xin Yin
- Department of Critical-care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Chen
- Department of Critical-care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Lab of Chinese Medicine in Guangzhou, Guangzhou, China
| | - Minzhou Zhang
- Department of Critical-care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Lab of Chinese Medicine in Guangzhou, Guangzhou, China
| |
Collapse
|
20
|
Gómez-Sierra T, Medina-Campos ON, Solano JD, Ibarra-Rubio ME, Pedraza-Chaverri J. Isoliquiritigenin Pretreatment Induces Endoplasmic Reticulum Stress-Mediated Hormesis and Attenuates Cisplatin-Induced Oxidative Stress and Damage in LLC-PK1 Cells. Molecules 2020; 25:molecules25194442. [PMID: 32992605 PMCID: PMC7582730 DOI: 10.3390/molecules25194442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Isoliquiritigenin (IsoLQ) is a flavonoid with antioxidant properties and inducer of endoplasmic reticulum (ER) stress. In vitro and in vivo studies show that ER stress-mediated hormesis is cytoprotective; therefore, natural antioxidants and ER stress inducers have been used to prevent renal injury. Oxidative stress and ER stress are some of the mechanisms of damage involved in cisplatin (CP)-induced nephrotoxicity. This study aims to explore whether IsoLQ pretreatment induces ER stress and produces hormesis to protect against CP-induced nephrotoxicity in Lilly Laboratories Cell-Porcine Kidney 1 (LLC-PK1) cells. During the first stage of this study, both IsoLQ protective concentration and pretreatment time against CP-induced toxicity were determined by cell viability. At the second stage, the effect of IsoLQ pretreatment on cell viability, ER stress, and oxidative stress were evaluated. IsoLQ pretreatment in CP-treated cells induces expression of glucose-related proteins 78 and 94 kDa (GRP78 and GRP94, respectively), attenuates CP-induced cell death, decreases reactive oxygen species (ROS) production, and prevents the decrease in glutathione/glutathione disulfide (GSH/GSSG) ratio, free thiols levels, and glutathione reductase (GR) activity. These data suggest that IsoLQ pretreatment has a moderately protective effect on CP-induced toxicity in LLC-PK1 cells, through ER stress-mediated hormesis, as well as by the antioxidant properties of IsoLQ.
Collapse
|
21
|
Kang JM, Lee HS, Kim J, Yang DH, Jeong HY, Lee YH, Kim DJ, Park SH, Sung M, Kim J, An HJ, Lee SH, Lee SY. Beneficial Effect of Chloroquine and Amodiaquine on Type 1 Diabetic Tubulopathy by Attenuating Mitochondrial Nox4 and Endoplasmic Reticulum Stress. J Korean Med Sci 2020; 35:e305. [PMID: 32924342 PMCID: PMC7490204 DOI: 10.3346/jkms.2020.35.e305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Oxidative stress induced by chronic hyperglycemia is recognized as a significant mechanistic contributor to the development of diabetic kidney disease (DKD). Nonphagocytic nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in many cell types and in the kidney tissue of diabetic animals. We designed this study to explore the therapeutic potential of chloroquine (CQ) and amodiaquine (AQ) for inhibiting mitochondrial Nox4 and diabetic tubular injury. METHODS Human renal proximal tubular epithelial cells (hRPTCs) were cultured in high-glucose media (30 mM D-glucose), and diabetes was induced with streptozotocin (STZ, 50 mg/kg i.p. for 5 days) in male C57BL/6J mice. CQ and AQ were administered to the mice via intraperitoneal injection for 14 weeks. RESULTS CQ and AQ inhibited mitochondrial Nox4 and increased mitochondrial mass in hRPTCs under high-glucose conditions. Reduced mitochondrial ROS production after treatment with the drugs resulted in decreased endoplasmic reticulum (ER) stress, suppressed inflammatory protein expression and reduced cell apoptosis in hRPTCs under high-glucose conditions. Notably, CQ and AQ treatment diminished Nox4 activation and ER stress in the kidneys of STZ-induced diabetic mice. In addition, we observed attenuated inflammatory protein expression and albuminuria in STZ-induced diabetic mice after CQ and AQ treatment. CONCLUSION We substantiated the protective actions of CQ and AQ in diabetic tubulopathy associated with reduced mitochondrial Nox4 activation and ER stress alleviation. Further studies exploring the roles of mitochondrial Nox4 in the pathogenesis of DKD could suggest new therapeutic targets for patients with DKD.
Collapse
Affiliation(s)
- Jun Mo Kang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun Seob Lee
- Genomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Junghyun Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong Ho Yang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hye Yun Jeong
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yu Ho Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong Jin Kim
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Seon Hwa Park
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - MinJi Sung
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jaehee Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun Ju An
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sang Ho Lee
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea.
| | - So Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
| |
Collapse
|
22
|
Wang Y, Han B, Ding J, Qiu C, Wang W. Endoplasmic reticulum stress mediates osteocyte death under oxygen-glucose deprivation in vitro. Acta Histochem 2020; 122:151577. [PMID: 32778239 DOI: 10.1016/j.acthis.2020.151577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
As a vascularized organ, bone is known to be susceptible to ischemia. Ischemic osteonecrosis or skeletal unloading lead to ischemia in bone microenvironment that causes osteocytes to suffer hypoxia and nutrition deprivation. OBJECTIVE To explore the effects of Oxygen-glucose deprivation (OGD) on osteocytes and the potential mechanism. METHODS OGD model was established in cultured MLO-Y4 cell. Cell damage, intracellular oxidative stress and cell apoptosis were detected at different OGD times (0, 2, 4, 8, 12, 24 h), and the changes in endoplasmic reticulum (ER) stress-related indicators were observed. Furthermore, cells were treated with 4-phenylbutyrate sodium (4-PBA) to inhibit ER stress, and cell damage and oxidative stress level were detected. RESULTS The cell viability under OGD exhibited a significantly reduced in a time-dependent manner, and the level of intracellular reactive oxygen species (ROS) were increased, cell apoptosis and ER stress was induced. Inhibition of ER stress can reduce cell death and intracellular ROS levels. CONCLUSION Our study demonstrated that ER stress regulates OGD-induced apoptotic cell death in MLO-Y4 cells via intracellular ROS.
Collapse
|
23
|
Wang YZ, Li QX, Zhang DM, Chen LB, Wang H. Ryanodine receptor 1 mediated dexamethasone-induced chondrodysplasia in fetal rats. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118791. [PMID: 32619649 DOI: 10.1016/j.bbamcr.2020.118791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Osteoarthritis is caused by cartilage dysplasia and has fetal origin. Prenatal dexamethasone exposure (PDE) induced chondrodysplasia in fetal rats by inhibiting transforming growth factor β (TGFβ) signaling. This study aimed to determine the effect of dexamethasone on fetal cartilage development and illustrate the underlying molecular mechanism. METHODS Dexamethasone (0.2 mg/kg.d) was injected subcutaneously every morning in pregnant rats from gestational day (GD) 9 to GD21. Harvested fetal femurs and tibias at GD21 for immunofluorescence and gene expression analysis. Fetal chondrocytes were treated with dexamethasone (100, 250 and 500 nM), endoplasmic reticulum stress (ERS) inhibitor, and ryanodine receptor 1 (RYR1) antagonist for subsequent analyses. RESULTS In vivo, prenatal dexamethasone exposure (PDE) decreased the total length of the fetal cartilage, the proportion of the proliferation area and the cell density and matrix content in fetal articular cartilage. Moreover, PDE increased RYR1 expression and intracellular calcium levels and elevated the expression of ERS-related genes, while downregulated the TGFβ signaling pathway and extracellular matrix (ECM) synthesis in fetal chondrocytes. In vitro, we verified dexamethasone significantly decreased ECM synthesis through activating RYR 1 mediated-ERS. CONCLUSIONS PDE inhibited TGFβ signaling pathway and matrix synthesis through RYR1 / intracellular calcium mediated ERS, which ultimately led to fetal dysplasia. This study confirmed the molecular mechanism of ERS involved in the developmental toxicity of dexamethasone and suggested that RYR1 may be an early intervention target for fetal-derived adult osteoarthritis.
Collapse
Affiliation(s)
- Yi-Zhong Wang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Qing-Xian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ding-Mei Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Liao-Bin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
24
|
Tavares-da-Silva E, Figueiredo A. Renal Procurement: Techniques for Optimizing the Quality of the Graft in the Cadaveric Setting. Curr Urol Rep 2020; 21:12. [PMID: 32166407 DOI: 10.1007/s11934-020-0963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Kidney transplantation is the best treatment for end-stage renal disease. However, due to organ shortage, suboptimal grafts are increasingly being used. RECENT FINDINGS We carried out a review on the methods and techniques of organ optimization in the cadaveric setting. Donor care is the first link in a chain of care. Right after brain death, there is a set of changes, of which hormonal and hemodynamic changes are the most relevant. Several studies have been conducted to determine which drugs to administer, although in most cases, the results are not definitive. The main goal seems rather achieve a set of biochemical and hemodynamic objectives. The ischemia-reperfusion injury is a critical factor for kidney damage in transplantation. One of the ways found to deal with this type of injury is preconditioning. Local and remote ischemic preconditioning has been studied for various organs, but studies on the kidney are scarce. A new promising area is pharmacological preconditioning, which is taking its first steps. Main surgical techniques were established in the late twentieth century. Some minor new features have been introduced to deal with anatomical variations or the emergence of donation after circulatory death. Finally, after harvesting, it is necessary to ensure the best conditions for the kidneys until the time of transplantation. Much has evolved since static cold preservation, but the best preservation conditions are yet to be determined. Conservation in the cold has come to be questioned, and great results have appeared at temperatures closer to physiological.
Collapse
Affiliation(s)
- Edgar Tavares-da-Silva
- Urology and Renal Transplantation Department, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal.,Centro de Investigação em Meio Ambiente, Genética e Oncobiologia (CIMAGO), Coimbra, Portugal
| | - Arnaldo Figueiredo
- Urology and Renal Transplantation Department, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal. .,Centro de Investigação em Meio Ambiente, Genética e Oncobiologia (CIMAGO), Coimbra, Portugal.
| |
Collapse
|
25
|
Kim SJ, Jegal KH, Im JH, Park G, Kim S, Jeong HG, Cho IJ, Kang KW. Involvement of ER stress and reactive oxygen species generation in anti-cancer effect of CKD-516 for lung cancer. Cancer Chemother Pharmacol 2020; 85:685-697. [PMID: 32157413 DOI: 10.1007/s00280-020-04043-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE CKD-516 (Valecobulin), a vascular-disrupting agent, inhibits microtubule elongation. We evaluated the effect of CKD-516 on lung cancer cells and the underlying molecular mechanisms. METHODS The effects of S516, an active metabolite of CKD-516, were evaluated in HUVECs and three lung cancer cell lines and by a microtubule polymerization assay. Tubulin cross-linking was used to identify the binding site of S516 on tubulin, and Western blotting was performed to identify the intracellular pathways leading to cell death. Subcutaneous lung cancer xenograft models were used to assess the in vivo effect of CKD-516 on tumor growth. RESULTS S516 targeted the colchicine binding site on β-tubulin. In lung cancer cells, S516 increased endoplasmic reticulum (ER) stress and induced reactive oxygen species (ROS) generation by mitochondria and the ER. In addition, CKD-516 monotherapy strongly inhibited the growth of lung cancer xenograft tumors and exerted a synergistic effect with carboplatin. CONCLUSION The findings suggest that CKD-516 exerts an anticancer effect in company with inducing ER stress and ROS production via microtubule disruption in lung cancer cells. CKD-516 may thus have therapeutic potential for lung cancer.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Kyung Hwan Jegal
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Hye Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gyutae Park
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Il Je Cho
- Department of Herbal Formulation, MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Johar D, Ahmed SM, El Hayek S, Al-Dewik N, Bahbah EI, Omar NH, Mustafa M, Salman DO, Fahmey A, Mottawea M, Azouz RAM, Bernstein L. Diabetes-induced Proteome Changes Throughout Development. Endocr Metab Immune Disord Drug Targets 2020; 19:732-743. [PMID: 31038056 DOI: 10.2174/1871530319666190305153810] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/31/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Diabetes Mellitus (DM) is a multisystemic disease involving the homeostasis of insulin secretion by the pancreatic islet beta cells (β-cells). It is associated with hypertension, renal disease, and arterial and arteriolar vascular diseases. DISCUSSION The classification of diabetes is identified as type 1 (gene linked β-cell destruction in childhood) and type 2 (late onset associated with β-cell overload and insulin resistance in peripheral tissues. Type 1 diabetes is characterized by insulin deficiency, type 2 diabetes by both insulin deficiency and insulin resistance. The former is a genetically programmed loss of insulin secretion whereas the latter constitutes a disruption of the homeostatic relationship between the opposing activity of β- cell insulin and alpha cell (α-cell) glucagon of the Islets of Langerhans. The condition could also occur in pregnancy, as a prenatal occurring event, possibly triggered by the hormonal changes of pregnancy combined with β-cell overload. This review discusses the molecular basis of the biomolecular changes that occur with respect to glucose homeostasis and related diseases in DM. The underlying link between pancreatic, renal, and microvascular diseases in DM is based on oxidative stress and the Unfolded Protein Response (UPR). CONCLUSION Studying proteome changes in diabetes can deepen our understanding of the biomolecular basis of disease and help us acquire more efficient therapies.
Collapse
Affiliation(s)
- Dina Johar
- Biomedical Science Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt and Biochemistry and Nutrition Department, Ain Shams University Faculty of Women for Arts, Sciences and Education, Heliopolis, Cairo, Egypt
| | - Sara M Ahmed
- Clinical Pathology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Samer El Hayek
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nader Al-Dewik
- Qatar Medical Genetic Center, Pediatrics Department, Hamad General Hospital (HGH), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, P.C. 34511, Egypt
| | - Nabil H Omar
- Pharmacy Department, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Doaa O Salman
- Genetics Unit, Histology and Cell biology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asmaa Fahmey
- Faculty of Pharmacy, Al-Mansoura University, Al-Mansoura, Egypt
| | - Mohamed Mottawea
- Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Rasha A M Azouz
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Larry Bernstein
- Triplex Consulting, 54 Firethorn Lane, Northampton, MA 01060, United States
| |
Collapse
|
27
|
Protein misfolding in endoplasmic reticulum stress with applications to renal diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020. [PMID: 31928726 DOI: 10.1016/bs.apcsb.2019.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein misfolding may be the result of a variety of different processes that disrupt the ability of a protein to form a thermodynamically stable tertiary structure that allows it to perform its proper function. In this chapter, we explore the nature of a protein's form that allows it to have a stable tertiary structure, and examine specific mutation that are known to occur in the coding regions of DNA that disrupt a protein's ability to be folded into a thermodynamically stable tertiary structure. We examine the consequences of these protein misfoldings in terms of the endoplasmic reticulum stress response and resulting unfolded protein response. These conditions are specifically related to renal diseases. Further, we explore novel therapeutics, pharmacological chaperones, that are being developed to alleviate the disease burden associated with protein misfolding caused by mutations. These interventions aim to stabilize protein folding intermediates and allow proper folding to occur as well as prevent protein aggregation and the resulting pathophysiological consequences.
Collapse
|
28
|
Alicka M, Kornicka-Garbowska K, Kucharczyk K, Kępska M, Rӧcken M, Marycz K. Age-dependent impairment of adipose-derived stem cells isolated from horses. Stem Cell Res Ther 2020; 11:4. [PMID: 31900232 PMCID: PMC6942290 DOI: 10.1186/s13287-019-1512-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Progressive loss of cell functionality caused by an age-related impairment in cell metabolism concerns not only mature specialized cells but also its progenitors, which significantly reduces their regenerative potential. Adipose-derived stem cells (ASCs) are most commonly used in veterinary medicine as an alternative treatment option in ligaments and cartilage injuries, especially in case of high-value sport horses. Therefore, the main aim of this study was to identify the molecular alternations in ASCs derived from three age-matched horse groups: young (< 5), middle-aged (5-15), and old (> 15 years old). METHODS ASCs were isolated from three age-matched horse groups using an enzymatic method. Molecular changes were assessed using qRT-PCR, ELISA and western blot methods, flow cytometry-based system, and confocal and scanning electron microscopy. RESULTS Our findings showed that ASCs derived from the middle-aged and old groups exhibited a typical senescence phenotype, such as increased percentage of G1/G0-arrested cells, binucleation, enhanced β-galactosidase activity, and accumulation of γH2AX foci, as well as a reduction in cell proliferation. Moreover, aged ASCs were characterized by increased gene expression of pro-inflammatory cytokines and miRNAs (interleukin 8 (IL-8), IL-1β, tumor necrosis factor α (TNF-α), miR-203b-5p, and miR-16-5p), as well as apoptosis markers (p21, p53, caspase-3, caspase-9). In addition, our study revealed that the protein level of mitofusin 1 (MFN1) markedly decreased with increasing age. Aged ASCs also displayed a reduction in mRNA levels of genes involved in stem cell homeostasis and homing, like TET-3, TET-3 (TET family), and C-X-C chemokine receptor type 4 (CXCR4), as well as protein expression of DNA methyltransferase (DNMT1) and octamer transcription factor 3/4 (Oct 3/4). Furthermore, we observed a higher splicing ratio of XBP1 (X-box binding protein 1) mRNA, indicating elevated inositol-requiring enzyme 1 (IRE-1) activity and, consequently, increased endoplasmic reticulum (ER) stress. We also observed reduced levels of glucose transporter 4 (GLUT-4) and insulin receptor (INSR) which indicated impaired insulin sensitivity. CONCLUSIONS Obtained data suggest that ASCs derived from horses older than 5 years old exhibited several molecular alternations which markedly limit their regenerative capacity. The results provide valuable information that allows for a better understanding of the molecular events occurring in ASCs in the course of aging and may help to identify new potential drug targets to restore their regenerative potential.
Collapse
Affiliation(s)
- Michalina Alicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Katarzyna Kornicka-Garbowska
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Martyna Kępska
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Michael Rӧcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig University, 35392, Giessen, Germany
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
29
|
Lipotoxicity Impairs Granulosa Cell Function Through Activated Endoplasmic Reticulum Stress Pathway. Reprod Sci 2020; 27:119-131. [PMID: 32046379 DOI: 10.1007/s43032-019-00014-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
Obesity is closely related to reproductive disorders, which may eventually lead to infertility in both males and females. Ovarian granulosa cells play a critical role during the maintenance of oocyte development through the generation of sex steroids (mainly estradiol and progesterone) and different kinds of growth factors. However, the molecular mechanism of obesity-induced granulosa cell dysfunction remains poorly investigated. In our current study, we observed that high-fat diet feeding significantly increased the level of glucose-regulated protein 78 kDa (GRP78) protein expression in mouse granulosa cells; testosterone-induced estradiol generation was impaired accordingly. To further evaluate the precise mechanism of lipotoxicity-induced granulosa cell dysfunction, mouse primary granulosa cells were treated with palmitate, and the expression levels of ER stress markers were evaluated by real-time PCR and western blot. Lipotoxicity significantly increased ER stress but impaired the mRNA expression of granulosa cell function-related makers, including androgen receptor (Ar), cytochrome P450 family 19 subfamily A member 1 (Cyp19a1), hydroxysteroid 17-beta dehydrogenase 1 (Hsd17b1), and insulin receptor substrate 1 (Irs1). Impaired testosterone-induced estradiol generation was also observed in cultured mouse granulosa cells after palmitate treatment. Insulin augmented testosterone induced estradiol generation through activation of the AKT pathway. However, palmitate treatment abolished insulin-promoted aromatase expression and estradiol generation by the stimulation of ER stress. Overexpression of IRS1 significantly ameliorated palmitate- or tunicamycin-induced impairment of aromatase expression and estradiol generation. Taken together, our current study demonstrated that lipotoxicity impaired insulin-stimulated estradiol generation through activated ER stress and inhibited IRS1 pathway.
Collapse
|
30
|
CCR2 knockout ameliorates obesity-induced kidney injury through inhibiting oxidative stress and ER stress. PLoS One 2019; 14:e0222352. [PMID: 31498850 PMCID: PMC6733486 DOI: 10.1371/journal.pone.0222352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
CCL2/CCR2 signaling is believed to play an important role in kidney diseases. Several studies have demonstrated that blocking of CCR2 has a therapeutic effect on kidney diseases. However, the effects of CCR2 knockout on obesity-induced kidney injury remain unclear. We investigated the therapeutic effects and the mechanism of CCL2/CCR2 signaling in obesity-induced kidney injury. We used C57BL/6-CCR2 wild type and C57BL/6-CCR2 knockout mice: Regular diet wild type (RD WT), RD CCR2 knockout (RD KO), High-fat diet WT (HFD WT), HFD CCR2 KO (HFD KO). Body weight of WT mice was significantly increased after HFD. However, the body weight of HFD KO mice was not decreased compared to HFD WT mice. Food intake and calorie showed no significant differences between HFD WT and HFD KO mice. Glucose, insulin, total cholesterol, and triglycerides levels increased in HFD WT mice were decreased in HFD KO mice. Insulin resistance, increased insulin secretion, and lipid accumulation showed in HFD WT mice were improved in HFD KO mice. Increased desmin expression, macrophage infiltration, and TNF-α in HFD mice were reduced in HFD KO mice. HFD-induced albuminuria, glomerular hypertrophy, glomerular basement membrane thickening, and podocyte effacement were restored by CCR2 depletion. HFD-induced elevated expressions of xBP1, Bip, and Nox4 at RNA and protein levels were significantly decreased in HFD KO. Therefore, blockade of CCL2/CCR2 signaling by CCR2 depletion might ameliorate obesity-induced albuminuria through blocking oxidative stress, ER stress, and lipid accumulation.
Collapse
|
31
|
Park SJ, Kim Y, Chen YM. Endoplasmic reticulum stress and monogenic kidney diseases in precision nephrology. Pediatr Nephrol 2019; 34:1493-1500. [PMID: 30099615 PMCID: PMC6370526 DOI: 10.1007/s00467-018-4031-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
The advent of next-generation sequencing (NGS) in recent years has led to a rapid discovery of novel or rare genetic variants in human kidney cell genes, which is transforming the risk assessment, diagnosis, and treatment of kidney disease. Mutations may lead to protein misfolding, disruption of protein trafficking, and endoplasmic reticulum (ER) retention. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and unfolded protein response. Mutations in nephrin (NPHS1), podocin (NPHS2), laminin β2 (LAMB2), and α-actinin-4 (ACTN4) have been shown to induce ER stress in HEK293 cells and podocytes in hereditary nephrotic syndromes; various founder mutations in collagen IV α chains (COL4A) have been demonstrated to activate podocyte ER stress in collagen IV nephropathies; and mutations in uromodulin (UMOD) have been reported to trigger tubular ER stress in autosomal dominant tubulointerstitial kidney disease. Meanwhile, ER resident protein SEC63 may modify disease severity in autosomal dominant polycystic kidney disease. These findings underscore the importance of ER stress in the pathogenesis of monogenic kidney disease. Recently, we have identified mesencephalic astrocyte-derived neurotrophic factor (MANF) and cysteine-rich with EGF-like domains 2 (CRELD2) as urinary ER stress biomarkers in ER stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Sun-Ji Park
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA
| | - Yeawon Kim
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8126, St. Louis, MO, 63110, USA.
| |
Collapse
|
32
|
Porcine circovirus type 2 ORF5 protein induces endoplasmic reticulum stress and unfolded protein response in porcine alveolar macrophages. Arch Virol 2019; 164:1323-1334. [PMID: 30877450 DOI: 10.1007/s00705-019-04185-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/19/2019] [Indexed: 01/12/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the essential infectious agent causing porcine circovirus-associated disease (PCVD) in pigs and one of the important viruses that severely jeopardize the swine husbandry industry. PCV2 elicits the unfolded protein response (UPR) via activation of the PERK pathway, and its capsid protein (Cap) has also been found to induce UPR with subsequent activation of apoptosis. The open reading frame 5 (ORF5) protein is a recently discovered non-structural protein, and its function in PCV2 pathogenesis remains unknown. The aim of this study was to determine whether the PCV2 ORF5 protein could induce endoplasmic reticulum stress (ERS) and UPR in porcine alveolar macrophages (PAMs). pEGFP-tagged ORF5 protein was transiently overexpressed in PAMs. Transmission electron microscopy (TEM) was employed to examine changes in ER morphology, and quantitative real-time PCR and western blotting analysis were used to measure UPR-related cell signaling alterations. We found that the ORF5 protein triggers swelling and degranulation of the ER and upregulates the expression of ERS markers. Further experiments demonstrated that the PCV2 ORF5 protein induces ERS and UPR via the PERK (RNA-activated protein kinase-like endoplasmic reticulum kinase), ATF6 (activating transcription factor 6) and IRE1 (inositol requiring enzyme 1) signaling pathways. Together with previous studies, we provide new information on the ERS-UPR induced by the PCV2 ORF5 protein.
Collapse
|
33
|
Zhang F, Niu L, Li S, Le W. Pathological Impacts of Chronic Hypoxia on Alzheimer's Disease. ACS Chem Neurosci 2019; 10:902-909. [PMID: 30412668 DOI: 10.1021/acschemneuro.8b00442] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hypoxia is considered as one of the important environmental factors contributing to the pathogenesis of Alzheimer's disease (AD). Many chronic hypoxia-causing comorbidities, such as obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD), have been reported to be closely associated with AD. Increasing evidence has documented that chronic hypoxia may affect many pathological aspects of AD including amyloid β (Aβ) metabolism, tau phosphorylation, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial and synaptic dysfunction, which may collectively result in neurodegeneration in the brain. In this Review, we briefly summarize the effects of chronic hypoxia on AD pathogenesis and discuss the underlying mechanisms. Since chronic hypoxia is common in the elderly and may contribute to the pathogenesis of AD, prospective prevention and treatment targeting hypoxia may be helpful to delay or alleviate AD.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| |
Collapse
|
34
|
Mo JS, Choi D, Han YR, Kim N, Jeong HS. Morin has protective potential against ER stress induced apoptosis in renal proximal tubular HK-2 cells. Biomed Pharmacother 2019; 112:108659. [PMID: 30784934 DOI: 10.1016/j.biopha.2019.108659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/27/2022] Open
Abstract
ER stress is an early event of acute kidney injury and has been linked to accelerate the development of chronic kidney disease. Therefore, the compounds that can mimic ER stress inhibitor may confer regulatory effects on ER stress induced apoptosis. In this study, we investigated the protective effects of flavonoid morin against ER stress induced apoptosis in human renal proximal tubular HK-2 cells. Morin downregulated the expression of GRP78, central regulator of ER stress response, induced by ER stress inducer tunicamycin. Interestingly, morin selectively inhibited the IRE1 pathway among the three major arms of the ER stress responses. The increased expression of XBP1-sp, phosphor-IRE-1α, and phosphor-JNK by TM were markedly suppressed by the pretreatment of morin. Morin also decreased the intracellular ROS production and the apoptosis induced by TM in HK-2 cells. Taken together, our finding show that morin acts as an ER stress inhibitor, and can be a good candidate in various ER-stress associated kidney diseases.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Genomic Instability Research Center (GIRC) & Genome Stability Institute, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Dabin Choi
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Yu-Ran Han
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-si 50612, Republic of Korea
| | - Nambin Kim
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-si 50612, Republic of Korea.
| |
Collapse
|
35
|
Varlamova EG, Goltyaev MV. The Effect of Sodium Selenite on the Expression of Genes of Endoplasmic Reticulum-Resident Selenoproteins in Human Fibrosarcoma Cells. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s000635091805024x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
APOL1 risk variants cause podocytes injury through enhancing endoplasmic reticulum stress. Biosci Rep 2018; 38:BSR20171713. [PMID: 29967295 PMCID: PMC6131197 DOI: 10.1042/bsr20171713] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/12/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
Two coding sequence variants (G1 and G2) of Apolipoprotein L1 (APOL1) gene have been implicated as a higher risk factor for chronic kidney diseases (CKD) in African Americans when compared with European Americans. Previous studies have suggested that the APOL1 G1 and G2 variant proteins are more toxic to kidney cells than the wild-type APOL1 G0, but the underlying mechanisms are poorly understood. To determine whether endoplasmic reticulum (ER) stress contributes to podocyte toxicity, we generated human podocytes (HPs) that stably overexpressed APOL1 G0, G1, or G2 (Vec/HPs, G0/HPs, G1/HPs, and G2/HPs). Propidium iodide staining showed that HP overexpressing the APOL1 G1 or G2 variant exhibited a higher rate of necrosis when compared with those overexpressing the wild-type G0 counterpart. Consistently, the expression levels of nephrin and podocin proteins were significantly decreased in the G1- or G2-overexpressing cells despite the maintenance of their mRNA expressions levels. In contrast, the expression of the 78-kDa glucose-regulated protein ((GRP78), also known as the binding Ig protein, BiP) and the phosphorylation of the eukaryotic translation initiation factor 1 (eIF1) were significantly elevated in the G1/HPs and G2/HPs, suggesting a possible occurrence of ER stress in these cells. Furthermore, ER stress inhibitors not only restored nephrin protein expression, but also provided protection against necrosis in G1/HPs and G2/HPs, suggesting that APOL1 risk variants cause podocyte injury partly through enhancing ER stress.
Collapse
|
37
|
Cunningham KE, Novak EA, Vincent G, Siow VS, Griffith BD, Ranganathan S, Rosengart MR, Piganelli JD, Mollen KP. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) activation contributes to the pathogenesis of experimental colitis via inhibition of intestinal epithelial cell proliferation. FASEB J 2018; 33:1330-1346. [PMID: 30113881 DOI: 10.1096/fj.201800535r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence and prevalence of inflammatory bowel disease (IBD) are increasing worldwide. IBD is known to be multifactorial, but inflammatory signaling within the intestinal epithelium and a subsequent failure of the intestinal epithelial barrier have been shown to play essential roles in disease pathogenesis. CaMKIV is a multifunctional protein kinase associated with inflammation and cell cycle regulation. CaMKIV has been extensively studied in autoimmune diseases, but a role in idiopathic intestinal inflammation has not been described. In this study, active CaMKIV was highly expressed within the intestinal epithelium of humans with ulcerative colitis and wild-type (WT) mice with experimental induced colitis. Clinical disease severity directly correlates with CaMKIV activation, as does expression of proinflammatory cytokines and histologic features of colitis. In WT mice, CaMKIV activation is associated with increases in expression of 2 cell cycle proarrest signals: p53 and p21. Cell cycle arrest inhibits proliferation of the intestinal epithelium and ultimately results in compromised intestinal epithelial barrier integrity, further perpetuating intestinal inflammation during experimental colitis. Using a CaMKIV null mutant mouse, we demonstrate that a loss of CaMKIV protects against murine DSS colitis. Small molecules targeting CaMKIV activation may provide therapeutic benefit for patients with IBD.-Cunningham, K. E., Novak, E. A., Vincent, G., Siow, V. S., Griffith, B. D., Ranganathan, S., Rosengart, M. R., Piganelli, J. D., Mollen, K. P. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) activation contributes to the pathogenesis of experimental colitis via inhibition of intestinal epithelial cell proliferation.
Collapse
Affiliation(s)
- Kellie E Cunningham
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth A Novak
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Garret Vincent
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Vei Shaun Siow
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian D Griffith
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarangarajan Ranganathan
- Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jon D Piganelli
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin P Mollen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pediatric Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Crosstalk between transforming growth factor-β1 and endoplasmic reticulum stress regulates alpha-smooth muscle cell actin expression in podocytes. Life Sci 2018; 209:9-14. [PMID: 30059670 DOI: 10.1016/j.lfs.2018.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022]
Abstract
AIMS Transforming growth factor-β1 (TGF-β1) plays a significant role in epithelial-mesenchymal transition (EMT). Furthermore, endoplasmic reticulum (ER) stress also can induce EMT. However, the relationship among TGF-β1, ER stress and EMT in podocytes is still unclear. Consequently, this study examines the crosstalk effect between TGF-β1 and ER stress on the regulation of EMT. MAIN METHODS The mRNA of EMT marker (α-smooth muscle actin: α-SMA) was evaluated by quantitative real-time PCR. In addition, the protein expressions of α-SMA and three ER stress biomarkers (glucose-regulated protein 78: GRP78; eukaryotic translation initiation factor 2α: eIF2α; CCAAT/enhancer-binding protein-homologous protein: CHOP) were evaluated by Western blot. KEY FINDINGS TGF-β1 increased the ER stress response biomarkers (GRP78, p-eIF2α/eIF2α and CHOP) and mRNA and protein levels of α-SMA in podocytes. Furthermore, ER stress inducer (thapsigargin) increased α-SMA protein expression. ER stress inhibitor (4-phenylbutyrate) attenuated the ER stress response and α-SMA protein expression under treatment with TGF-β1. Among the various TGF-β1 down-stream pathway inhibitors considered in the present study (SIS3: inhibitor of Smad2/3; U0126: inhibitor of MEK/ERK; SB203580: inhibitor of p38), SIS3 greatly attenuated the ER stress response biomarker (GRP78) under treatment with TGF-β1. SIS3, U0126 and SB203580 all partly attenuated α-SMA mRNA expression under TGF-β1 treatment. However, only SIS3 attenuated α-SMA protein expression. SIGNIFICANCE The present results confirm that ER stress induces α-SMA protein expression in podocytes. Furthermore, TGF-β1 mainly regulates ER stress and α-SMA protein expression through the Smad2/3 pathway. Therefore, ER stress and TGF-β1 may synergistically induce podocytes to undergo EMT.
Collapse
|
39
|
Shin DH, Leem DG, Shin JS, Kim JI, Kim KT, Choi SY, Lee MH, Choi JH, Lee KT. Compound K induced apoptosis via endoplasmic reticulum Ca 2+ release through ryanodine receptor in human lung cancer cells. J Ginseng Res 2018; 42:165-174. [PMID: 29719463 PMCID: PMC5926506 DOI: 10.1016/j.jgr.2017.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extended endoplasmic reticulum (ER) stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. METHODS The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. RESULTS Compound K-induced ER stress was confirmed through increased phosphorylation of eIF2α and protein levels of GRP78/BiP, XBP-1S, and IRE1α in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular Ca2+ chelator) or dantrolene (an RyR channel antagonist). These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12) partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor) dramatically improved the compound K-induced apoptosis. CONCLUSION Cell survival and intracellular Ca2+ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway.
Collapse
Affiliation(s)
- Dong-Hyun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Gyu Leem
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Joo-Il Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Tack Kim
- Traditional Food Research Center, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Sang Yoon Choi
- Traditional Food Research Center, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Myung-Hee Lee
- Traditional Food Research Center, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Kang FC, Wang SC, Chang MM, Pan BS, Wong KL, Cheng KS, So EC, Huang BM. Midazolam activates caspase, MAPKs and endoplasmic reticulum stress pathways, and inhibits cell cycle and Akt pathway, to induce apoptosis in TM3 mouse Leydig progenitor cells. Onco Targets Ther 2018; 11:1475-1490. [PMID: 29588601 PMCID: PMC5858853 DOI: 10.2147/ott.s154442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Midazolam (MDZ) has powerful hypnosis, amnesia, anti-anxiety and anticonvulsant effects. Studies have shown that prenatally developmental toxicity of diazepam can be observed in many organs/tissues. However, it remains elusive in male reproductive system. Materials and methods TM3 mouse Leydig progenitor cell line was used to determine whether MDZ has any unfavorable effects. Results Midazolam significantly decreased cell viability in dose- and time-dependent manners in TM3 cells. In flow cytometry analysis, midazolam significantly increased subG1 phase cell numbers, and annexin V/PI double staining assay further confirmed that MDZ induced apoptosis in TM3 cells. Moreover, MDZ significantly induced the expression of caspase-8 and -3 proteins and the phosphorylation of JNK, ERK1/2 and p38. Besides, MDZ didn’t activate Akt pathway in TM3 cells. Furthermore, the expressions of p-EIF2α, ATF4, ATF3 and CHOP were induced by midazolam, suggesting that midazolam could induce apoptosis through endoplasmic reticulum (ER) stress in TM3 cells. Additionally, the expressions of cyclin A, cyclin B and CDK1 were inhibited by midazolam through the regulation of p53 in TM3 cells, indicating that midazolam could regulate cell cycle to induce apoptosis. Conclusion Midazolam could activate caspase, MAPKs and ER stress pathways and impede Akt pathway and cell cycle to induce apoptosis in TM3 mouse Leydig progenitor cells.
Collapse
Affiliation(s)
- Fu-Chi Kang
- Department of Anesthesia, Chi Mei Medical Center, Chiali, Tainan, Taiwan, Republic of China
| | - Shu-Chun Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kar-Lok Wong
- Department of Anesthesia, China Medical University, Taichung, Taiwan, Republic of China
| | - Ka-Shun Cheng
- Department of Anesthesia, China Medical University, Taichung, Taiwan, Republic of China.,Department of Anesthesiology, The Qingdao University Yuhuangding Hospital, Yantai, Shandong, China
| | - Edmund Cheung So
- Department of Anesthesia, China Medical University, Taichung, Taiwan, Republic of China.,Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan, Republic of China
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
41
|
De Silva E, Kim H. Drug-induced thrombocytopenia: Focus on platelet apoptosis. Chem Biol Interact 2018; 284:1-11. [PMID: 29410286 DOI: 10.1016/j.cbi.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/23/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
Thrombocytopenia is a serious and potentially fatal complication of drug therapy that results either from a decrease in bone marrow platelet production or the excessive destruction of circulating platelets. Although multiple mechanisms are responsible for deregulated platelet clearance, the role of programmed platelet death (apoptosis) in drug-induced thrombocytopenia has been relatively under-investigated until recently. Here we review apoptotic signaling pathways in platelets, with a focus on current data that provide mechanistic insights into drug-induced apoptosis and thrombocytopenia.
Collapse
Affiliation(s)
- Enoli De Silva
- Centre for Blood Research, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada; Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
42
|
Yang Q, Wen L, Meng Z, Chen Y. Blockage of endoplasmic reticulum stress attenuates nilotinib-induced cardiotoxicity by inhibition of the Akt-GSK3β-Nox4 signaling. Eur J Pharmacol 2018; 822:85-94. [PMID: 29355557 DOI: 10.1016/j.ejphar.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
Abstract
Cardiotoxicity is a critical side-effect of nilotinib during treatment for cancer, such as chronic myeloid leukemia, while the potential signaling mechanisms remain unclear. The role of and the relationship between endoplasmic reticulum (ER) stress and mitochondrial dysfunction was investigated in nilotinib-induced cardiac H9C2 injury as a suitable cell model. Our results showed that ER stress was persistently induced in nilotinib-treated cells, evidenced by increase of GRP78, CHOP, ATF4 and XBP1 as well as phospho-PERKThr980. The results from 4-phenylbutyrate (PBA, an ER stress inhibitor) and SC79 (a specific Akt activator) suggested that ER stress increased activity of glycogen synthase kinase-3 beta (GSK3β) that is reflected by decrease of phospho-GSK3βSer9, through downregulation of phospho-AktSer473, and that prolonged ER stress and activated GSK3β involved nilotinib-induced apoptosis. In addition, the data from JNK inhibition using SP600125 showed that over-activated JNK was responsible for Akt de-phosphorylation. Moreover, the abundance of NADPH oxidase (Nox4) was significantly increased following nilotinib treatment, which was prevented by SB216763 (a specific GSK3β inhibitor). Additionally, mitochondrial dysfunction was indicated by reduced mitochondrial membrane potential (MMP) level and increased reactive oxygen species level. In nilotinib-treated cells, knockdown of Nox4 preserved MMP level, abrogated reactive oxygen species production, and decreased apoptosis. Accordingly, our data demonstrated that inhibition of ER stress may protect cardiomyocytes against nilotinib toxicity potentially through inactivation of Akt-GSK3β-Nox4 signaling. These findings may provide an attractive therapeutic target for treatment of nilotinib-related cardiotoxicity.
Collapse
Affiliation(s)
- Qinghui Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Liang Wen
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, China
| | - Zenghui Meng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjun Chen
- Department of Cardiology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
43
|
Luteolin Treatment Protects against Renal Ischemia-Reperfusion Injury in Rats. Mediators Inflamm 2017; 2017:9783893. [PMID: 29358852 PMCID: PMC5735687 DOI: 10.1155/2017/9783893] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is a common but severe scientific problem. Luteolin has great anti-inflammatory and antioxidant effects. In this study, we studied the effect of luteolin on renal I/R injury in rats. Intragastric administration of luteolin or saline was performed in Sprague-Dawley rats before (40 mg/kg for three days) and after (one day) renal I/R modeling. Kidney and blood samples were harvested to detect the severity of renal injury 24 hours after operation. The results showed that luteolin-treated rats exhibited milder histomorphological changes with lower scores of renal histological lesions; lower blood urea nitrogen and creatinine levels; lower renal malondialdehyde (MDA), 8-oxo-deoxyguanosine (8-OHdG), and myeloperoxidase (MPO) levels; and higher superoxide dismutase (SOD) and catalase (CAT) activities in the kidney. Luteolin attenuated the increased levels of serum and renal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, renal high mobility group box-1 (HMGB1), and nuclear factor kappa β (NF-κB) expression levels in I/R rats. Furthermore, luteolin treatment significantly reduced renal cell apoptosis and endoplasmic reticulum (ER) stress caused by renal I/R injury. In conclusion, luteolin improved renal function in I/R rats by reducing oxidative stress, neutrophil infiltration, inflammation, renal cell apoptosis, and expression of HMGB1 and NF-κB, and ER stress.
Collapse
|
44
|
Cheng YC, Chen CA, Chen HC. Endoplasmic reticulum stress-induced cell death in podocytes. Nephrology (Carlton) 2017; 22 Suppl 4:43-49. [DOI: 10.1111/nep.13145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Yu-Chi Cheng
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| | - Chien-An Chen
- Division of Nephrology; Sinlau Hospital; Tainan Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine; Kaohsiung Medical University Hospital, Kaohsiung Medical University; Kaohsiung Taiwan
| |
Collapse
|
45
|
Santos LE, Ferreira ST. Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer's disease. Neuropharmacology 2017; 136:350-360. [PMID: 29129774 DOI: 10.1016/j.neuropharm.2017.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
Abstract
While most often noted for its cognitive symptoms, Alzheimer's disease (AD) is, at its core, a disease of protein misfolding/aggregation, with an intriguing inflammatory component. Defective clearance and/or abnormal production of the amyloid-β peptide (Aβ), and its ensuing accumulation and aggregation, underlie two hallmark features of AD: brain accumulation of insoluble protein deposits known as amyloid or senile plaques, and buildup of soluble Aβ oligomers (AβOs), diffusible toxins linked to synapse dysfunction and memory impairment. In neurons, as in typical eukaryotic cells, the endoplasmic reticulum (ER) serves as a main compartment for the folding, maturation, trafficking and quality control of newly synthesized proteins. The ER lumen, a calcium-rich, oxidizing environment, provides favorable conditions for these physiological functions to occur. These conditions, however, also favor protein aggregation. Several stressors, including metabolic/nutrient stress and certain pathologies, may upset the ER homeostasis, e.g., by affecting calcium levels or by causing the accumulation of unfolded or misfolded proteins. Whatever the underlying cause, the result is what is commonly known as "ER stress". This, in turn, triggers a conserved cellular response mechanism known as the "unfolded protein response" (UPR). The UPR comprises three pathways involving transcriptional or translational regulators aimed at normalizing ER function, and each of them results in pro-inflammatory signaling. A positive feedback loop exists between ER stress and inflammation, with clear implications for neurodegeneration and AD. Here, we explore recent findings on the role of ER stress and the UPR in inflammatory processes leading to synapse failure and memory impairment in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Luis E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
46
|
Bhardwaj R, Bhardwaj A, Tandon C, Dhawan DK, Bijarnia RK, Kaur T. Implication of hyperoxaluria on osteopontin and ER stress mediated apoptosis in renal tissue of rats. Exp Mol Pathol 2017; 102:384-390. [DOI: 10.1016/j.yexmp.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022]
|
47
|
Graham LA, Dominiczak AF, Ferreri NR. Role of renal transporters and novel regulatory interactions in the TAL that control blood pressure. Physiol Genomics 2017; 49:261-276. [PMID: 28389525 PMCID: PMC5451551 DOI: 10.1152/physiolgenomics.00017.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Hypertension (HTN), a major public health issue is currently the leading factor in the global burden of disease, where associated complications account for 9.4 million deaths worldwide every year. Excessive dietary salt intake is among the environmental factors that contribute to HTN, known as salt sensitivity. The heterogeneity of salt sensitivity and the multiple mechanisms that link high salt intake to increases in blood pressure are of upmost importance for therapeutic application. A continual increase in the kidney's reabsorption of sodium (Na+) relies on sequential actions at various segments along the nephron. When the distal segments of the nephron fail to regulate Na+, the effects on Na+ homeostasis are unfavorable. We propose that the specific nephron region where increased active uptake occurs as a result of variations in Na+ reabsorption is at the thick ascending limb of the loop of Henle (TAL). The purpose of this review is to urge the consideration of the TAL as contributing to the pathophysiology of salt-sensitive HTN. Further research in this area will enable development of a therapeutic application for targeted treatment.
Collapse
Affiliation(s)
- Lesley A Graham
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow Cardiovascular and Medical Sciences, Glasgow, United Kingdom; and
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow Cardiovascular and Medical Sciences, Glasgow, United Kingdom; and
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
48
|
Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin. Int J Mol Sci 2017; 18:ijms18020305. [PMID: 28146117 PMCID: PMC5343841 DOI: 10.3390/ijms18020305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1) hemeoxygenase-1 (HO-1)/thioredoxin pathway. Renal tubular cells, tunicamycin (TM)-induced ER stress, and unilateral ureteral obstruction (UUO) mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78) and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α), through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor). Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition.
Collapse
|
49
|
Zhang Y, Gao X, Chen S, Zhao M, Chen J, Liu R, Cheng S, Qi M, Wang S, Liu W. Cyclin-dependent kinase 5 contributes to endoplasmic reticulum stress induced podocyte apoptosis via promoting MEKK1 phosphorylation at Ser280 in diabetic nephropathy. Cell Signal 2016; 31:31-40. [PMID: 28024901 DOI: 10.1016/j.cellsig.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/01/2016] [Accepted: 12/23/2016] [Indexed: 11/28/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported to be associated with podocyte apoptosis in diabetic nephropathy, but the mechanism of ER signaling in podocyte apoptosis hasn't been fully understood. Our previous studies have demonstrated that Cyclin-dependent kinase 5 (Cdk5) was associated with podocyte apoptosis in diabetic nephropathy. The present study was designed to examine whether and how Cdk5 activity plays a role in ER stress induced podocyte apoptosis in diabetic nephropathy. The results showed that along with induction of Cdk5 and apoptosis, GRP78 and its two sensors as well as CHOP and cleaved caspase-12 were induced in high glucose treated podocytes. These responses were attenuated by treated salubrinal. The ER stress inducer, tunicamycin, also up-regulated the kinase activity and protein expression of Cdk5 in podocytes accompanied with the increasing of GRP78. On the other hand, Cdk5 phosphorylates MEKK1 at Ser280 in tunicamycin treated podocytes, and together, they increase the JNK phosphorylation. Moreover, disruption of this pathway can decrease the podocyte apoptosis induced by tunicamycin. Therefore, our study proved that Cdk5 may play an important role in ER stress induced podocyte apoptosis through MEKK1/JNK pathway in diabetic nephropathy.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Diagnostics, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiang Gao
- Department of Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shuanggang Chen
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Min Zhao
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Chen
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Liu
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Shengyang Cheng
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengyuan Qi
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuo Wang
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wei Liu
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
50
|
Tregub PP, Kulikov VP, Motin YG, Nagibaeva ME, Zabrodina AS. Stress of the Endoplasmic Reticulum of Neurons in Stroke Can Be Maximally Limited by Combined Exposure to Hypercapnia and Hypoxia. Bull Exp Biol Med 2016; 161:472-5. [PMID: 27591867 DOI: 10.1007/s10517-016-3441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 10/21/2022]
Abstract
We studied the expression of chaperone GRP-78 and transcription factor NF-kB during the development of ischemic tolerance of the brain after combined and isolated exposure to hypoxia and hypercapnia. Combined exposure to hypoxia and hypercapnia maximally increased the expression of chaperone GRP-78 and transcription factor NF-kB, while the formation of ischemia-induced tolerance under conditions of hypercapnic hypoxia can be associated with activation of adaptive stress mechanisms in the endoplasmic reticulum. Under these conditions, hypercapnia in combination with hypoxia is a priority factor for activation of GRP-78 and transcription factor NF-kB.
Collapse
Affiliation(s)
- P P Tregub
- Altai State Medical University, Ministry of Health Care of the Russian Federation, Barnaul, Russia. .,Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia.
| | - V P Kulikov
- Altai State Medical University, Ministry of Health Care of the Russian Federation, Barnaul, Russia.,Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - Yu G Motin
- Altai State Medical University, Ministry of Health Care of the Russian Federation, Barnaul, Russia
| | - M E Nagibaeva
- Altai State Medical University, Ministry of Health Care of the Russian Federation, Barnaul, Russia
| | - A S Zabrodina
- Altai State Medical University, Ministry of Health Care of the Russian Federation, Barnaul, Russia
| |
Collapse
|