1
|
Vrooman OPJ, van Kerrebroeck PEV, van Balken MR, van Koeveringe GA, Rahnama'i MS. Nocturia and obstructive sleep apnoea. Nat Rev Urol 2024; 21:735-753. [PMID: 38783115 DOI: 10.1038/s41585-024-00887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
Nocturia, the need to urinate at night, is a common symptom in patients with obstructive sleep apnoea (OSA). Continuous positive airway pressure treatment can reduce nocturia in some patients, but the underlying mechanisms are complex and not fully understood. OSA affects the autonomic nervous system, oxidative stress and endothelial damage. Furthermore, the commonly held theory attributing polyuria to a false signal of cardiac overload and response natriuresis has limitations. A comprehensive approach to the management of nocturia in OSA, considering factors such as comorbidities, medication use, alcohol consumption and lifestyle, is needed. Effective management of nocturia in OSA requires a multidisciplinary approach, and urologists should be aware of the potential effect of OSA on physiology and refer patients for further testing at a sleep centre. In addition to continuous positive airway pressure, other interventions such as oral appliances and surgical obstruction treatment could be beneficial for some patients. Overall, understanding the complex interplay between OSA and nocturia is crucial for optimizing patient outcomes.
Collapse
Affiliation(s)
- Olaf P J Vrooman
- Department of Urology, Hospital Rijnstate Arnhem, Arnhem, Netherlands.
| | | | | | | | - Mohammad S Rahnama'i
- Department of Urology Nij Smellinghe Hospital, Drachten, Netherlands
- Society of Urological research and education (SURE), Maastricht, Netherlands
| |
Collapse
|
2
|
Mutafova-Yambolieva VN. Mechanosensitive release of ATP in the urinary bladder mucosa. Purinergic Signal 2024:10.1007/s11302-024-10063-6. [PMID: 39541058 DOI: 10.1007/s11302-024-10063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.
Collapse
|
3
|
Liu J, Wang C, Wang W, Ding N, Liu J, Liu H, Wen J, Sun W, Zu S, Zhang X, Yan J. Activation of Piezo1 or TRPV2 channels inhibits human ureteral contractions via NO release from the mucosa. Front Pharmacol 2024; 15:1410565. [PMID: 38989142 PMCID: PMC11233528 DOI: 10.3389/fphar.2024.1410565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
We aimed to investigate the expression and motor modulatory roles of several mechano-sensitive channels (MSCs) in human ureter. Human proximal ureters were obtained from eighty patients subjected to nephrectomy. Expression of MSCs at mRNA, protein and functional levels were examined. Contractions of longitudinal ureter strips were recorded in organ bath. A fluorescent probe Diaminofluoresceins was used to measure nitric oxide (NO). RT-PCR analyses revealed predominant expression of Piezo1 and TRPV2 mRNA in intact ureter and mucosa. Immunofluorescence assays indicate proteins of MSCs (Piezo1/Piezo2, TRPV2 and TRPV4) were mainly distributed in the urothelium. Ca2+ imaging confirmed functional expression of TRPV2, TRPV4 and Piezo1 in cultured urothelial cells. Specific agonists of Piezo1 (Yoda1, 3-300 μM) and TRPV2 (cannabidiol, 3-300 μM) attenuated the frequency of ureteral contractions in a dose-dependent manner while the TRPV4 agonist GSK1016790A (100 nM-1 μM) exerted no effect. The inhibitory effects of Piezo1 and TRPV2 agonists were significantly blocked by the selective antagonists (Dooku 1 for Piezo1, Tranilast for TRPV2), removal of the mucosa, and pretreatment with NO synthase inhibitor L-NAME (10 μM). Yoda1 (30 μM) and cannabidiol (50 μM) increased production of NO in cultured urothelial cells. Our results suggest that activation of Piezo1 or TRPV2 evokes NO production and release from mucosa that may mediate mechanical stimulus-induced reduction of ureter contractions. Our findings support the idea that targeting Piezo1 and TRPV2 channels may be a promising pharmacological strategy for ureter stone passage or colic pain relief.
Collapse
Affiliation(s)
- Jianing Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wenyu Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiaxin Liu
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jieke Yan
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Szallasi A. Resiniferatoxin: Nature's Precision Medicine to Silence TRPV1-Positive Afferents. Int J Mol Sci 2023; 24:15042. [PMID: 37894723 PMCID: PMC10606200 DOI: 10.3390/ijms242015042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog with a unique spectrum of pharmacological actions. The therapeutic window of RTX is broad, allowing for the full desensitization of pain perception and neurogenic inflammation without causing unacceptable side effects. Intravesical RTX was shown to restore continence in a subset of patients with idiopathic and neurogenic detrusor overactivity. RTX can also ablate sensory neurons as a "molecular scalpel" to achieve permanent analgesia. This targeted (intrathecal or epidural) RTX therapy holds great promise in cancer pain management. Intra-articular RTX is undergoing clinical trials to treat moderate-to-severe knee pain in patients with osteoarthritis. Similar targeted approaches may be useful in the management of post-operative pain or pain associated with severe burn injuries. The current state of this field is reviewed, from preclinical studies through veterinary medicine to clinical trials.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
5
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
6
|
Maynard JP, Sfanos KS. P2 purinergic receptor dysregulation in urologic disease. Purinergic Signal 2022; 18:267-287. [PMID: 35687210 PMCID: PMC9184359 DOI: 10.1007/s11302-022-09875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
P2 purinergic receptors are involved in the normal function of the kidney, bladder, and prostate via signaling that occurs in response to extracellular nucleotides. Dysregulation of these receptors is common in pathological states and often associated with disease initiation, progression, or aggressiveness. Indeed, P2 purinergic receptor expression is altered across multiple urologic disorders including chronic kidney disease, polycystic kidney disease, interstitial cystitis, urinary incontinence, overactive bladder syndrome, prostatitis, and benign prostatic hyperplasia. P2 purinergic receptors are likewise indirectly associated with these disorders via receptor-mediated inflammation and pain, a common characteristic across most urologic disorders. Furthermore, select P2 purinergic receptors are overexpressed in urologic cancer including renal cell carcinoma, urothelial carcinoma, and prostate adenocarcinoma, and pre-clinical studies depict P2 purinergic receptors as potential therapeutic targets. Herein, we highlight the compelling evidence for the exploration of P2 purinergic receptors as biomarkers and therapeutic targets in urologic cancers and other urologic disease. Likewise, there is currently optimism for P2 purinergic receptor-targeted therapeutics for the treatment of inflammation and pain associated with urologic diseases. Further exploration of the common pathways linking P2 purinergic receptor dysregulation to urologic disease might ultimately help in gaining new mechanistic insight into disease processes and therapeutic targeting.
Collapse
Affiliation(s)
- Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Zhao M, Chen Z, Liu L, Ding N, Wen J, Liu J, Wang W, Ge N, Zu S, Song W, Chen G, Zhang X. Functional Expression of Transient Receptor Potential and Piezo1 Channels in Cultured Interstitial Cells of Human-Bladder Lamina Propria. Front Physiol 2022; 12:762847. [PMID: 35069237 PMCID: PMC8774296 DOI: 10.3389/fphys.2021.762847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023] Open
Abstract
The interstitial cells in bladder lamina propria (LP-ICs) are believed to be involved in sensing/afferent signaling in bladder mucosa. Transient receptor potential (TRP) cation channels act as mechano- or chemo-sensors and may underlie some of the sensing function of bladder LP-ICs. We aimed to investigate the molecular and functional expression of TRP channels implicated in bladder sensory function and Piezo1/Piezo2 channels in cultured LP-ICs of the human bladder. Bladder tissues were obtained from patients undergoing cystectomy. LP-ICs were isolated and cultured, and used for real-time reverse transcription-quantitative polymerase chain reaction, immunocytochemistry, and calcium-imaging experiments. At the mRNA level, TRPA1, TRPV2, and Piezo1 were expressed most abundantly. Immunocytochemical staining showed protein expression of TRPA1, TRPV1, TRPV2, TRPV4, TRPM8, as well as Piezo1 and Piezo2. Calcium imaging using channel agonists/antagonists provided evidence for functional expression of TRPA1, TRPV2, TRPV4, Piezo1, but not of TRPV1 or TRPM8. Activation of these channels with their agonist resulted in release of adenosine triphosphate (ATP) from LP-ICs. Inhibition of TRPV2, TRPV4 and Piezo1 blocked the stretch induced intracellular Ca2+ increase. Whereas inhibition of TRPA1 blocked H2O2 evoked response in LP-ICs. Our results suggest LP-ICs of the bladder can perceive stretch or chemical stimuli via activation of TRPV2, TRPV4, Piezo1 and TRPA1 channels. LP-ICs may work together with urothelial cells for perception and transduction of mechanical or chemical signals in human-bladder mucosa.
Collapse
Affiliation(s)
- MengMeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenghao Chen
- Department of Urology, Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ning Ding
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - WenZhen Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Ge
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shulu Zu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Song
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guoqing Chen
- Department of Urology, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Liu J, Liu L, Zhao M, Ding N, Ge N, Daugherty SL, Beckel JM, Wang S, Zhang X. Activation of TRPM8 channel inhibits contraction of the isolated human ureter. Neurourol Urodyn 2021; 40:1450-1459. [PMID: 34015169 DOI: 10.1002/nau.24689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/14/2021] [Indexed: 12/19/2022]
Abstract
AIMS The transient receptor potential melastin-8 (TRPM8) channel is a "cooling" receptor expressed in primary sensory neurons and can be activated by compounds like menthol or icilin. TRPM8 is involved in the regulation of urinary bladder sensory function and contraction, but the role of TRPM8 in the ureter, particularly in the human ureter, is poorly understood. The aim of this study is to examine the effects of TRPM8 activation on human ureter contraction. METHODS Human ureters were acquired from 20 patients undergoing radical nephrectomy. Contractions of ureter strips were recorded by an isometric transducer in the organ bath. Ureteral TRPM8 expression in the human ureter was examined by immunofluorescence and western blot. RESULTS The two TRPM8 agonists menthol and icilin both reduced the frequency of spontaneous, electrical field stimulation, or neurokinin A-evoked ureteral contractions in a dose-dependent manner. The inhibitory effects were decreased by 10-fold in mucosa-denuded strips. The inhibitory effects of TRPM8 agonists were mimicked by calcitonin gene-related peptide (CGRP), and were blocked by KRP2579 (a TRPM8 antagonist), tetrodotoxin (a sodium channel blocker), olcegepant (BIBN, a CGRP receptor antagonist), SQ22536 (an adenylate cyclase antagonist), or H89 (a nonspecific cAMP-dependent protein kinase A inhibitor). TRPM8 was coexpressed with CGRP on the nerves located in the suburothelial and intermuscular regions and was not expressed in the urothelium. CONCLUSIONS The TRPM8 channel expressed on sensory nerve terminals of the human ureter is involved in the inhibitory sensory neurotransmission and modulate ureter contraction via the CGRP-adenylyl cyclase-protein kinase A pathway. TRPM8 may be involved in stone-induced changes in ureter contraction or pain.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Ning Ding
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Nan Ge
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Weinhold P, Villa L, Strittmatter F, Gratzke C, Stief CG, Castiglione F, Montorsi F, Hedlund P. The transient receptor potential A1 ion channel (TRPA1) modifies in vivo autonomous ureter peristalsis in rats. Neurourol Urodyn 2020; 40:147-157. [PMID: 33232544 DOI: 10.1002/nau.24579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022]
Abstract
AIMS The current study aimed to explore the expression of transient receptor potential A1 ion channels (TRPA1) in the rat ureter and to assess if TRPA1-active compounds modulate ureter function. METHODS The expression of TRPA1 in rat ureter tissue was studied by immunofluorescence. The TRPA1 distribution was compared to calcitonin gene-related peptide (CGRP), α-actin (SMA1), anoctamin-1 (ANO1), and c-kit. For in vivo analyses, a catheter was implanted in the right ureter of 50 rats. Ureter peristalsis and pressures were continuously recorded by a data acquisition set-up during intraluminal infusion of saline (baseline), saline plus protamine sulfate (PS; to disrupt the urothelium), saline plus PS with hydrogen sulfide (NaHS) or cinnamaldehyde (CA). Comparisons were made between rats treated systemically with vehicle or a TRPA1-antagonist (HC030031). RESULTS TRPA1-immunoreactive nerves co-expressed CGRP and were mainly located in the suburothelial region of the ureter. Immunoreactivity for TRPA1 was also encountered in c-kit-positive but ANO1-negative cells of the ureter suburothelium and wall. In vivo, HC030031-treated rats had elevated baseline peristaltic frequency (p < 0.05) and higher intraluminal pressures (p < 0.01). PS increased the frequency of ureter peristalsis versus baseline in vehicle-treated rats (p < 0.001) but not in HC030031-treated rats. CA (p < 0.001) and NaHS (p < 0.001) decreased ureter peristalsis. This was counteracted by HC030031 (p < 0.05 and p < 0.01). CONCLUSIONS In rats, TRPA1 is expressed on cellular structures considered of importance for peristaltic and mechanoafferent functions of the ureter. Functional data indicate that TRPA1-mediated signals regulate ureter peristalsis. This effect was pronounced after mucosal disruption and suggests a role for TRPA1 in ureter pathologies involving urothelial damage.
Collapse
Affiliation(s)
- Philipp Weinhold
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Luca Villa
- Department of Urology, San Rafaele University, Milan, Italy
| | | | | | - Christian G Stief
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Fabio Castiglione
- Department of Urology, Leuven University, Leuven, Belgium.,Department of Urology, University College of London, London, UK
| | | | - Petter Hedlund
- Department of Clinical and Experimental Pharmacology, Lund University, Lund, Sweden.,Department of Drug Research and Pharmacology, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Alpizar YA, Uvin P, Naert R, Franken J, Pinto S, Sanchez A, Gevaert T, Everaerts W, Voets T, De Ridder D, Talavera K. TRPV4 Mediates Acute Bladder Responses to Bacterial Lipopolysaccharides. Front Immunol 2020; 11:799. [PMID: 32435246 PMCID: PMC7218059 DOI: 10.3389/fimmu.2020.00799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Urinary tract infections (UTI) affect a large proportion of the population, causing among other symptoms, more frequent and urgent micturition. Previous studies reported that the gram-negative bacterial wall component lipopolysaccharides (LPS) trigger acute epithelial and bladder voiding responses, but the underlying mechanisms remain unknown. The cation channel TRPV4 is implicated in the regulation of the bladder voiding. Since TRPV4 is activated by LPS in airway epithelial cells, we sought to determine whether this channel plays a role in LPS-induced responses in urothelial cells (UCs). We found that human-derived UCs display a fast increase in intracellular Ca2+ concentration upon acute application of Escherichia coli LPS. Such responses were detected also in freshly isolated mouse UCs, and found to be dependent on TRPV4, but not to require the canonical TLR4 signaling pathway of LPS detection. Confocal microscopy experiments revealed that TRPV4 is dispensable for LPS-induced nuclear translocation of NF-κB in mouse UCs. On the other hand, quantitative RT PCR determinations showed an enhanced LPS-induced production of proinflammatory cytokines in TRPV4-deficient UCs. Cystometry experiments in anesthetized wild type mice revealed that acute intravesical instillation of LPS rapidly increases voiding frequency. This effect was not observed in TRPV4-deficient animals, but was largely preserved in Tlr4 KO and Trpa1 KO mice. Our results suggest that activation of TRPV4 by LPS in UCs regulates the proinflammatory response and contributes to LPS-induced increase in voiding frequency. These findings further support the concept that TRP channels are sensors of LPS, mediating fast innate immunity mechanisms against gram-negative bacteria.
Collapse
Affiliation(s)
- Yeranddy A Alpizar
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Pieter Uvin
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,Laboratory of Organ System, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robbe Naert
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Jan Franken
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,Laboratory of Organ System, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Silvia Pinto
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Thomas Gevaert
- Laboratory of Organ System, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,Laboratory of Organ System, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Dirk De Ridder
- Laboratory of Organ System, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Karel Talavera
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain & Disease Research, Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
13
|
Chess-Williams R, Sellers DJ, Brierley SM, Grundy D, Grundy L. Purinergic receptor mediated calcium signalling in urothelial cells. Sci Rep 2019; 9:16101. [PMID: 31695098 PMCID: PMC6834637 DOI: 10.1038/s41598-019-52531-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/07/2019] [Indexed: 01/23/2023] Open
Abstract
Non-neuronal ATP released from the urothelium in response to bladder stretch is a key modulator of bladder mechanosensation. Whilst non-neuronal ATP acts on the underlying bladder afferent nerves to facilitate sensation, there is also the potential for ATP to act in an autocrine manner, modulating urothelial cell function. The aim of this study was to systematically characterise the functional response of primary mouse urothelial cells (PMUCs) to ATP. PMUCs isolated from male mice (14–16 weeks) were used for live-cell fluorescent calcium imaging and qRT-PCR to determine the expression profile of P2X and P2Y receptors. The majority of PMUCs (74–92%) responded to ATP (1 μM–1 mM), as indicted by an increase in intracellular calcium (iCa2+). PMUCs exhibited dose-dependent responses to ATP (10 nM–1 mM) in both calcium containing (2 mM, EC50 = 3.49 ± 0.77 μM) or calcium free (0 mM, EC50 = 9.5 ± 1.5 μM) buffers. However, maximum iCa2+ responses to ATP were significantly attenuated upon repetitive applications in calcium containing but not in calcium free buffer. qRT-PCR revealed expression of P2X1–6, and P2Y1–2, P2Y4, P2Y6, P2Y11–14, but not P2X7 in PMUCs. These findings suggest the major component of ATP induced increases in iCa2+ are mediated via the liberation of calcium from intracellular stores, implicating functional P2Y receptors that are ubiquitously expressed on PMUCs.
Collapse
Affiliation(s)
- Russell Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Luke Grundy
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia. .,Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia. .,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia. .,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
14
|
Taidi Z, Mansfield KJ, Bates L, Sana-Ur-Rehman H, Liu L. Purinergic P2X7 receptors as therapeutic targets in interstitial cystitis/bladder pain syndrome; key role of ATP signaling in inflammation. Bladder (San Franc) 2019; 6:e38. [PMID: 32775480 PMCID: PMC7401983 DOI: 10.14440/bladder.2019.789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic lower urinary tract condition. Patients with IC/BPS suffer from debilitating pain and urinary urgency. The underlying etiology of IC/BPS is unknown and as such current treatments are mostly symptomatic with no real cure. Many theories have been proposed to describe the etiology of IC/BPS, but this review focuses on the role of inflammation. In IC/BPS patients, the permeability of the urothelium barrier is compromised and inflammatory cells infiltrate the bladder wall. There are increased levels of many inflammatory mediators in patients with IC/BPS and symptoms such as pain and urgency that have been associated with the degree of inflammation. Recent evidence has highlighted the role of purinergic receptors, specifically the P2X7 receptor, in the process of inflammation. The results from studies in animals including cyclophosphamide-induced hemorrhagic cystitis strongly support the role of P2X7 receptors in inflammation. Furthermore, the deletion of the P2X7 receptor or antagonism of this receptor significantly reduces inflammatory mediator release from the bladder and improves symptoms. Research results from IC/BPS patients and animal models of IC/BPS strongly support the crucial role of inflammation in the pathophysiology of this painful disease. Purinergic signaling and purinergic receptors, especially the P2X7 receptor, play an undisputed role in inflammation. Purinergic receptor antagonists show positive results in treating different symptoms of IC/BPS.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lucy Bates
- Westmead Hospital, Westmead, NSW 2145, Australia
| | - Hafiz Sana-Ur-Rehman
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Lu Liu
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
15
|
Calcium Oscillatory Behavior and Its Possible Role during Wound Healing in Bovine Corneal Endothelial Cells in Culture. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8647121. [PMID: 30915363 PMCID: PMC6409003 DOI: 10.1155/2019/8647121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022]
Abstract
In epithelial layers in culture, immediately after an injury a fast calcium wave (FCW) propagates from the wound borders toward the rest of the monolayer. We show here that similarly to other tissues, during the FCW in bovine corneal endothelial (BCE) cells in culture many cells exhibit calcium oscillations mediated by IP3 signaling. In this study we perform a detailed characterization of this oscillatory behavior and explore its possible role in the process of wound healing. In previous work we showed that, in BCE cells in culture, the healing cells undergo two stages of caspase-dependent apoptosis, at approximately two and eight hours after wounding. We determined that inhibition of the FCW greatly increases the apoptotic rate of the two stages, suggesting that the wave prevents excessive apoptosis of the healing cells. Taking this into account, we investigated the possible participation of the calcium oscillations during the FCW in apoptosis of the healing cells. For this, we employed ARL-67156 (ARL), a weak competitive inhibitor of ecto-ATPases, and the calcium chelator EGTA. We show here that, in healing BCE cells, ARL enhances cellular calcium oscillations during the FCW, while EGTA decreases oscillations. We found that ARL produces a significant decrease (to about half the control value) in the apoptotic index of the first stage of apoptosis, while EGTA increases it. Neither drug noticeably affects the second stage. We have interpreted the effect of ARL on apoptosis as due to the maintenance of moderately risen ATP levels during the FCW, which is in turn the cause for the enhancement of ATP-dependent calcium oscillations. Correspondingly, EGTA would increase the apoptotic index of the first stage by promoting a decrease in the calcium oscillatory rate. The fact that the second stage of apoptosis is not affected by the drugs suggests that the two stages are at least partially subject to different signaling pathways.
Collapse
|
16
|
Huang R, Wang F, Yang Y, Ma W, Lin Z, Cheng N, Long Y, Deng S, Li Z. Recurrent activations of transient receptor potential vanilloid-1 and vanilloid-4 promote cellular proliferation and migration in esophageal squamous cell carcinoma cells. FEBS Open Bio 2019; 9:206-225. [PMID: 30761248 PMCID: PMC6356177 DOI: 10.1002/2211-5463.12570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/19/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
Some members of the transient receptor potential vanilloid (TRPV) subfamily of cation channels are thermosensitive. Earlier studies have revealed the distribution and functions of these thermo‐TRPVs (TRPV1–4) in various organs, but their expression and function in the human esophagus are not fully understood. Here, we probed for the expression of the thermo‐TRPVs in one nontumor human esophageal squamous cell line and two esophageal squamous cell carcinoma (ESCC) cell lines. TRPV1, TRPV2, and TRPV4 proteins were found to be upregulated in ESCC cells, while TRPV3 was not detectable in any of these cell lines. Subsequently, channel function was evaluated via monitoring of Ca2+ transients by Ca2+ imaging and nonselective cation channel currents were recorded by whole‐cell patch clamp. We found that TRPV4 was activated by heat at 28 °C–35 °C, whereas TRPV1 and TRPV2 were activated by higher, noxious temperatures (44 °C and 53 °C, respectively). Furthermore, TRPV1 was activated by capsaicin (EC50 = 20.32 μm), and this effect was antagonized by AMG9810; TRPV2 was activated by a newly developed cannabinoid compound, O1821, and inhibited by tranilast. In addition, TRPV4 was activated by hypotonic solutions (220 m Osm), and this effect was abolished by ruthenium red. The effects of TRPV1 and TRPV4 on ESCC were also explored. Our data, for the first time, showed that the overactivation of TRPV1 and TRPV4 promoted the proliferation and/or migration of ESCC cells. In summary, TRPV1, TRPV2, and TRPV4 were functionally expressed in human esophageal squamous cells, and thermo‐TRPVs might play an important role in the development of ESCC.
Collapse
Affiliation(s)
- Rongqi Huang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,University of Chinese Academy of Sciences Beijing China
| | - Fei Wang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Yuchen Yang
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Wenbo Ma
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Zuoxian Lin
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Na Cheng
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China
| | - Yan Long
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Sihao Deng
- Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China.,University of Chinese Academy of Sciences Beijing China.,Department of Anatomy and Neurobiology Xiangya School of Medicine Central South University Changsha China.,GZMU-GIBH Joint School of Life Sciences Guangzhou Medical University China
| |
Collapse
|
17
|
Toktanis G, Kaya-Sezginer E, Yilmaz-Oral D, Gur S. Potential therapeutic value of transient receptor potential channels in male urogenital system. Pflugers Arch 2018; 470:1583-1596. [PMID: 30194638 DOI: 10.1007/s00424-018-2188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Transient receptor potential (TRP) channels comprise a family of cation channels implicated in a variety of cellular processes including light, mechanical or chemical stimuli, temperature, pH, or osmolarity. TRP channel proteins are a diverse family of proteins that are expressed in many tissues. We debated our recent knowledge about the expression, function, and regulation of TRP channels in the different parts of the male urogenital system in health and disease. Emerging evidence suggests that dysfunction of TRP channels significantly contributes to the pathophysiology of urogenital diseases. So far, there are many efforts underway to determine if these channels can be used as drug targets to reverse declines in male urogenital function. Furthermore, developing safe and efficacious TRP channel modulators is warranted for male urogenital disorders in a clinical setting.
Collapse
Affiliation(s)
| | - Ecem Kaya-Sezginer
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.,Faculty of Pharmacy, Department of Pharmacology, Cukurova University, Adana, Turkey
| | - Serap Gur
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
18
|
Dong X, Nakagomi H, Miyamoto T, Ihara T, Kira S, Sawada N, Mitsui T, Takeda M. Tadalafil attenuates hypotonicity-induced Ca 2+ influx via TRPV2 and TRPV4 in primary rat bladder urothelial cell cultures. Neurourol Urodyn 2018; 37:1541-1548. [PMID: 29566267 DOI: 10.1002/nau.23423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
AIMS To investigate the localization of phosphodiesterase 5 (PDE5) and the molecular mechanism underlying the effect of the PDE5 inhibitor tadalafil in signal transduction in the bladder urothelium. METHODS PDE5 expression in rat bladder tissues and cultured primary rat bladder urothelial cells was evaluated using immunochemistry and western blot assays. Ca2+ influx in cells exposed to isotonic solution, hypotonic solution, a selective transient receptor potential vanilloid 2 (TRPV2) channel agonist (cannabidiol), a selective TRPV4 channel agonist (GSK1016790A), a TRP cation channel melastatin 7 (TRPM7) channel agonist (PIP2), or a purinergic receptor agonist (ATP) in the presence or absence of 10 µM tadalafil was evaluated using calcium imaging techniques. We also evaluated stretch-induced changes in ATP concentration in the mouse bladder in the presence or absence of 100 µM tadalafil. RESULTS Immunochemistry and western blot analyses demonstrated that PDE5 is abundantly expressed in the bladder urothelium and in primary rat urothelial cells. Ca2+ influx induced by hypotonic stimulation, GSK1016790A, or cannabidiol was significantly inhibited by tadalafil, whereas ATP-induced Ca2+ influx was unaffected by tadalafil. PIP2 did not induce Ca2+ influx. ATP release in tadalafil-pretreated bladders significantly decreased compared to control bladders. CONCLUSIONS Tadalafil attenuates Ca2+ influx via TRPV4 and TRPV2, and inhibits ATP release in the bladder urothelium. These findings indicate that tadalafil functions as an inhibitor of urothelial signal transduction.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Urology, the First Hospital of China Medical University, Shenyang, People's Republic of China.,Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Hiroshi Nakagomi
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Tatsuya Miyamoto
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Tatsuya Ihara
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Satoru Kira
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi 1110 Shimokato, Chuo, Yamanashi, Japan
| |
Collapse
|
19
|
Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget 2018; 7:72941-72960. [PMID: 27662662 PMCID: PMC5341955 DOI: 10.18632/oncotarget.12146] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) functions as a Mg2+/Ca2+-permeable channel fused with a kinase domain and regulates various physical processes and diseases. However, its effects on pathogenesis of human bladder cancer (BCa) has not been clarified yet. Our microarray analysis has suggested that calcium signaling pathway is connected with bladder cancer via MAPK pathway. Therefore, we aim to investigate the mechanism of TRPM7 in BCa tumorigenesis by using BCa tissues compared with normal bladder epithelium tissues, as well as using distinct BCa cell lines (EJ, 5637 and T24). We observed increased TRPM7 expression and dysregulation of proteins involved in Epithelial-Mesenchymal Transition (EMT) in BCa tissues. Moreover, knockdown of TRPM7 in BCa cells reversed the EMT status, accompanied by increase of reactive oxygen species (ROS). Furthermore, TRPM7 deficiency could inhibit BCa cell proliferation, migration and invasion, as well as induce p-ERK1/2 and suppress PI3K/AKT at the protein level. Downregulation of TRPM7 promoted cell cycle arrest at G0/G1 phase and apoptosis in vitro, which could be recovered by pre-treatment with U0126 to deactivate ERK1/2, suggesting a close correlation between TRPM7 and the MAPK signaling pathway. Furthermore, a NOD/SCID mouse model transplanted using the BCa cells was established, revealing delayed tumor growth by reduced protein activity and mRNA transcription of TRPM7 in vivo. Our results suggested TRPM7 might be essential for BCa tumorigenesis by interfering BCa cell proliferation, motility and apoptosis.
Collapse
|
20
|
Grundy L, Daly DM, Chapple C, Grundy D, Chess-Williams R. TRPV1 enhances the afferent response to P2X receptor activation in the mouse urinary bladder. Sci Rep 2018; 8:197. [PMID: 29317663 PMCID: PMC5760578 DOI: 10.1038/s41598-017-18136-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Both TRPV1 and P2X receptors present on bladder sensory nerve fibres have been implicated in mechanosensation during bladder filling. The aim of this study was to determine possible interactions between these receptors in modulating afferent nerve activity. In wildtype (TRPV1+/+) and TRPV1 knockout (TRPV1-/-) mice, bladder afferent nerve activity, intravesical pressure, and luminal ATP and acetylcholine levels were determined and also intracellular calcium responses of dissociated pelvic DRG neurones and primary mouse urothelial cells (PMUCs). Bladder afferent nerve responses to the purinergic agonist αβMethylene-ATP were depressed in TRPV1-/- mice (p ≤ 0.001) and also in TRPV1+/+ mice treated with the TRPV1-antagonist capsazepine (10 µM; p ≤ 0.001). These effects were independent of changes in bladder compliance or contractility. Responses of DRG neuron to αβMethylene-ATP (30 µM) were unchanged in the TRPV1-/- mice, but the proportion of responsive neurones was reduced (p ≤ 0.01). Although the TRPV1 agonist capsaicin (1 µM) did not evoke intracellular responses in PMUCs from TRPV1+/+ mice, luminal ATP levels were reduced in the TRPV1-/- mice (p ≤ 0.001) compared to wildtype. TRPV1 modulates P2X mediated afferent responses and provides a mechanistic basis for the decrease in sensory symptoms observed following resiniferatoxin and capsaicin treatment for lower urinary tract symptoms.
Collapse
Affiliation(s)
- Luke Grundy
- Centre for Urology Research, Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
- Visceral Pain Group, University of Adelaide, SAHMRI, Adelaide, Australia
| | - Donna M Daly
- Department of Pharmacy and Biomedical Science, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| |
Collapse
|
21
|
|
22
|
Weinhold P, Hennenberg M, Strittmatter F, Stief CG, Gratzke C, Hedlund P. Transient receptor potential a1 (TRPA1) agonists inhibit contractions of the isolated human ureter. Neurourol Urodyn 2017; 37:600-608. [DOI: 10.1002/nau.23338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Philipp Weinhold
- Department of Urology; LMU; Munich Germany
- Department of Clinical and Experimental Pharmacology; Lund Sweden
| | | | | | | | | | - Petter Hedlund
- Department of Clinical and Experimental Pharmacology; Lund Sweden
- Department of Clinical Pharmacology; Linköping Sweden
| |
Collapse
|
23
|
McCloskey KD, Vahabi B, Fry CH. Is electrolyte transfer across the urothelium important?: ICI-RS 2015. Neurourol Urodyn 2017; 36:863-868. [PMID: 28444701 DOI: 10.1002/nau.23085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/12/2016] [Indexed: 11/08/2022]
Abstract
AIMS This article summarizes discussion at the International Consultation on Incontinence Research Society (ICI-RS) 2015 meeting of urine modification in the urinary tract by the urothelium. It considers the literature and proposes pertinent questions that need to be addressed to understand this phenomenon within a physiological context. METHODS Following the ICI-RS meeting, publications in PubMed relating to urine modification in the renal pelvis, ureter, and bladder were reviewed. RESULTS Historically, the urothelium has been simply considered as a passive, impermeable barrier, preventing contact between urine and the underlying cells. In addition to the ability of the umbrella cells to modify the surface area of the urothelium during bladder filling, the urothelium may also be involved in modifying urine composition. Several lines of evidence support the hypothesis that electrolytes and water can be reabsorbed by the urothelium and that this may have physiological relevance. Firstly, urothelial cells express several types of aquaporins and ion channels; the membrane expression of which is modulated by the extracellular concentration of ions including Na+ . Secondly, studies of urine composition in the renal pelvis and bladder demonstrate urine modification, indicating that water and/or electrolyte transport has occurred. Thirdly, hibernating mammals, with urothelial and bladder wall histology similar to non-hibernating mammals are known to produce and reabsorb urine daily, during long periods of hibernation. CONCLUSIONS The phenomenon of urine modification by the urothelium may be physiologically important during normal bladder filling. Research should be focused on investigating how this may change in conditions of urinary dysfunction.
Collapse
Affiliation(s)
- Karen D McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Bahareh Vahabi
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Christopher H Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Zhang Z, Bedder M, Smith SL, Walker D, Shabir S, Southgate J. Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms. Biosystems 2016; 146:110-21. [PMID: 27267455 PMCID: PMC5028014 DOI: 10.1016/j.biosystems.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 12/24/2022]
Abstract
This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24h period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviours, but can be extracted as mathematical formulae for the parameterization of computational models.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Electronics, University of York, Heslington, York YO10 5DD, UK.
| | - Matthew Bedder
- Department of Computer Science, University of York, Heslington, York YO10 5GW, UK.
| | - Stephen L Smith
- Department of Electronics, University of York, Heslington, York YO10 5DD, UK.
| | - Dawn Walker
- Department of Computer Science & Insigneo, Institute for in silico Medicine, University of Sheffield, Sheffield S1 4DP, UK.
| | - Saqib Shabir
- Jack Birch Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Jennifer Southgate
- Jack Birch Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
25
|
Andersson KE. Potential Future Pharmacological Treatment of Bladder Dysfunction. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:75-85. [DOI: 10.1111/bcpt.12577] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem NC USA
- Aarhus Institute for Advanced Sciences (AIAS); Aarhus University; Aarhus Denmark
| |
Collapse
|
26
|
Ketamine-Induced Apoptosis in Normal Human Urothelial Cells: A Direct, N-Methyl-d-Aspartate Receptor-Independent Pathway Characterized by Mitochondrial Stress. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1267-77. [PMID: 27001627 PMCID: PMC4861758 DOI: 10.1016/j.ajpath.2015.12.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/28/2015] [Accepted: 12/24/2015] [Indexed: 11/23/2022]
Abstract
Recreational abuse of ketamine has been associated with the emergence of a new bladder pain syndrome, ketamine-induced cystitis, characterized by chronic inflammation and urothelial ulceration. We investigated the direct effects of ketamine on normal human urothelium maintained in organ culture or as finite cell lines in vitro. Exposure of urothelium to ketamine resulted in apoptosis, with cytochrome c release from mitochondria and significant subsequent caspase 9 and 3/7 activation. The anesthetic mode-of-action for ketamine is mediated primarily through N-methyl d-aspartate receptor (NMDAR) antagonism; however, normal (nonimmortalized) human urothelial cells were unresponsive to NMDAR agonists or antagonists, and no expression of NMDAR transcript was detected. Exposure to noncytotoxic concentrations of ketamine (≤1 mmol/L) induced rapid release of ATP, which activated purinergic P2Y receptors and stimulated the inositol trisphosphate receptor to provoke transient release of calcium from the endoplasmic reticulum into the cytosol. Ketamine concentrations >1 mmol/L were cytotoxic and provoked a larger-amplitude increase in cytosolic Ca(2+) concentration that was unresolved. The sustained elevation in cytosolic Ca(2+) concentration was associated with pathological mitochondrial oxygen consumption and ATP deficiency. Damage to the urinary barrier initiates bladder pain and, in ketamine-induced cystitis, loss of urothelium from large areas of the bladder wall is a reported feature. This study offers first evidence for a mechanism of direct toxicity of ketamine to urothelial cells by activating the intrinsic apoptotic pathway.
Collapse
|
27
|
Alvarez-Berdugo D, Rofes L, Farré R, Casamitjana JF, Enrique A, Chamizo J, Padrón A, Navarro X, Clavé P. Localization and expression of TRPV1 and TRPA1 in the human oropharynx and larynx. Neurogastroenterol Motil 2016; 28:91-100. [PMID: 26530852 DOI: 10.1111/nmo.12701] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies have found that TRPV1 and TRPA1 receptor agonists improve swallow response in patients with oropharyngeal dysphagia (OD), but little is known about the expression of these receptors in the human oropharynx. The aim of this study was to assess the expression and localization of TRPV1 and TRPA1 in human samples from the oropharynx of healthy patients, to provide the basis for new pharmacological treatments for OD. METHODS Samples from oropharyngeal regions innervated by cranial nerves V, IX, and X (tongue, pharynx, and epiglottis) were obtained during ENT surgery and processed either for mRNA (21 patients) or for immunohistochemical assays (seven patients). The expression analysis was performed with RT-qPCR using ACTBh as reference gene. Hemotoxylin and eosin staining was used to study the histology; the immunohistochemical assay used (i) neuron-specific enolase to detect nerve fibers or (ii) fluorescent probes to locate TRPV1 and TRPA1. RESULTS TRPV1 was expressed in the three studied regions, with higher levels in CN V region (tongue) than in CN X region (epiglottis; p < 0.05), and was localized at epithelial cells and nociceptive fibers in all studied regions. TRPA1 was also expressed in all studied regions, but was always localized below the basal lamina. No immunoreactivity for TRPA1 was found on epithelial cells. CONCLUSIONS & INFERENCES TRPV1 and TRPA1 are widely expressed in the human oropharynx with two distinct patterns. Our study further confirms that TRPV1/A1 receptors are promising therapeutic targets to develop active treatments for OD patients.
Collapse
Affiliation(s)
- D Alvarez-Berdugo
- Gastrointestinal Motility Laboratory, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - L Rofes
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Barcelona, Spain
| | - R Farré
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Barcelona, Spain.,Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
| | - J F Casamitjana
- ENT Department, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - A Enrique
- ENT Department, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - J Chamizo
- ENT Department, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - A Padrón
- Department of Pathology, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain
| | - X Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Bellaterra, Spain
| | - P Clavé
- Gastrointestinal Motility Laboratory, Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Barcelona, Spain.,Fundació Institut de Investigació Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
28
|
Appleby PA, Shabir S, Southgate J, Walker D. Sources of variability in cytosolic calcium transients triggered by stimulation of homogeneous uro-epithelial cell monolayers. J R Soc Interface 2015; 12:rsif.2014.1403. [PMID: 25694543 PMCID: PMC4387530 DOI: 10.1098/rsif.2014.1403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Epithelial tissue structure is the emergent outcome of the interactions between large numbers of individual cells. Experimental cell biology offers an important tool to unravel these complex interactions, but current methods of analysis tend to be limited to mean field approaches or representation by selected subsets of cells. This may result in bias towards cells that respond in a particular way and/or neglect local, context-specific cell responses. Here, an automated algorithm was applied to examine in detail the individual calcium transients evoked in genetically homogeneous, but asynchronous populations of cultured non-immortalized normal human urothelial cells when subjected to either the global application of an external agonist or a localized scratch wound. The recorded calcium transients were classified automatically according to a set of defined metrics and distinct sub-populations of cells that responded in qualitatively different ways were observed. The nature of this variability in the homogeneous cell population was apportioned to two sources: intrinsic variation in individual cell responses and extrinsic variability due to context-specific factors of the environment, such as spatial heterogeneity. Statistically significant variation in the features of the calcium transients evoked by scratch wounding according to proximity to the wound edge was identified. The manifestation of distinct sub-populations of cells is considered central to the coordination of population-level response resulting in wound closure.
Collapse
Affiliation(s)
- Peter A Appleby
- Department of Computer Science/INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Saqib Shabir
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - Dawn Walker
- Department of Computer Science/INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Ogawa T, Imamura T, Nakazawa M, Hiragata S, Nagai T, Minagawa T, Yokoyama H, Ishikawa M, Domen T, Ishizuka O. Transient receptor potential channel superfamily: Role in lower urinary tract function. Int J Urol 2015; 22:994-9. [DOI: 10.1111/iju.12861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/03/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Teruyuki Ogawa
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Tetsuya Imamura
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Masaki Nakazawa
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Shiro Hiragata
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Takashi Nagai
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Tomonori Minagawa
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Hitoshi Yokoyama
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Masakuni Ishikawa
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Takahisa Domen
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| | - Osamu Ishizuka
- Department of Urology; Shinshu University School of Medicine; Matsumoto Nagano Japan
| |
Collapse
|
30
|
Ito H, Aizawa N, Sugiyama R, Watanabe S, Takahashi N, Tajimi M, Fukuhara H, Homma Y, Kubota Y, Andersson KE, Igawa Y. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry andex vivomeasurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int 2015; 117:484-94. [DOI: 10.1111/bju.13225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hiroki Ito
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
- Department of Urology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Naoki Aizawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Rino Sugiyama
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | | | | | | | - Hiroshi Fukuhara
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yukio Homma
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yoshinobu Kubota
- Department of Urology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | | | - Yasuhiko Igawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
31
|
Abstract
It is well established that in most species, exocytotic vesicular release of ATP from parasympathetic neurons contributes to contraction of the bladder. However, ATP is released not only from parasympathetic nerves, but also from the urothelium. During bladder filling, the urothelium is stretched and ATP is released from the umbrella cells thereby activating mechanotransduction pathways. ATP release can also be induced by various mediators present in the urine and and/or released from nerves or other components of the lamina propria. Urothelial release of ATP is mainly attributable to vesicular transport or exocytosis and, to a smaller extent, to pannexin hemichannel conductive efflux. After release, ATP acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex and to mediate the sensation of bladder filling and urgency. ATP also acts on suburothelial interstitial cells/myofibroblasts generating an inward Ca(2+) transient that via gap junctions could provide a mechanism for long-distance spread of signals from the urothelium to the detrusor muscle. ATP release can be affected by urological diseases, e.g., interstitial cystitis and both the mechanisms of release and the receptors activated by ATP may be targets for future drugs for treatment of lower urinary tract disorders.
Collapse
|
32
|
Deruyver Y, Voets T, De Ridder D, Everaerts W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int 2015; 115:686-97. [DOI: 10.1111/bju.12876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yves Deruyver
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- University Hospitals Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Thomas Voets
- Laboratory for Ion Channel Research; Department of Molecular Cell Biology; KU Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- University Hospitals Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
- Royal Melbourne Hospital; Melbourne Australia
| |
Collapse
|
33
|
Signalling molecules in the urothelium. BIOMED RESEARCH INTERNATIONAL 2014; 2014:297295. [PMID: 25177686 PMCID: PMC4142380 DOI: 10.1155/2014/297295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
The urothelium was long considered to be a silent barrier protecting the body from the toxic effects of urine. However, today a number of dynamic abilities of the urothelium are well recognized, including its ability to act as a sensor of the intravesical environment. During recent years several pathways of these urothelial abilities have been proposed and a major part of these pathways includes release of signalling molecules. It is now evident that the urothelium represents only one part of the sensory web. Urinary bladder signalling is finely tuned machinery of signalling molecules, acting in autocrine and paracrine manner, and their receptors are specifically distributed among different types of cells in the urinary bladder. In the present review the current knowledge of the formation, release, and signalling effects of urothelial acetylcholine, ATP, adenosine, and nitric oxide in health and disease is discussed.
Collapse
|
34
|
Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3:517-45. [PMID: 24861977 PMCID: PMC4092862 DOI: 10.3390/cells3020517] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically.
Collapse
Affiliation(s)
- Rafael Brito
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Sandeep Sheth
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Debashree Mukherjea
- Department of Surgery (Otoloryngalogy), Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Leonard P Rybak
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | - Vickram Ramkumar
- Department of Pharmacology and Neuroscience, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| |
Collapse
|
35
|
IL-8 and global gene expression analysis define a key role of ATP in renal epithelial cell responses induced by uropathogenic bacteria. Purinergic Signal 2014; 10:499-508. [PMID: 24817659 DOI: 10.1007/s11302-014-9414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022] Open
Abstract
The recent recognition of receptor-mediated ATP signalling as a pathway of epithelial pro-inflammatory cytokine release challenges the ubiquitous role of the TLR4 pathway during urinary tract infection. The aim of this study was to compare cellular responses of renal epithelial cells infected with uropathogenic Escherichia coli (UPEC) strain IA2 to stimulation with ATP-γ-S. A498 cells were infected or stimulated in the presence or absence of apyrase, that degrades extracellular ATP, or after siRNA-mediated knockdown of ATP-responding P2Y2 receptors. Cellular IL-8 release and global gene expression were analysed. Both IA2 and A498 cells per se released ATP, which increased during infection. IA2 and ATP-γ-S caused a ∼5-fold increase in cellular release of IL-8 and stimulations performed in the presence of apyrase or after siRNA knockdown of P2Y2 receptors resulted in attenuation of IA2-mediated IL-8 release. Microarray results show that both IA2 and ATP-γ-S induced marked changes in gene expression of renal cells. Thirty-six genes were in common between both stimuli, and many of these are key genes belonging to classical response pathways of bacterial infection. Functional analysis shows that 88 biological function-annotated cellular pathways were identical between IA2 and ATP-γ-S stimuli. Results show that UPEC-induced release of IL-8 is dependent on P2Y2 signalling and that cellular responses elicited by UPEC and ATP-γ-S have many identical features. This indicates that renal epithelial responses elicited by bacteria could be mediated by bacteria- or host-derived ATP, thus defining a key role of ATP during infection.
Collapse
|
36
|
Evidence for bladder urothelial pathophysiology in functional bladder disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:865463. [PMID: 24900993 PMCID: PMC4034482 DOI: 10.1155/2014/865463] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/27/2014] [Indexed: 12/22/2022]
Abstract
Understanding of the role of urothelium in regulating bladder function is continuing to evolve. While the urothelium is thought to function primarily as a barrier for preventing injurious substances and microorganisms from gaining access to bladder stroma and upper urinary tract, studies indicate it may also function in cell signaling events relating to voiding function. This review highlights urothelial abnormalities in bladder pain syndrome/interstitial cystitis (BPS/IC), feline interstitial cystitis (FIC), and nonneurogenic idiopathic overactive bladder (OAB). These bladder conditions are typified by lower urinary tract symptoms including urinary frequency, urgency, urgency incontinence, nocturia, and bladder discomfort or pain. Urothelial tissues and cells from affected clinical subjects and asymptomatic controls have been compared for expression of proteins and mRNA. Animal models have also been used to probe urothelial responses to injuries of the urothelium, urethra, or central nervous system, and transgenic techniques are being used to test specific urothelial abnormalities on bladder function. BPS/IC, FIC, and OAB appear to share some common pathophysiology including increased purinergic, TRPV1, and muscarinic signaling, increased urothelial permeability, and aberrant urothelial differentiation. One challenge is to determine which of several abnormally regulated signaling pathways is most important for mediating bladder dysfunction in these syndromes, with a goal of treating these conditions by targeting specific pathophysiology.
Collapse
|
37
|
Correlation between urothelial differentiation and sensory proteins P2X3, P2X5, TRPV1, and TRPV4 in normal urothelium and papillary carcinoma of human bladder. BIOMED RESEARCH INTERNATIONAL 2014; 2014:805236. [PMID: 24868547 PMCID: PMC4020497 DOI: 10.1155/2014/805236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 11/17/2022]
Abstract
Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns.
Collapse
|
38
|
P2Y receptor modulation of ATP release in the urothelium. BIOMED RESEARCH INTERNATIONAL 2014; 2014:830374. [PMID: 24829920 PMCID: PMC4009150 DOI: 10.1155/2014/830374] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
The release of ATP from the urothelium in response to stretch during filling demonstrates the importance of the purinergic system for the physiological functioning of the bladder. This study examined the effect of P2 receptor agonists on ATP release from two urothelial cell lines (RT4 and UROtsa cells). Hypotonic Krebs was used as a stretch stimulus. Incubation of urothelial cells with high concentrations of the P2Y agonist ADP induced ATP release to a level that was 40-fold greater than hypotonic-stimulated ATP release (P < 0.0011, ADP EC50 1.8 µM). Similarly, an increase in ATP release was also observed with the P2Y agonist, UTP, up to a maximum of 70% of the hypotonic response (EC50 0.62 µM). Selective P2 receptor agonists, αβ -methylene-ATP, ATP- γ -S, and 2-methylthio-ADP had minimal effects on ATP release. ADP-stimulated ATP release was significantly inhibited by suramin (100 µM, P = 0.002). RT4 urothelial cells break down nucleotides (100 µM) including ATP, ADP, and UTP to liberate phosphate. Phosphate liberation was also demonstrated from endogenous nucleotides with approximately 10% of the released ATP broken down during the incubation. These studies demonstrate a role for P2Y receptor activation in stimulation of ATP release and emphasize the complexity of urothelial P2 receptor signalling.
Collapse
|