1
|
Maeda K, Abdi R, Tsokos GC. The Role of Podocytes in Lupus Pathology. Curr Rheumatol Rep 2024; 27:10. [PMID: 39731699 DOI: 10.1007/s11926-024-01175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE OF REVIEW Kidney injury due to lupus nephritis (LN) is a severe and sometimes life-threatening sequela of systemic lupus erythematosus. Autoimmune injury to podocytes has been increasingly demonstrated to be a key driver of LN-related kidney injury because these cells play key roles in glomerular filtration barrier homeostasis. Irreparable podocyte injury impairs these processes and can lead to proteinuria, which is an indicator of poor prognosis in LN. This review highlights recent advances in our understanding of the involvement of podocytes in the pathogenesis of LN and discusses new podocyte-targeted therapeutic strategies. RECENT FINDINGS Podocytes play a key role in glomerular filtration barrier homeostasis, both by helping to secrete and organize the glomerular basement membrane and by the formation of a glomerular slit diaphragm between adjacent cells. Recent studies revealed the involvement of abnormal calcium signaling, dysregulation of actin-related proteins, and mitotic catastrophe in LN progression. In addition, podocytes express many molecules related to the innate and adaptive immune responses. IgG from patients with LN induces direct injury of podocytes, inflammasome, and interactions with immune cells which have been shown to promote the development of LN. Our understanding of the role of podocytes in the pathogenesis of LN has been improved. Recent studies have shed light on potential therapeutic strategies targeting podocytes to control kidney injury.
Collapse
Affiliation(s)
- Kayaho Maeda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-937, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Zhang T, Zhang Y, Tao J, Rong X, Yang Y. Intestinal Trefoil Factor 3: a new biological factor mediating gut-kidney crosstalk in diabetic kidney disease. Endocrine 2024; 84:109-118. [PMID: 38148440 DOI: 10.1007/s12020-023-03559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE To investigate the effect of TFF3 in the pathogenesis of Diabetic Kidney Disease (DKD), and explore the dynamic changes of TFF3 expression pattern in renal injury process. METHODS DKD animal model was established by streptozotocin (STZ) (40 mg/kg/d, ip, for 5 days, consecutively) combined with the high fat diet (HFD) for 12 weeks. While animals were sacrificed at different time stages in DKD process (4 weeks, 8 weeks and 12 weeks, respectively). RESULTS STZ combined with high-fat diet induced weight gain, increased blood glucose and decreased glucose tolerance in DKD mice. Compared to the control group, the DKD group exhibits extracellular matrix (ECM) accumulation and the renal injury was aggravated in a time-dependent manner. The TFF3 expression level was decreased in kidney, and increased in colon tissue. CONCLUSION TFF3 is not only expressed in colon, but also expressed in renal medulla and cortex. TFF3 might be play a pivotal role in renal mucosal repair by gut-kidney crosstalk, and protect renal from high glucose microenvironment damage.
Collapse
Affiliation(s)
- Tao Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Tao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiqi Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Zhang T, Huo H, Zhang Y, Tao J, Yang J, Rong X, Yang Y. Th17 cells: A new target in kidney disease research. Int Rev Immunol 2024; 43:263-279. [PMID: 38439681 DOI: 10.1080/08830185.2024.2321901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 03/06/2024]
Abstract
Type 17 T helper (Th17) cells, which are a subtype of CD4+ T helper cells, secrete pro-inflammatory cytokines such as IL-17A, IL-17F, IL-21, IL-22, and GM-CSF, which play crucial roles in immune defence and protection against fungal and extracellular pathogen invasion. However, dysfunction of Th17 cell immunity mediates inflammatory responses and exacerbates tissue damage. This pathological process initiated by Th17 cells is common in kidney diseases associated with renal injury, such as glomerulonephritis, lupus nephritis, IgA nephropathy, hypertensive nephropathy, diabetic kidney disease and acute kidney injury. Therefore, targeting Th17 cells to treat kidney diseases has been a hot topic in recent years. This article reviews the mechanisms of Th17 cell-mediated inflammation and autoimmune responses in kidney diseases and discusses the related clinical drugs that modulate Th17 cell fate in kidney disease treatment.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yinghui Zhang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Tao
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junzheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, Guangdong, China
| | - Xianglu Rong
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Ministry of Education, Guangzhou, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Salfi G. Reconsidering the role of the IL-23/IL-17 immune axis in idiopathic nephrotic syndrome pathogenesis. Clin Kidney J 2024; 17:sfad264. [PMID: 38186907 PMCID: PMC10768747 DOI: 10.1093/ckj/sfad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Giuseppe Salfi
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
5
|
Liu R, Wen X, Peng X, Zhao M, Mi L, Lei J, Xu K. Immune podocytes in the immune microenvironment of lupus nephritis (Review). Mol Med Rep 2023; 28:204. [PMID: 37711069 PMCID: PMC10540031 DOI: 10.3892/mmr.2023.13091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder caused by the loss of tolerance to endogenous nuclear antigens such as double‑stranded DNA, leading to the proliferation of T cells and subsequent activation of B cells, which results in serious organ damage and life‑threatening complications such as lupus nephritis. Lupus nephritis (LN) develops as a frequent complication of SLE, accounting for >60% of SLE cases, and is characterized by proteinuria and heterogeneous histopathological findings. Glomerular injury serves a role in proteinuria as podocyte damage is the leading contributor. Numerous studies have reported that podocytes are involved in the immune response that promotes LN progression. In LN, immune complex deposition stimulates dendritic cells to secrete inflammatory cytokines that activate T cells and B cells. B cells secrete autoantibodies that attack and damage the renal podocytes, leading to renal podocyte injury. The injured podocytes trigger inflammatory cells through the expression of toll‑like receptors and trigger T cells through major histocompatibility complexes and CD86, thereby participating in the local immune response and the exacerbation of podocyte injury. Based on the existing literature, the present review summarizes the research progress of podocytes in LN under the local immune microenvironment of the kidney, explores the mechanism of podocyte injury under the immune microenvironment, and evaluates podocytes as a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Ruiling Liu
- Department of Microbiology and Immunology, Basic Medical College, Shanxi Medical University, Jinzhong, Shanxi 030619, P.R. China
| | - Xiaoting Wen
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| | - Xinyue Peng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Miaomiao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Liangyu Mi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Jiamin Lei
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ke Xu
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
6
|
Hayward S, Parmesar K, Saleem MA. What is circulating factor disease and how is it currently explained? Pediatr Nephrol 2023; 38:3513-3518. [PMID: 36952039 PMCID: PMC10514121 DOI: 10.1007/s00467-023-05928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
Nephrotic syndrome (NS) consists of the clinical triad of hypoalbuminaemia, high levels of proteinuria and oedema, and describes a heterogeneous group of disease processes with different underlying drivers. The existence of circulating factor disease (CFD) as a driver of NS has been epitomised by a subset of patients who exhibit disease recurrence after transplantation, alongside laboratory work. Several circulating factors have been proposed and studied, broadly grouped into protease components such as soluble urokinase-type plasminogen activator (suPAR), hemopexin (Hx) and calcium/calmodulin-serine protease kinase (CASK), and other circulating proteases, and immune components such as TNF-α, CD40 and cardiotrophin-like cytokine-1 (CLC-1). While currently there is no definitive way of assessing risk of CFD pre-transplantation, promising work is emerging through the study of 'multi-omic' bioinformatic data from large national cohorts and biobanks.
Collapse
Affiliation(s)
- Samantha Hayward
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Kevon Parmesar
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Salfi G, Casiraghi F, Remuzzi G. Current understanding of the molecular mechanisms of circulating permeability factor in focal segmental glomerulosclerosis. Front Immunol 2023; 14:1247606. [PMID: 37795085 PMCID: PMC10546017 DOI: 10.3389/fimmu.2023.1247606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
The pathogenetic mechanisms underlying the onset and the post-transplant recurrence of primary focal segmental glomerulosclerosis (FSGS) are complex and remain yet to be fully elucidated. However, a growing body of evidence emphasizes the pivotal role of the immune system in both initiating and perpetuating the disease. Extensive investigations, encompassing both experimental models and patient studies, have implicated T cells, B cells, and complement as crucial actors in the pathogenesis of primary FSGS, with various molecules being proposed as potential "circulating factors" contributing to the disease and its recurrence post kidney-transplantation. In this review, we critically assessed the existing literature to identify essential pathways for a comprehensive characterization of the pathogenesis of FSGS. Recent discoveries have shed further light on the intricate interplay between these mechanisms. We present an overview of the current understanding of the engagement of distinct molecules and immune cells in FSGS pathogenesis while highlighting critical knowledge gaps that require attention. A thorough characterization of these intricate immune mechanisms holds the potential to identify noninvasive biomarkers that can accurately identify patients at high risk of post-transplant recurrence. Such knowledge can pave the way for the development of targeted and personalized therapeutic approaches in the management of FSGS.
Collapse
Affiliation(s)
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy
| | | |
Collapse
|
8
|
May CJ, Chesor M, Hunter SE, Hayes B, Barr R, Roberts T, Barrington FA, Farmer L, Ni L, Jackson M, Snethen H, Tavakolidakhrabadi N, Goldstone M, Gilbert R, Beesley M, Lennon R, Foster R, Coward R, Welsh GI, Saleem MA. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events. Kidney Int 2023; 104:265-278. [PMID: 36940798 PMCID: PMC7616342 DOI: 10.1016/j.kint.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.
Collapse
Affiliation(s)
- Carl J May
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Bryony Hayes
- Bristol Renal, University of Bristol, Bristol, UK
| | - Rachel Barr
- Bristol Renal, University of Bristol, Bristol, UK
| | - Tim Roberts
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | | | | | - Rodney Gilbert
- Renal Medicine and Nephrology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Matt Beesley
- Pathology Department, Gloucestershire Royal Hospital, Gloucester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medical and Health Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Richard Coward
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK.
| |
Collapse
|
9
|
Ollero M, Sahali D. Stage lighting on PAR-1: a step further in the understanding of acquired focal and segmental glomerulosclerosis. Kidney Int 2023; 104:234-236. [PMID: 37479383 DOI: 10.1016/j.kint.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 07/23/2023]
Abstract
The pathogenic mechanisms of acquired focal and segmental glomerular sclerosis are only partially known and represent a medical challenge in nephrology. The article by May et al. sheds additional light on previous data indicating the key role of the protease-activated receptor 1. The new evidence is based on in vivo studies in relevant animal models and on patient biopsies and represents a significant step forward in the understanding of this pathologic condition.
Collapse
Affiliation(s)
- Mario Ollero
- University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Dil Sahali
- University Paris Est Créteil, INSERM, IMRB, Créteil, France; Service Néphrologie, AP-HP, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
10
|
Alduraibi FK, Sullivan KA, Chatham WW, Hsu HC, Mountz JD. Interrelation of T cell cytokines and autoantibodies in systemic lupus erythematosus: A cross-sectional study. Clin Immunol 2023; 247:109239. [PMID: 36682593 PMCID: PMC10118038 DOI: 10.1016/j.clim.2023.109239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
T-helper cytokines interferon gamma (IFNɣ), interleukin 17 (IL-17) and IL-10 impact systemic lupus erythematosus (SLE) directly and indirectly via modulation of autoAb production. We determined the separate and combined effects on clinical manifestations of SLE (N = 62). IFNɣ, IL-17 but not IL-10 were significantly elevated in patients with SLE. IFNɣ positively correlated with anti-DNA and anti-SSA. IL-17 positively correlated with anti-SSA and was significantly higher in patients with discoid rash and class V LN. IL-10 did not correlate with circulating autoantibodies but was significantly elevated in patients with LN. Patients with LN had elevated plasma levels of anti-DNA and anti-Sm/ribonuclear protein (RNP). Anti-Sm/RNP levels were decreased in patients with acute mucocutaneous manifestations, including photosensitivity and/or malar rash. The study provides critical insights into pathological mechanisms of LN, which could help guide future diagnoses and therapies.
Collapse
Affiliation(s)
- Fatima K Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA; Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA; Department of Medicine, Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kathryn A Sullivan
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Winn Chatham
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA; Medicine Service, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
11
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
12
|
Kitsou K, Askiti V, Mitsioni A, Spoulou V. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. Eur J Pediatr 2022; 181:1395-1404. [PMID: 35098401 DOI: 10.1007/s00431-021-04357-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
UNLABELLED Idiopathic nephrotic syndrome (INS) is a common glomerular disease in childhood, and the immunological involvement in the pathogenesis of non-genetic INS, although not fully elucidated, is evident. This narrative review aims to offer a concise and in-depth view of the current knowledge on the immunological mechanisms of the development of INS as well as the role of the immunological components of the disease in the responsiveness to treatment. T cell immunity appears to play a major role in the INS immunopathogenesis and has been the first to be linked to the disease. Various T cell immunophenotypes are implicated in INS, including T-helper-1, T-helper-2, T-helper-17, and T regulatory cells, and various cytokines have been proposed as surrogate biomarkers of the disease; however, no distinct T helper or cytokine profile has been conclusively linked to the disease. More recently, the recognition of the role of B cell mediated immunity and the various B cell subsets that are dysregulated in patients with INS have led to new hypotheses on the underlying immunological causes of INS. Finally, the disambiguation of the exact mechanisms of the INS development in the future may be the key to the development of more targeted personalized approaches in managing INS. CONCLUSIONS INS demonstrates particularly interesting immunopathogenetic pathways, in which multiple interactions between T cell and B cell immunity and the podocyte are involved. The disambiguation of these pathways will provide promising novel therapeutic targets in INS. WHAT IS KNOWN • INS is the most common glomerular disease in the paediatric population, and its onset and relapses have been linked to various immunological triggers. • Multiple immunological mechanisms have been implicated in the pathogenesis of INS; however, no single distinct immunological profile has been recognized. WHAT IS NEW • Th17 cells and Treg cells play an important role in the immune dysregulation in INS. • Transitional B cell levels as well as the transitional/memory B cell ratio have been correlated to nephrotic relapses and have been proposed as biomarkers of INS relapses in SSNS patients.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Varvara Askiti
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andromachi Mitsioni
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Lin DW, Chang CC, Hsu YC, Lin CL. New Insights into the Treatment of Glomerular Diseases: When Mechanisms Become Vivid. Int J Mol Sci 2022; 23:3525. [PMID: 35408886 PMCID: PMC8998908 DOI: 10.3390/ijms23073525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment for glomerular diseases has been extrapolated from the experience of other autoimmune disorders while the underlying pathogenic mechanisms were still not well understood. As the classification of glomerular diseases was based on patterns of juries instead of mechanisms, treatments were typically the art of try and error. With the advancement of molecular biology, the role of the immune agent in glomerular diseases is becoming more evident. The four-hit theory based on the discovery of gd-IgA1 gives a more transparent outline of the pathogenesis of IgA nephropathy (IgAN), and dysregulation of Treg plays a crucial role in the pathogenesis of minimal change disease (MCD). An epoch-making breakthrough is the discovery of PLA2R antibodies in the primary membranous nephropathy (pMN). This is the first biomarker applied for precision medicine in kidney disease. Understanding the immune system's role in glomerular diseases allows the use of various immunosuppressants or other novel treatments, such as complement inhibitors, to treat glomerular diseases more reasonable. In this era of advocating personalized medicine, it is inevitable to develop precision medicine with mechanism-based novel biomarkers and novel therapies in kidney disease.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi 60069, Taiwan;
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 613016, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 613016, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833253, Taiwan
| |
Collapse
|
14
|
Hackl A, Zed SEDA, Diefenhardt P, Binz-Lotter J, Ehren R, Weber LT. The role of the immune system in idiopathic nephrotic syndrome. Mol Cell Pediatr 2021; 8:18. [PMID: 34792685 PMCID: PMC8600105 DOI: 10.1186/s40348-021-00128-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany. .,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Seif El Din Abo Zed
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rasmus Ehren
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
15
|
Paquissi FC, Abensur H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne) 2021; 8:654912. [PMID: 34540858 PMCID: PMC8446428 DOI: 10.3389/fmed.2021.654912] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and hyperreactivity of the immune response at various levels, including hyperactivation of effector cell subtypes, autoantibodies production, immune complex formation, and deposition in tissues. The consequences of hyperreactivity to the self are systemic and local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of the most worrying manifestations of SLE, and most patients have this involvement at some point in the course of the disease. Among the effector cells involved, the Th17, a subtype of T helper cells (CD4+), has shown significant hyperactivation and participates in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main cytokines with receptors expressed in most renal cells, being involved in the activation of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include changes of the cytoskeleton with increased motility, decreased expression of health proteins, increased oxidative stress, and activation of the inflammasome and caspases resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis promotes the activation of profibrotic pathways such as increased TGF-β expression and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune cells, and the synthesis of growth factors and chemokines, which together result in granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The purpose of this work is to present the prognostic and immunopathologic role of the Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration as a potential immunotherapeutic target in this complication.
Collapse
Affiliation(s)
- Feliciano Chanana Paquissi
- Department of Medicine, Clínica Girassol, Luanda, Angola
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Abensur
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Zhu D, Tang Q, Yu B, Meng M, Liu W, Li J, Zhu T, Vanhoutte PM, Leung SW, Zhang Y, Shi Y. Major histocompatibility complexes are up-regulated in glomerular endothelial cells via activation of c-Jun N-terminal kinase in 5/6 nephrectomy mice. Br J Pharmacol 2020; 177:5131-5147. [PMID: 32830316 PMCID: PMC7589013 DOI: 10.1111/bph.15237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aims to explore the mechanism underlying the up-regulation of major histocompatibility complex (MHC) proteins in glomerular endothelial cells in 5/6 nephrectomy mice. EXPERIMENTAL APPROACH C57/BL6 mice were randomly allocated to sham-operated (2K) and 5/6 nephrectomy (5/6Nx) groups. Mouse splenic lymphocytes, from either syngeneic or allogeneic background, were injected into 5/6Nx mice after total body irradiation. Human glomerular endothelial cells (HGECs) were cultured for experiments in vitro. Western blots, PCR, immunohistochemical and fluorescent staining were used, along with assays of tissue cytokines, lymphocyte migration and renal function. KEY RESULTS Four weeks after nephrectomy, expression of both mRNA and protein of MHC II, CD80, and CD86 were increased in 5/6Nx glomerular endothelial cells. After total body irradiation, 5/6Nx mice injected with lymphocytes from Balb/c mice, but not those from C57/BL6 mice, exhibited increased creatinine levels, indicating that allograft lymphocyte transfer impaired renal function. In HGECs, the protein levels of MHC and MHC Class II transactivator (CIITA) were increased by stimulation with TNF-α or IFN-γ, which promoted human lymphocytes movement. These increases were reduced by JNK inhibitors. In the 5/6Nx mice, JNK inhibition down-regulated MHC II protein in glomerular endothelial cells, suggesting that JNK signalling participates in the regulation of MHC II protein. CONCLUSION AND IMPLICATIONS Chronic inflammation in mice subjected to nephrectomy induces the up-regulation of MHC molecules in glomerular endothelial cells. This up-regulation is reduced by inhibition of JNK signalling.
Collapse
Affiliation(s)
- Dong Zhu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Qunye Tang
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Baixue Yu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Mei Meng
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Wenjie Liu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Jiawei Li
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Tongyu Zhu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Paul M. Vanhoutte
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong
| | - Susan W.S. Leung
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong
| | - Yi Zhang
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Yi Shi
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| |
Collapse
|
17
|
Molecular stratification of idiopathic nephrotic syndrome. Nat Rev Nephrol 2019; 15:750-765. [DOI: 10.1038/s41581-019-0217-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
|