1
|
Anti-Inflammatory Effects of Rhamnetin on Bradykinin-Induced Matrix Metalloproteinase-9 Expression and Cell Migration in Rat Brain Astrocytes. Int J Mol Sci 2022; 23:ijms23020609. [PMID: 35054789 PMCID: PMC8776117 DOI: 10.3390/ijms23020609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
Bradykinin (BK) has been shown to induce matrix metalloproteinase (MMP)-9 expression and participate in neuroinflammation. The BK/MMP-9 axis can be a target for managing neuroinflammation. Our previous reports have indicated that reactive oxygen species (ROS)-mediated nuclear factor-kappaB (NF-κB) activity is involved in BK-induced MMP-9 expression in rat brain astrocytes (RBA-1). Rhamnetin (RNT), a flavonoid compound, possesses antioxidant and anti-inflammatory effects. Thus, we proposed RNT could attenuate BK-induced response in RBA-1. This study aims to approach mechanisms underlying RNT regulating BK-stimulated MMP-9 expression, especially ROS and NF-κB. We used pharmacological inhibitors and siRNAs to dissect molecular mechanisms. Western blotting and gelatin zymography were used to evaluate protein and MMP-9 expression. Real-time PCR was used for gene expression. Wound healing assay was applied for cell migration. 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) were used for ROS generation and NOX activity, respectively. Promoter luciferase assay and chromatin immunoprecipitation (ChIP) assay were applied to detect gene transcription. Our results showed that RNT inhibits BK-induced MMP-9 protein and mRNA expression, promoter activity, and cell migration in RBA-1 cells. Besides, the levels of phospho-PKCδ, NOX activity, ROS, phospho-ERK1/2, phospho-p65, and NF-κB p65 binding to MMP-9 promoter were attenuated by RNT. In summary, RNT attenuates BK-enhanced MMP-9 upregulation through inhibiting PKCδ/NOX/ROS/ERK1/2-dependent NF-κB activity in RBA-1.
Collapse
|
2
|
Protective role of AT(2) and B(1) receptors in kinin B(2)-receptor-knockout mice with myocardial infarction. Clin Sci (Lond) 2012; 124:87-96. [PMID: 22849668 DOI: 10.1042/cs20120341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AT(2)Rs [AngII (angiotensin II) type 2 receptors] contribute to the cardioprotective effects of angiotensin II receptor blockers, possibly via kinins acting on the B(1)R (B(1) receptor) and B(2)R (B(2) receptor). Recent studies have shown that a lack of B(2)R up-regulates B(1)R and AT(2)R; however, the pathophysiological relevance of such an event remains unclear. We hypothesized that up-regulation of AT(2)R and B(1)R compensates for the loss of B(2)R. Blockade of AT(2)R and/or B(1)R worsens cardiac remodelling and dysfunction following MI (myocardial infarction) in B(2)R(-/-) (B(2)-receptor-knockout mice). B(2)R(-/-) mice and WT (wild-type) controls were subjected to sham MI or MI and treated for 4 weeks with (i) vehicle, (ii) a B(1)R-ant (B(1)R antagonist; 300 μg/kg of body weight per day), (iii) an AT(2)R-ant [AT(2) receptor antagonist (PD123319); 20 mg/kg of body weight per day], or (iv) B(1)R-ant+AT(2)R-ant. B(2)R(-/-) mice had a greater MCSA (myocyte cross-sectional area) and ICF (interstitial collagen fraction) at baseline and after MI compared with WT controls. Cardiac function and increase in macrophage infiltration, TGFβ(1) (transforming growth factor β(1)) expression and ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation post-MI were similar in both strains. Blockade of AT(2)R or B(1)R worsened cardiac remodelling, hypertrophy and dysfunction associated with increased inflammation and ERK1/2 phosphorylation and decreased NO excretion in B(2)R(-/-) mice, which were exacerbated by dual blockade of B(1)R and AT(2)R. No such effects were seen in WT mice. Our results suggest that, in the absence of B(2)R, both B(1)R and AT(2)R play important compensatory roles in preventing deterioration of cardiac function and remodelling post-MI possibly via suppression of inflammation, TGFβ(1) and ERK1/2 signalling.
Collapse
|
3
|
Blaes N, Pécher C, Mehrenberger M, Cellier E, Praddaude F, Chevalier J, Tack I, Couture R, Girolami JP. Bradykinin inhibits high glucose- and growth factor-induced collagen synthesis in mesangial cells through the B2-kinin receptor. Am J Physiol Renal Physiol 2012; 303:F293-303. [PMID: 22573379 DOI: 10.1152/ajprenal.00437.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mesangial matrix expansion is an early lesion leading to glomeruloclerosis and chronic renal diseases. A beneficial effect is achieved with angiotensin I-converting enzyme inhibitors (ACEI), which also favor bradykinin (BK) B2 receptor (B2R) activation. To define the underlying mechanism, we hypothesized that B2R activation could be a negative regulator of collagen synthesis in mesangial cells (MC). We investigated the effect of BK on collagen synthesis and signaling in MC. Inflammation was evaluated by intercellular adhesion molecule-1 (ICAM-1) expression. BK inhibited collagen I and IV synthesis stimulated by high glucose, epithelial growth factor (EGF), and transforming growth factor-β (TGF-β) but did not alter ICAM-1. Inhibition of collagen synthesis was B2R but not B1R mediated. PKC or phosphatidylinositol 3-kinase (PI3K) inhibitors mimicked the BK effect. B2R activation inhibited TGF-β- and EGF-induced Erk1/2, Smad2/3, Akt S473, and EGFR phosphorylation. A phosphatase inhibitor prevented BK effects. The in vivo impact of B2R on mesangial matrix expansion was assessed in streptozotocin-diabetic rodents. Deletion of B2R increased mesangial matrix expansion and albuminuria in diabetic mice. In diabetic rats, matrix expansion and albuminuria were prevented by ACEI but not by ACEI and B2R antagonist cotreatment. Consistently, the lowered BK content of diabetic glomeruli was restored by ACEI. In conclusion, deficient B2R activation aggravated mesangial matrix expansion in diabetic rodents whereas B2R activation reduced MC collagen synthesis by a mechanism targeting Erk1/2 and Akt, common pathways activated by EGF and TGF-β. Taken together, the data support the hypothesis of an antifibrosing effect of B2R activation.
Collapse
Affiliation(s)
- Nelly Blaes
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, Toulouse Cedex. France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nakamura S, Morimoto N, Tsuruma K, Izuta H, Yasuda Y, Kato N, Ikeda T, Shimazawa M, Hara H. Tissue kallikrein inhibits retinal neovascularization via the cleavage of vascular endothelial growth factor-165. Arterioscler Thromb Vasc Biol 2011; 31:1041-8. [PMID: 21293011 DOI: 10.1161/atvbaha.111.223594] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tissue kallikrein, a widely used vasodilator for the treatment of hypertension and peripheral circulatory disorder, acts by releasing kinin, a potent vasodilator peptide. To identify the role of tissue kallikrein in retinal neovascularization, we investigated the antiangiogenic effect by using an in vitro and in vivo angiogenesis model. METHODS AND RESULTS Tissue kallikrein in vitreous fluid was markedly elevated in proliferative diabetic retinopathy patients compared with that in control patients with macular hole and epiretinal membrane. Tissue kallikrein inhibited vascular endothelial growth factor-165 (VEGF165)-induced tube formation, proliferation, and migration in vitro angiogenesis model via suppression of the VEGF165-induced phosphorylation of VEGF receptor-2. Furthermore, tissue kallikrein cleavage of VEGF165 was on the C-terminal side, which was analyzed by Western blotting and mass spectrometry. When administered subcutaneously, tissue kallikrein reduced the pathological vascular changes in retinal neovascularization induced in neonatal mice by returning the retina to normoxia after exposure to hyperoxia. CONCLUSIONS These findings indicate that tissue kallikrein is partly involved in pathogenesis of proliferative diabetic retinopathy and may be a promising therapeutic agent that could cleave VEGF165 itself when administered by a peripheral route.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bautista-Pérez R, Arellano A, Franco M, Osorio H, Coronel I. Enalaprilat-Mediated Activation of Kinin B 1 Receptors and Vasodilation in the Rat Isolated Perfused Kidney. Pharmacology 2011; 87:195-203. [DOI: 10.1159/000324513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/13/2011] [Indexed: 01/06/2023]
|
6
|
Buléon M, Allard J, Jaafar A, Praddaude F, Dickson Z, Ranera MT, Pecher C, Girolami JP, Tack I. Pharmacological blockade of B2-kinin receptor reduces renal protective effect of angiotensin-converting enzyme inhibition in db/db mice model. Am J Physiol Renal Physiol 2008; 294:F1249-56. [PMID: 18367657 DOI: 10.1152/ajprenal.00501.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy (DN) can be delayed by the use of angiotensin-converting enzyme inhibitors (ACEi). The mechanisms of ACEi renal protection are not univocal. To investigate the impact of bradykinin B(2) receptor (B2R) activation during ACE inhibition, type II diabetic mice (C57BLKS db/db) received for 20 wk: 1) ACEi (ramipril) alone, 2) ACEi + HOE-140 (a specific B2R antagonist), 3) HOE-140 alone, or 4) no treatment. The development of DN, defined by an increase in albuminuria and glomerulosclerosis, was largely prevented by ACEi treatment (albuminuria: 980 +/- 130 vs. 2,160 +/- 330 mg/g creatinine; mesangial area: 22.5 +/- 0.5 vs. 27.6 +/- 0.3%). The protective effect of ramipril was markedly attenuated by B2R blockade (albuminuria: 2,790 +/- 680 mg/g creatinine; mesangial area: 30.4 +/- 1.1%), whereas HOE-140 alone significantly increased albuminuria. Despite such benefits, glomerular filtration rate remained unchanged, probably because of the combination of the hypotensive effect of diabetes in this model and the renal hemodynamic action of ramipril. Finally, the renal protective effect of ACEi was associated with a marked decrease in glomerular overexpression of insulin-like growth factor-1 (IGF-1) and transforming growth factor-beta pathways, but also in advanced glycation end product receptors and lipid peroxidation assessed by 4-hydroxy-2-nonenal (4-HNE) adducts. Concomitant blockade of B2R partly restored glomerular overexpression of IGF-1 receptor beta and 4-HNE complexes. These results support the critical role of B2R activation in the mediation of ACEi renal protection against DN and provide the rationale to examine the benefit of B2R activation by itself as a new therapeutic approach for DN.
Collapse
Affiliation(s)
- Marie Buléon
- Laboratoire de Physiologie, Faculté de Médecine Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Buléon M, Mehrenberger M, Pécher C, Praddaude F, Couture R, Tack I, Girolami JP. Bradykinine et néphroprotection. Med Sci (Paris) 2007; 23:1141-7. [DOI: 10.1051/medsci/200723121141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Allard J, Buléon M, Cellier E, Renaud I, Pecher C, Praddaude F, Conti M, Tack I, Girolami JP. ACE inhibitor reduces growth factor receptor expression and signaling but also albuminuria through B2-kinin glomerular receptor activation in diabetic rats. Am J Physiol Renal Physiol 2007; 293:F1083-92. [PMID: 17596523 DOI: 10.1152/ajprenal.00401.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with increased oxidative stress, overexpression and activation of growth factor receptors, including those for transforming growth factor-β1 (TGF-β-RII), platelet-derived growth factor (PDGF-R), and insulin-like growth factor (IGF1-R). These pathways are believed to represent pathophysiological determinants of DN. Beyond perfect glycemic control, angiotensin-converting enzyme inhibitors (ACEI) are the most efficient treatment to delay glomerulosclerosis. Since their mechanisms of action remain uncertain, we investigated the effect of ACEI on the glomerular expression of these growth factor pathways in a model of streptozotocin-induced diabetes in rats. The early phase of diabetes was found to be associated with an increase in glomerular expression of IGF1-R, PDGF-R, and TGF-β-RII and activation of IRS1, Erk 1/2, and Smad 2/3. These changes were significantly reduced by ACEI treatment. Furthermore, ACEI stimulated glutathione peroxidase activity, suggesting a protective role against oxidative stress. ACEI decreased ANG II production but also increased bradykinin bioavailability by reducing its degradation. Thus the involvement of the bradykinin pathway was investigated using coadministration of HOE-140, a highly specific nonpeptidic B2-kinin receptor antagonist. Almost all the previously described effects of ACEI were abolished by HOE-140, as was the increase in glutathione peroxidase activity. Moreover, the well-established ability of ACEI to reduce albuminuria was also prevented by HOE-140. Taken together, these data demonstrate that, in the early phase of diabetes, ACEI reverse glomerular overexpression and activation of some critical growth factor pathways and increase protection against oxidative stress and that these effects involve B2-kinin receptor activation.
Collapse
Affiliation(s)
- Julien Allard
- Institut National de la Santé et de la Recherche Médicale U858 eq 5, Louis Bugnard Institute, Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gillibert-Duplantier J, Neaud V, Blanc JF, Bioulac-Sage P, Rosenbaum J. Thrombin inhibits migration of human hepatic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2007; 293:G128-36. [PMID: 17379757 DOI: 10.1152/ajpgi.00031.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several lines of data recently pointed out a role of the serine proteinase thrombin in liver fibrogenesis, but its mechanism of action is unknown. The aim of this study was to evaluate the effect of thrombin on the migration of human liver myofibroblasts. We show here that thrombin inhibits both basal migration and platelet-derived growth factor (PDGF)-BB-induced migration of myofibroblasts. By using a thrombin antagonist, a protease-activated receptor (PAR)-1 mimetic peptide, and a PAR-1 antibody, we show that this effect is dependent on the catalytic activity of thrombin and on PAR-1 activation. Thrombin's effect on basal migration was dependent on cyclooxygenase 2 (COX-2) activation because it was blocked by the COX-2 inhibitors NS-398 and nimesulide, and pharmacological studies showed that it was relayed through prostaglandin E(2) and its EP(2) receptor. On the other hand, thrombin-induced inhibition of PDGF-BB-induced migration was not dependent on COX-2. We show that thrombin inhibits PDGF-induced Akt-1 phosphorylation. This effect was consecutive to inhibition of PDGF-beta receptor activation through active dephosphorylation. Thus thrombin, through two distinct mechanisms, inhibits both basal- and PDGF-BB-induced migration of human hepatic liver myofibroblasts. The fine tuning of myofibroblast migration may be one of the mechanisms used by thrombin to regulate liver fibrogenesis.
Collapse
|
10
|
Polizio AH, Peña C. Lisinopril as an antioxidant in hypertension? Antioxid Redox Signal 2007; 9:393-7. [PMID: 17184180 DOI: 10.1089/ars.2006.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lisinopril is an inhibitor of the renin-angiotensin system. Does lisinopril minimize oxidative damage in spontaneously hypertensive rats (SHR) in comparison with the normotensive genetic controls Wistar Kyoto (WKY)? The authors note that lisinopril contained lipid peroxidation, elevated tissue glutathione levels, and influenced the activity of antioxidant enzymes such as catalase and glutathione peroxidase. Studies in humans testing the hypothesis that lisinopril has antioxidant function in vivo are warranted.
Collapse
Affiliation(s)
- Ariel H Polizio
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | |
Collapse
|
11
|
Chao J, Li HJ, Yao YY, Shen B, Gao L, Bledsoe G, Chao L. Kinin infusion prevents renal inflammation, apoptosis, and fibrosis via inhibition of oxidative stress and mitogen-activated protein kinase activity. Hypertension 2007; 49:490-7. [PMID: 17224475 DOI: 10.1161/01.hyp.0000255925.01707.eb] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The progression of renal disease displays several characteristics, including proteinuria, apoptosis, inflammation, and fibrosis. In this study, we investigated the effect of long-term infusion of kinin in protection against salt-induced renal damage in Dahl salt-sensitive rats. Dahl salt-sensitive rats were fed a high-salt diet for 2 weeks and were then infused with bradykinin (500 ng/h) via subcutaneously implanted minipumps for 3 weeks. Kinin infusion attenuated salt-induced impaired renal function as evidenced by reduced proteinuria, serum creatinine, and blood urea nitrogen levels without apparent effect on blood pressure. Morphological analysis indicated that kinin administration reduced salt-induced glomerular sclerosis, tubular dilatation, luminal protein cast formation, and interlobular arterial thickness. Kinin also significantly lowered collagen I, III, and IV deposition and their mRNA levels. Moreover, kinin reduced interstitial monocyte/macrophage accumulation, as well as tubular cell apoptosis and caspase-3 activity. Protection of renal injury by kinin was associated with increased renal NO levels and reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate oxidase activities and superoxide generation. Suppression of oxidative stress by kinin was accompanied by reduced transforming growth factor-beta1 protein and mRNA levels, as well as decreased phosphorylation of mitogen-activated protein kinases. This is the first study to demonstrate that kinin infusion can directly protect against salt-induced renal injury without blood pressure reduction by inhibiting apoptosis, inflammation, and fibrosis via suppression of oxidative stress, transforming growth factor-beta1 expression, and mitogen-activated protein kinase activation.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Yim HE, Kim MK, Bae IS, Kim JH, Choi BM, Yoo KH, Hong YS, Lee JW. AT1 antagonist modulates activin-like kinase 5 and TGF-beta receptor II in the developing kidney. Pediatr Nephrol 2006; 21:1377-88. [PMID: 16897002 DOI: 10.1007/s00467-006-0197-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/13/2006] [Accepted: 04/19/2006] [Indexed: 11/25/2022]
Abstract
Previous studies by our group have demonstrated that angiotensin-converting enzyme (ACE) inhibition in the developing kidney modulates transforming growth factor-beta receptors. Blocking of angiotensin II (ANG II) mainly through angiotensin II type 1 receptor (AT1) has been implicated in mediating this ACE inhibition. The present study was designed to investigate the effects of an AT1 antagonist, losartan, on transforming growth factor-beta1 (TGF-beta1), TGF-beta receptor I [TbetaRI, activin-like kinase (ALK)-1, ALK-5], TGF-beta receptor II (TbetaRII), and alpha-smooth muscle actin (alpha-SMA) expression in the developing kidney. Newborn rat pups were treated with losartan (30 mg/kg per day) or normal saline for 7 days. Kidneys were removed for immunohistochemistry, reverse transcription polymerase chain reaction (PCR), and Western blotting of TGF-beta1, ALK-1, ALK-5, TbetaRII, and alpha-SMA. Renal ALK-5 and TbetaRII protein expressions in the losartan-treated group were found to be significantly increased (P<0.05), whereas TGF-beta1, ALK-1, and alpha-SMA protein expressions were not changed by losartan treatment. The losartan-treated group also showed significantly increased mean tubular diameter and interstitial area of the kidney (P<0.05). These results suggest that AT1 inhibition in the developing kidney impairs renal growth and development and modulates the expression of ALK-5 and TbetaRII.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Activin Receptors, Type I/drug effects
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Angiotensin II/antagonists & inhibitors
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Animals
- Animals, Newborn/metabolism
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Kidney/drug effects
- Kidney/growth & development
- Kidney/metabolism
- Losartan/pharmacology
- Pregnancy
- Protein Serine-Threonine Kinases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/drug effects
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Hyung Eun Yim
- Department of Pediatrics, College of Medicine, Korea University, 152-703 Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Couture R, Girolami JP. Putative roles of kinin receptors in the therapeutic effects of angiotensin 1-converting enzyme inhibitors in diabetes mellitus. Eur J Pharmacol 2005; 500:467-85. [PMID: 15464053 DOI: 10.1016/j.ejphar.2004.07.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/07/2023]
Abstract
The role of endogenous kinins and their receptors in diabetes mellitus is being confirmed with the recent developments of molecular and genetic animal models. Compelling evidence suggests that the kinin B(2) receptor is organ-protective and partakes to the therapeutic effects of angiotensin 1-converting enzyme inhibitors (ACEI) and angiotensin AT(1) receptor antagonists. Benefits derive primarily from vasodilatory, antihypertensive, antiproliferative, antihypertrophic, antifibrotic, antithrombotic and antioxidant properties of kinin B(2) receptor activation. Mechanisms include the formation of nitric oxide and prostacyclin and the inhibition of NAD(P)H oxidase activity involving classical and novel signalling pathways. Kinin B(2) receptor also ameliorates insulin resistance by increasing glucose uptake and supply, and by inducing glucose transporter-4 translocation either directly or through phosphorylation of insulin receptor. The kinin B(1) receptor, which is induced by the cytokine network, growth factors and hyperglycaemia, mediates hyperalgesia, vascular hyperpermeability and leukocytes infiltration in diabetic animals. However, emerging data highlight reno- and cardio-protective effects mediated by kinin B(1) receptor under chronic ACEI therapy in diabetes mellitus. Thus, the Janus-faced of kinin receptors needs to be taken into account in future drug development. For instance, locally acting kinin B(1)/B(2) receptor agonists if used in a safe therapeutic window may represent a more rationale strategy in the prevention and management of diabetic complications. Because kinin B(2) receptor antagonists may further increase insulin resistance, the persisting dogma that restricts the development of kinin receptor analogues to antagonists (that is still relevant to abrogate pain and inflammation) needs to be revisited.
Collapse
Affiliation(s)
- Réjean Couture
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | |
Collapse
|
14
|
Deblois D, Tea BS, Beaudry D, Hamet P. Regulation of therapeutic apoptosis: a potential target in controlling hypertensive organ damage. Can J Physiol Pharmacol 2005; 83:29-41. [PMID: 15759048 DOI: 10.1139/y05-001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell growth and survival are potential therapeutic targets for the control of complications associated with hypertension. In most cardiovascular disorders, cardiac fibroblasts and large-vessel smooth muscle cells can replicate and thus contribute to the disease. We propose that cardiovascular hyperplasia may be reversed via therapeutic apoptosis induction with drugs that are safe and already used in the clinic. We first reported that, irrespective of the drug class, those drugs that are able to induce regression of cardiovascular hypertrophy are also able to reverse cardiovascular hyperplasia via apoptosis. Drugs active in this regard include inhibitors of the renin-angiotensin system, calcium channel blockers, and beta-blockers. Moreover, the effects of these drugs on cell survival is not merely secondary to blood pressure reduction. Therapeutic apoptosis in the cardiovascular system of the spontaneously hypertensive rat is characterized by a rapid and transient onset following initiation of antihypertensive treatment. Herein, the induction and termination of therapeutic apoptosis during drug treatment of hypertension will be briefly reviewed and supported by novel data suggesting that reversal of cardiovascular hyperplasia is associated with reduced cell growth and a resistance to further induction of therapeutic apoptosis, as shown in spontaneously hypertensive rats receiving an intermittent regime of nifedipine therapy. We propose that the presence of a cell subpopulation with defective cell cycle regulation may determine organ susceptibility to undergo therapeutic apoptosis.Key words: apoptosis, hypertension, hyperplasia, growth, nifedipine.
Collapse
Affiliation(s)
- Denis Deblois
- University of Montreal Hospital Research Center, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
15
|
Duguay D, Sarkissian SD, Kouz R, Ongali B, Couture R, deBlois D. Kinin B2 receptor is not involved in enalapril-induced apoptosis and regression of hypertrophy in spontaneously hypertensive rat aorta: possible role of B1 receptor. Br J Pharmacol 2004; 141:728-36. [PMID: 14744816 PMCID: PMC1574228 DOI: 10.1038/sj.bjp.0705642] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Treatment with enalapril induces smooth muscle cell apoptosis and regression of aortic hypertrophy in spontaneously hypertensive rats (SHRs), whereas combined blockade of angiotensin II AT(1) and AT(2) receptors does not. We postulated that vascular apoptosis with enalapril involves enhanced half-life of bradykinin (BK) and kinin B(2) receptor stimulation. 2. SHR, 11-weeks old, were treated for 4 weeks with enalapril (30 mg kg(-1) day(-1)), Hoe 140 (500 microg kg(-1) day(-1); B(2) receptor antagonist), alone or in combination. Controls received vehicle. 3. The half-life of hypotensive responses to intra-arterial bolus injections of BK were significantly increased in SHR anesthetized after 4 weeks of enalapril, an effect prevented by Hoe 140. The magnitude of BK-induced hypotension was significantly attenuated in all rats treated with Hoe 140. 4. As compared to placebo, enalapril treatment significantly reduced blood pressure (-34+/-2%), aortic hypertrophy (-20+/-3%), hyperplasia (-37+/-5%) and DNA synthesis (-61+/-8%), while it increased aortic DNA fragmentation by two-fold. Hoe 140 given alone or in combination with enalapril affected none of these parameters. 5. As a possible alternative mechanism, aortae isolated during the second week of enalapril treatment showed a transient upregulation of contractile responses to des-Arg(9)BK (EC(50)<1 nM), which were significantly reduced by [Leu(8)]des-Arg(9)BK (10 microM). Moreover, in vitro receptor autoradiography revealed an increase in expression of B(1) and B(2) receptor binding sites by 8-11 days of enalapril treatment. 6. Aortic apoptosis induction and hypertrophy regression with enalapril do not involve kinin B(2) receptors in SHR. Kinins acting via B(1) receptors remains a candidate mechanism.
Collapse
Affiliation(s)
- David Duguay
- Department of Pharmacology, Université de Montreal Hospital (CHUM) Research Center 3840, St-Urbain St., Room 7-132B, Montréal, PQ, Canada, H2W 1T8
| | - Shant Der Sarkissian
- Department of Pharmacology, Université de Montreal Hospital (CHUM) Research Center 3840, St-Urbain St., Room 7-132B, Montréal, PQ, Canada, H2W 1T8
| | - Rémi Kouz
- Collége Jean-Brébeu F, Montréal, PQ, Canada, H3T
| | - Brice Ongali
- Department of Physiology, Université de Montréal, Montréal, PQ, Canada, H3C 3J7
| | - Réjean Couture
- Department of Physiology, Université de Montréal, Montréal, PQ, Canada, H3C 3J7
| | - Denis deBlois
- Department of Pharmacology, Université de Montreal Hospital (CHUM) Research Center 3840, St-Urbain St., Room 7-132B, Montréal, PQ, Canada, H2W 1T8
- Author for correspondence:
| |
Collapse
|
16
|
Bascands JL, Schanstra JP, Couture R, Girolami JP. Les récepteurs de la bradykinine : de nouveaux rôles physiopathologiques. Med Sci (Paris) 2003; 19:1093-100. [PMID: 14648480 DOI: 10.1051/medsci/200319111093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In addition to being a pro-inflammatory mediator, bradykinin is now recognized as a neuromediator and regulator of several vascular and renal functions. New breakthroughs point to unusual and atypical signalling pathways for a G-protein coupled receptor that could explain the anti-proliferative and anti-fibrogenic effects of bradykinin. The availability of transgenic and knock out animal models for bradykinin receptors or bradykinin-synthesizing or -catabolic enzymes confirms these cardiac and renal protective roles for this peptide system. Bradykinin receptors are involved in the therapeutic action of angiotensin-1 converting enzyme inhibitors that are used in the treatment of arterial hypertension, heart failure and diabetes. Nevertheless, recent evidence highlights dissimilar mechanisms in the regulation and function of these receptors between the central nervous system and peripheral tissues. Therefore, the development of more specific bradykinin receptor agonists or antagonists devoid of central actions seems to evolve as a new therapeutic approach.
Collapse
Affiliation(s)
- Jean-Loup Bascands
- Inserm U.388, Institut Louis Bugnard, CHU Rangueil, avenue Jean-Poulhas, 31403 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|