1
|
Küng CJ, Daryadel A, Fuente R, Haykir B, de Angelis MH, Hernando N, Rubio-Aliaga I, Wagner CA. A novel mouse model for familial hypocalciuric hypercalcemia (FHH1) reveals PTH-dependent and independent CaSR defects. Pflugers Arch 2024; 476:833-845. [PMID: 38386045 PMCID: PMC11033242 DOI: 10.1007/s00424-024-02927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The Calcium-sensing receptor (CaSR) senses extracellular calcium, regulates parathyroid hormone (PTH) secretion, and has additional functions in various organs related to systemic and local calcium and mineral homeostasis. Familial hypocalciuric hypercalcemia type I (FHH1) is caused by heterozygous loss-of-function mutations in the CaSR gene, and is characterized by the combination of hypercalcemia, hypocalciuria, normal to elevated PTH, and facultatively hypermagnesemia and mild bone mineralization defects. To date, only heterozygous Casr null mice have been available as model for FHH1. Here we present a novel mouse FHH1 model identified in a large ENU-screen that carries an c.2579 T > A (p.Ile859Asn) variant in the Casr gene (CasrBCH002 mice). In order to dissect direct effects of the genetic variant from PTH-dependent effects, we crossed CasrBCH002 mice with PTH deficient mice. Heterozygous CasrBCH002 mice were fertile, had normal growth and body weight, were hypercalcemic and hypermagnesemic with inappropriately normal PTH levels and urinary calcium excretion replicating some features of FHH1. Hypercalcemia and hypermagnesemia were independent from PTH and correlated with higher expression of claudin 16 and 19 in kidneys. Likewise, reduced expression of the renal TRPM6 channel in CasrBCH002 mice was not dependent on PTH. In bone, mutations in Casr rescued the bone phenotype observed in Pth null mice by increasing osteoclast numbers and improving the columnar pattern of chondrocytes in the growth zone. In summary, CasrBCH002 mice represent a new model to study FHH1 and our results indicate that only a part of the phenotype is driven by PTH.
Collapse
Affiliation(s)
- Catharina J Küng
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Rocio Fuente
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Department of Morphology and Cellular Biology, University of Oviedo, Oviedo, Spain
| | - Betül Haykir
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl Für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- Member of German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Dutta P, Hakimi S, Layton AT. How the kidney regulates magnesium: a modelling study. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231484. [PMID: 38511086 PMCID: PMC10951724 DOI: 10.1098/rsos.231484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The kidneys are crucial for maintaining Mg2+ homeostasis. Along the proximal tubule and thick ascending limb, Mg2+ is reabsorbed paracellularly, while along the distal convoluted tubule (DCT), Mg2+ is reabsorbed transcellularly via transient receptor potential melastatin 6 (TRPM6). TRPM6 and other renal transporter expressions are regulated by sex hormones. To investigate renal Mg2 handling, we have developed sex-specific computational models of electrolyte transport along rat superficial nephron. Model simulations indicated that along the proximal tubule and thick ascending limb, Mg2+ and Na+ transport occur parallelly, but they are dissociated along the DCT. In addition, our models predicted higher paracellular Mg2+ permeability in females to attain similar cortical thick ascending limb fractional Mg2+ reabsorption in both sexes. Furthermore, DCT fractional Mg2+ reabsorption is higher in females than in males, allowing females to better fine-tune Mg2+ excretion. We validated our models by simulating the administration of three classes of diuretics. The model predicted significantly increased, marginally increased and significantly decreased Mg2+ excretions for loop, thiazide and K-sparing diuretics, respectively, aligning with experimental findings. The models can be used to conduct in silico studies on kidney adaptations to Mg2+ homeostasis alterations during conditions such as pregnancy, diabetes and chronic kidney disease.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Shervin Hakimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- Department of Biology, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
- School of Pharmacology, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
3
|
Hakimi S, Dutta P, Layton AT. Coupling of renal sodium and calcium transport: a modeling analysis of transporter inhibition and sex differences. Am J Physiol Renal Physiol 2023; 325:F536-F551. [PMID: 37615047 DOI: 10.1152/ajprenal.00145.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Ca2+ transport along the nephron occurs via specific transcellular and paracellular pathways and is coupled to the transport of other electrolytes. Notably, Na+ transport establishes an electrochemical gradient to drive Ca2+ reabsorption. Hence, alterations in renal Na+ handling, under pathophysiological conditions or pharmacological manipulations, can have major effects on Ca2+ transport. An important class of pharmacological agent is diuretics, which are commonly prescribed for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate Na+ transport but also indirectly affect renal Ca2+ handling. To better understand the underlying mechanisms, we developed a computational model of electrolyte transport along the superficial nephron in the kidney of a male and female rat. Sex differences in renal Ca2+ handling are represented. Model simulations predicted in the female rat nephron lower Ca2+ reabsorption in the proximal tubule and thick ascending limb, but higher reabsorption in the late distal convoluted tubule and connecting tubule, compared with the male nephron. The male rat kidney model yielded a higher urinary Ca2+ excretion than the female model, consistent with animal experiments. Model results indicated that along the proximal tubule and thick ascending limb, Ca2+ and Na+ transport occurred in parallel, but those processes were dissociated in the distal convoluted tubule. Additionally, we conducted simulations of inhibition of channels and transporters that play a major role in Na+ and Ca2+ transport. Simulation results revealed alterations in transepithelial Ca2+ transport, with differential effects among nephron segments and between the sexes.NEW & NOTEWORTHY The kidney plays an important role in the maintenance of whole body Ca2+ balance by regulating Ca2+ reabsorption and excretion. This computational modeling study provides insights into how Ca2+ transport along the nephron is coupled to Na+. Model results indicated that along the proximal tubule and thick ascending limb, Ca2+ and Na+ transport occur in parallel, but those processes were dissociated in the distal convoluted tubule. Simulations also revealed sex-specific responses to different pharmacological manipulations.
Collapse
Affiliation(s)
- Shervin Hakimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Stadt MM, Layton AT. Mathematical modeling of calcium homeostasis in female rats: An analysis of sex differences and maternal adaptations. J Theor Biol 2023; 572:111583. [PMID: 37516344 DOI: 10.1016/j.jtbi.2023.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Calcium plays a vital role in various biological processes, including muscle contractions, blood clotting, skeletal mineralization, and cell signaling. While extracellular calcium makes up less than 1% of total body calcium, it is tightly regulated since too high or too low extracellular calcium concentration can have dangerous effects on the body. Mathematical modeling is a well-suited approach to investigate the complex physiological processes involved in calcium regulation. While mathematical models have been developed to study calcium homeostasis in male rats, none have been used to investigate known sex differences in hormone levels nor the unique physiological states of pregnancy and lactation. Calcitriol, the active form of vitamin D, plays a key role in intestinal calcium absorption, renal calcium reabsorption, and bone remodeling. It has been shown that, when compared to age-matched male rats, females have significantly lower calcitriol levels. In this study we first seek to investigate the impact of this difference as well as other known sex differences on calcium homeostasis using mathematical modeling. Female bodies differ from male bodies in that during their lifetime they may undergo massive adaptations during pregnancy and lactation. Indeed, maternal adaptations impact calcium regulation in all mammals. In pregnant rodents, intestinal absorption of calcium is massively increased in the mother's body to meet the needs of the developing fetus. In a lactating rodent, much of the calcium needs of milk are met by bone resorption, intestinal absorption, and renal calcium reabsorption. Given these observations, the goal of this project is to develop multi-scale whole-body models of calcium homeostasis that represents (1) how sex differences impact calcium homeostasis in female vs. male rats and (2) how a female body adapts to support the excess demands brought on by pregnancy and lactation. We used these models to quantify the impact of individual sex differences as well as maternal adaptations during pregnancy and lactation. Additionally, we conducted "what if" simulations to test whether sex differences in calcium regulation may enable females to better undergo maternal adaptations required in pregnancy and lactation than males.
Collapse
Affiliation(s)
- Melissa M Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada; Cheriton School of Computer Science, Department of Biology, School of Pharmacology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
5
|
Nyimanu D, Behm C, Choudhury S, Yu ASL. The role of claudin-2 in kidney function and dysfunction. Biochem Soc Trans 2023; 51:1437-1445. [PMID: 37387353 DOI: 10.1042/bst20220639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Claudin-2 is a tight junction protein expressed in leaky epithelia where it forms paracellular pores permeable to cations and water. The paracellular pore formed by claudin-2 is important in energy-efficient cation and water transport in the proximal tubules of the kidneys. Mounting evidence now suggests that claudin-2 may modulate cellular processes often altered in disease, including cellular proliferation. Also, dysregulation of claudin-2 expression has been linked to various diseases, including kidney stone disease and renal cell carcinoma. However, the mechanisms linking altered claudin-2 expression and function to disease are poorly understood and require further investigation. The aim of this review is to discuss the current understanding of the role of claudin-2 in kidney function and dysfunction. We provide a general overview of the claudins and their organization in the tight junction, the expression, and function of claudin-2 in the kidney, and the evolving evidence for its role in kidney disease.
Collapse
Affiliation(s)
- Duuamene Nyimanu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Christine Behm
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Sonali Choudhury
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| | - Alan S L Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, U.S.A
| |
Collapse
|
6
|
De La Flor JC, Villa D, Cruzado L, Apaza J, Valga F, Zamora R, Marschall A, Cieza M, Deira J, Rodeles M. Efficacy and Safety of the Use of SGLT2 Inhibitors in Patients on Incremental Hemodialysis: Maximizing Residual Renal Function, Is There a Role for SGLT2 Inhibitors? Biomedicines 2023; 11:1908. [PMID: 37509547 PMCID: PMC10377393 DOI: 10.3390/biomedicines11071908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
SGLT-2i are the new standard of care for diabetic kidney disease (DKD), but previous studies have not included patients on kidney replacement therapy (KRT). Due to their high risk of cardiovascular, renal complications, and mortality, these patients would benefit the most from this therapy. Residual kidney function (RKF) conveys a survival benefit and cardiovascular health among hemodialysis (HD) patients, especially those on incremental hemodialysis (iHD). We retrospectively describe the safety and efficacy of SGLT2i regarding RKF preservation in seven diabetic patients with different clinical backgrounds who underwent iHD (one or two sessions per week) during a 12-month follow-up. All patients preserved RKF, measured as residual kidney urea clearance (KrU) in 24 h after the introduction of SGLT2i. KrU levels improved significantly from 4.91 ± 1.14 mL/min to 7.28 ± 1.68 mL/min at 12 months (p = 0.028). Pre-hemodialysis blood pressure improved 9.95% in mean systolic blood pressure (SBP) (p = 0.015) and 10.95% in mean diastolic blood pressure (DBP) (p = 0.041); as a result, antihypertensive medication was modified. Improvements in blood uric acid, hemoglobin A1c, urine albumin/creatinine ratio (UACR), and 24 h proteinuria were also significant. Regarding side effects, two patients developed uncomplicated urinary tract infections that were resolved. No other complications were reported. The use of SGLT2i in our sample of DKD patients starting iHD on a 1-2 weekly regimen appears to be safe and effective in preserving RKF.
Collapse
Affiliation(s)
- José C De La Flor
- Department of Nephrology, Hospital Central Defense Gomez Ulla, 28047 Madrid, Spain
| | - Daniel Villa
- Department of Nephrology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Leónidas Cruzado
- Department of Nephrology, Hospital General Elche, 03203 Elche, Spain
| | - Jacqueline Apaza
- Department of Nephrology, Hospital Fuensanta, 28942 Madrid, Spain
| | - Francisco Valga
- Department of Nephrology, Hospital Universitario Doctor Negrin de Gran Canarias, 35016 Las Palmas de Gran Canarias, Spain
| | - Rocío Zamora
- Department of Nephrology, Hospital Universitario General Villalba, 28400 Madrid, Spain
| | - Alexander Marschall
- Department of Cardiology, Central Defense Gomez Ulla Hospital, 28047 Madrid, Spain
| | - Michael Cieza
- Teaching Coordination Unit, Universidad Peruana Cayetano Heredia, Lima 15012, Peru
| | - Javier Deira
- Department of Nephrology, Hospital San Pedro de Alcántara, 10003 Cáceres, Spain
| | - Miguel Rodeles
- Department of Nephrology, Hospital Central Defense Gomez Ulla, 28047 Madrid, Spain
| |
Collapse
|
7
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
8
|
Alexander RT, Dimke H. Molecular mechanisms underlying paracellular calcium and magnesium reabsorption in the proximal tubule and thick ascending limb. Ann N Y Acad Sci 2022; 1518:69-83. [PMID: 36200584 DOI: 10.1111/nyas.14909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcium and magnesium are the most abundant divalent cations in the body. The plasma level is controlled by coordinated interaction between intestinal absorption, reabsorption in the kidney, and, for calcium at least, bone storage and exchange. The kidney adjusts urinary excretion of these ions in response to alterations in their systemic concentration. Free ionized and anion-complexed calcium and magnesium are filtered at the glomerulus. The majority (i.e., >85%) of filtered divalent cations are reabsorbed via paracellular pathways from the proximal tubule and thick ascending limb (TAL) of the loop of Henle. Interestingly, the largest fraction of filtered calcium is reabsorbed from the proximal tubule (65%), while the largest fraction of filtered magnesium is reclaimed from the TAL (60%). The paracellular pathways mediating these fluxes are composed of tight junctional pores formed by claudins. In the proximal tubule, claudin-2 and claudin-12 confer calcium permeability, while the exact identity of the magnesium pore remains to be determined. Claudin-16 and claudin-19 contribute to the calcium and magnesium permeable pathway in the TAL. In this review, we discuss the data supporting these conclusions and speculate as to why there is greater fractional calcium reabsorption from the proximal tubule and greater fractional magnesium reabsorption from the TAL.
Collapse
Affiliation(s)
- R Todd Alexander
- Departments of Physiology & Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women's and Children's Health Institute, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
9
|
Noroozbabaee L, Blanco PJ, Safaei S, Nickerson DP. A modular and reusable model of epithelial transport in the proximal convoluted tubule. PLoS One 2022; 17:e0275837. [PMID: 36355848 PMCID: PMC9648790 DOI: 10.1371/journal.pone.0275837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/24/2022] [Indexed: 11/12/2022] Open
Abstract
We review a collection of published renal epithelial transport models, from which we build a consistent and reusable mathematical model able to reproduce many observations and predictions from the literature. The flexible modular model we present here can be adapted to specific configurations of epithelial transport, and in this work we focus on transport in the proximal convoluted tubule of the renal nephron. Our mathematical model of the epithelial proximal convoluted tubule describes the cellular and subcellular mechanisms of the transporters, intracellular buffering, solute fluxes, and other processes. We provide free and open access to the Python implementation to ensure our multiscale proximal tubule model is accessible; enabling the reader to explore the model through setting their own simulations, reproducibility tests, and sensitivity analyses.
Collapse
Affiliation(s)
- Leyla Noroozbabaee
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Pablo J. Blanco
- National Laboratory for Scientific Computing, Petrópolis, Brazil
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P. Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Еремкина АК, Елфимова АР, Абойшева ЕА, Карасева ЕВ, Фадеева МИ, Маганева ИС, Ковалева ЕВ, Горбачева АМ, Бибик ЕЕ, Мокрышева НГ. [The short test with hydrochlorothiazide in differential diagnosis between primary normocalcemic and secondary hyperparathyroidism for inpatient treatment]. PROBLEMY ENDOKRINOLOGII 2022; 68:52-58. [PMID: 36104966 PMCID: PMC9768719 DOI: 10.14341/probl13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Differential diagnosis between the normocalcemic primary hyperparathyroidism (nPHPT) and secondary hyperparathyroidism (SHPT) due to hypercalciuria remains a challenge. AIM The aim of this study was to investigate the capability of short test with hydrochlorothiazide for the differential diagnosis of nPHPT and SHPT. MATERIALS AND METHODS A retrospective study was conducted with the participation of 28 patients who underwent a functional test with thiazide diuretics during hospitalization in the Department of parathyroid glands pathology and mineral disorders of the Endocrinology Research Centre, Russia. Parameters of mineral metabolism were evaluated before and 3-5 days after taking hydrochlorothiazide 50 mg/day. RESULTS According to baseline and dynamic biochemical evaluation patients were divided into 3 groups. Group 1 (n=21) included patients with confirmed PHPT, who reached hypercalcemia accompanying with an elevated level of iPTH (n=19) or an increased level of iPTH accompanying with normocalcemia (n=2). In group 1, baseline Caadj. was 2.48 mmol/l [2.47; 2.52], iPTH 107.5 pg/ml [86.8; 133.0], after short test - 2.63 mmol/l [2.59; 2.66] and 102.1 pg/ml [95,7; 124,1]. Group 2 included only one who was diagnosed with SHPT, a normal value of iPTH with concomitant normocalcemia was achieved after 4 days of hydrochlorothiazide therapy (baseline Caadj. 2.35 mmol/l, iPTH 74.5 pg/ml vs at 2.27 mmol/l and 50.7 pg/ml respectively). Patients with doubtful results of the test entered in group 3 (n=6), they did not achieve significant changes in the calcium and iPTH levels, so it was recommended to continue the test on an outpatient basis (baseline Caadj. 2.39 mmol/l [2.33;2.45], iPTH 97.0 pg/ml [83.1;117.0]); after short test - 2.47 mmol/l [2.42; 2.48] and 91.3 pg/ml [86.9; 124.0] respectively). Groups with PHPT and SHPT and doubtful results significantly differed from each other in Caadj (р=0.003, U-test, Bonferroni correction Р0=0.006), but not in iPTH, daily calciuria, eGFR, and phosphorus. There were no significant differences in the incidence of classical complications of PHPT. CONCLUSION The diagnosis of PHPT was confirmed in 21/28 patients 3-5 days after taking hydrochlorothiazide 50 mg/day. The obtained results are significant for the differential diagnosis in hospitalized patients with an unspecified genesis of hyperparathyroidism.
Collapse
Affiliation(s)
- А. К. Еремкина
- Национальный медицинский исследовательский центр эндокринологии
| | - А. Р. Елфимова
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. А. Абойшева
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. В. Карасева
- Национальный медицинский исследовательский центр эндокринологии
| | - М. И. Фадеева
- Национальный медицинский исследовательский центр эндокринологии
| | - И. С. Маганева
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. В. Ковалева
- Национальный медицинский исследовательский центр эндокринологии
| | - А. М. Горбачева
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Е. Бибик
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
11
|
Molecular mechanisms altering tubular calcium reabsorption. Pediatr Nephrol 2022; 37:707-718. [PMID: 33796889 DOI: 10.1007/s00467-021-05049-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/12/2021] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
The majority of calcium filtered by the glomerulus is reabsorbed along the nephron. Most is reabsorbed from the proximal tubule (> 60%) via a paracellular pathway composed of the tight junction proteins claudins-2 and -12, a process driven by sodium and consequently water reabsorption. The thick ascending limb reabsorbs the next greatest amount of calcium (20-25%), also by a paracellular pathway composed of claudins-16 and -19. This pathway is regulated by the CaSR, whose activity increases the expression of claudin-14, a protein that blocks paracellular calcium reabsorption. The fine tuning of urinary calcium excretion occurs in the distal convoluted and connecting tubule by a transcellular pathway composed of the apical calcium channel TRPV5, the calcium shuttling protein calbindin-D28K and the basolateral proteins PMCA1b and the sodium calcium exchanger, NCX. Not surprisingly, mutations in a subset of these genes cause monogenic disorders with hypercalciuria as a part of the phenotype. More commonly, "idiopathic" hypercalciuria is encountered clinically with genetic variations in CLDN14, the CASR and TRPV5 associating with kidney stones and increased urinary calcium excretion. An understanding of the molecular pathways conferring kidney tubular calcium reabsorption is employed in this review to help explain how dietary and medical interventions for this disorder lower urinary calcium excretion.
Collapse
|
12
|
Dong B, Lv R, Wang J, Che L, Wang Z, Huai Z, Wang Y, Xu L. The Extraglycemic Effect of SGLT-2is on Mineral and Bone Metabolism and Bone Fracture. Front Endocrinol (Lausanne) 2022; 13:918350. [PMID: 35872985 PMCID: PMC9302585 DOI: 10.3389/fendo.2022.918350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for osteoporosis. The effects of T2DM and anti-diabetic agents on bone and mineral metabolism have been observed. Sodium-glucose co-transporter 2 inhibitors (SGLT-2is) promote urinary glucose excretion, reduce blood glucose level, and improve the cardiovascular and diabetic nephropathy outcomes. In this review, we focused on the extraglycemic effect and physiological regulation of SGLT-2is on bone and mineral metabolism. SGLT-2is affect the bone turnover, microarchitecture, and bone strength indirectly. Clinical evidence of a meta-analysis showed that SGLT-2is might not increase the risk of bone fracture. The effect of SGLT-2is on bone fracture is controversial, and further investigation from a real-world study is needed. Based on its significant benefit on cardiovascular and chronic kidney disease (CKD) outcomes, SGLT-2is are an outstanding choice. Bone mineral density (BMD) and fracture risk evaluation should be considered for patients with a high risk of bone fracture.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruolin Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongchao Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhouyang Huai
- Department of Geriatric Medicine, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University, Yantai, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lili Xu, ; Yangang Wang,
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lili Xu, ; Yangang Wang,
| |
Collapse
|
13
|
Abstract
Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice. Consequently, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- R T Alexander
- Departments of Physiology and Pediatrics, University of Alberta, Edmonton, Canada; .,Membrane Protein Disease Research Group, University of Alberta, Edmonton, Canada
| | - D G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - H Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
14
|
Baba Y, Ishibashi R, Takasaki A, Ito C, Watanabe A, Tokita M, Meguro M, Harama T, Hirayama K, Yamamoto T, Nakamura S, Koshizaka M, Maezawa Y, Uchida D, Okajima F. Effects of Sodium Glucose Co-Transporter 2 Inhibitors in Type 1 Diabetes Mellitus on Body Composition and Glucose Variabilities: Single-Arm, Exploratory Trial. Diabetes Ther 2021; 12:1415-1427. [PMID: 33738773 PMCID: PMC8099976 DOI: 10.1007/s13300-021-01047-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Sodium glucose co-transporter 2 (SGLT2) inhibitors are widely used in the management of type 2 diabetes mellitus; they prevent cardiovascular events and reduce fat mass. However, little is known about the effects of SGLT2 inhibitors on type 1 diabetes mellitus as an adjuvant to insulin therapy. Therefore, we aimed to elucidate the effects of SGLT2 inhibitors on body composition of patients with type 1 diabetes mellitus and assess blood glucose variability. METHODS A single-center, single-arm, prospective, interventional study was performed on Japanese patients with type 1 diabetes mellitus who were not administered SGLT2 inhibitors prior to this study. These patients were equipped with flash glucose monitoring (FGM) and administered ipragliflozin 50 mg daily. Body composition was evaluated using bioelectrical impedance analysis, and glycemic variabilities were assessed using FGM before and after SGLT2 inhibitor treatment. RESULTS After 52 weeks of treatment, the total fat mass tended to be reduced (- 9.10% from baseline, P = 0.098). In addition, skeletal muscle mass also decreased (- 2.98% from baseline, P = 0.023). Although the basal insulin dose was reduced, SGLT2 inhibitors decreased HbA1c levels. FGM revealed that glycemic variabilities were also reduced, and time within the target glucose range increased (51.7% vs. 62.5%, P = 0.004). CONCLUSION SGLT2 inhibitors have beneficial effects on glycemic variabilities and fat mass reductions in patients with type 1 diabetes mellitus. However, loss of skeletal muscle is a major concern; therefore, caution is required when using SGLT2 inhibitors in lean patients with type 1 diabetes mellitus. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trial Registry (UMIN000042407).
Collapse
Affiliation(s)
- Yusuke Baba
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Ryoichi Ishibashi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan.
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Atsushi Takasaki
- Department of Diabetes, Endocrinology and Metabolism, Japanese Red Cross Narita Hospital, Chiba, Japan
| | - Chiho Ito
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Atsuko Watanabe
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Megumi Tokita
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Miwako Meguro
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Tomomi Harama
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Kiichi Hirayama
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Tetsuya Yamamoto
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Susumu Nakamura
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Daigaku Uchida
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Chiba, Japan
| | - Fumitaka Okajima
- Department of Diabetes, Endocrinology and Metabolism, Nippon Medical School, Chiba Hokusoh Hospital, Chiba, Japan
| |
Collapse
|
15
|
Koshizaka M, Ishikawa K, Ishibashi R, Maezawa Y, Sakamoto K, Uchida D, Nakamura S, Yamaga M, Yokoh H, Kobayashi A, Onishi S, Kobayashi K, Ogino J, Hashimoto N, Tokuyama H, Shimada F, Ohara E, Ishikawa T, Shoji M, Ide S, Ide K, Baba Y, Hattori A, Kitamoto T, Horikoshi T, Shimofusa R, Takahashi S, Nagashima K, Sato Y, Takemoto M, Newby LK, Yokote K. Effects of ipragliflozin versus metformin in combination with sitagliptin on bone and muscle in Japanese patients with type 2 diabetes mellitus: Subanalysis of a prospective, randomized, controlled study (PRIME-V study). J Diabetes Investig 2021; 12:200-206. [PMID: 32623839 PMCID: PMC7858125 DOI: 10.1111/jdi.13340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/23/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS/INTRODUCTION Recent randomized clinical trials have suggested that sodium-glucose cotransporter 2 inhibitors might reduce cardiovascular events and heart failure, and have renal protective effects. Despite these remarkable benefits, the effects of sodium-glucose cotransporter 2 inhibitors on bone and muscle are unclear. MATERIALS AND METHODS A subanalysis of a randomized controlled study was carried out to evaluate the effects of the sodium-glucose cotransporter 2 inhibitor, ipragliflozin, versus metformin on bone and muscle in Japanese patients with type 2 diabetes mellitus (baseline body mass index ≥22 kg/m2 and hemoglobin A1c 7-10%) who were already receiving sitagliptin. These patients were randomly administered ipragliflozin 50 mg or metformin 1,000-1,500 mg daily. The effects of these medications on the bone formation marker, bone alkali phosphatase; the bone resorption marker, tartrate-resistant acid phosphatase 5b (TRACP-5b); handgrip strength; abdominal cross-sectional muscle area; and bone density of the fourth lumbar vertebra were evaluated. RESULTS After 24 weeks of treatment, the changes in bone density of the fourth lumbar vertebra, handgrip strength and abdominal cross-sectional muscle area were not significantly different between the two groups. However, TRACP-5b levels increased in patients treated with ipragliflozin compared with patients treated with metformin (median 11.94 vs -10.30%, P < 0.0001), showing that ipragliflozin can promote bone resorption. CONCLUSIONS There were no adverse effects on bone or muscle when sitagliptin was used in combination with either ipragliflozin or metformin. However, ipragliflozin combination increased the levels of TRACP-5b. A long-term study is required to further understand the effects of this TRACP-5b increase caused by ipragliflozin.
Collapse
Affiliation(s)
- Masaya Koshizaka
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Ko Ishikawa
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Ryoichi Ishibashi
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
- Department of Internal Medicine, Division of Diabetes, Endocrinology and MetabolismKimitsu Chuo HospitalKisarazuJapan
| | - Yoshiro Maezawa
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Kenichi Sakamoto
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | | | | | - Masaya Yamaga
- Department of Diabetes and MetabolismJapanese Red Cross Narita HospitalNaritaJapan
| | - Hidetaka Yokoh
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Akina Kobayashi
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Shunichiro Onishi
- Department of Diabetes and MetabolismAsahi General HospitalAsahiJapan
| | - Kazuki Kobayashi
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
- Department of Diabetes and MetabolismAsahi General HospitalAsahiJapan
| | - Jun Ogino
- Department of Diabetes, Endocrine and Metabolic DiseaseTokyo Women's Medical University Yachiyo Medical CenterYachiyoJapan
| | - Naotake Hashimoto
- Department of Diabetes, Endocrine and Metabolic DiseaseTokyo Women's Medical University Yachiyo Medical CenterYachiyoJapan
| | | | - Fumio Shimada
- Department of Diabetes and MetabolismNational Hospital Organization Chiba Medical CenterChibaJapan
| | - Emi Ohara
- Department of Diabetes and MetabolismNational Hospital Organization Chiba Medical CenterChibaJapan
| | - Takahiro Ishikawa
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Geriatric Medical CenterChiba University HospitalChibaJapan
| | - Mayumi Shoji
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Shintaro Ide
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Kana Ide
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Yusuke Baba
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Akiko Hattori
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Takumi Kitamoto
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Takuro Horikoshi
- Diagnostic Radiology and Radiation OncologyChiba University Graduate School of MedicineChibaJapan
| | | | - Sho Takahashi
- Clinical Research Support CenterThe Jikei University School of MedicineTokyoJapan
| | - Kengo Nagashima
- Research Center for Medical and Health Data ScienceThe Institute of Statistical MathematicsTachikawaJapan
| | - Yasunori Sato
- Department of Preventive Medicine and Public HealthKeio University School of MedicineShinjuku‐kuJapan
| | - Minoru Takemoto
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyInternational University of Health and WelfareNaritaJapan
| | - L. Kristin Newby
- Duke Clinical Research InstituteDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Koutaro Yokote
- Department of MedicineDivision of Diabetes, Metabolism and EndocrinologyChiba University HospitalChibaJapan
- Department of Endocrinology, Hematology, and GerontologyChiba University Graduate School of MedicineChibaJapan
| | | |
Collapse
|
16
|
Effects of sodium glucose cotransporter 2 inhibitors on mineral metabolism in type 2 diabetes mellitus. Curr Opin Nephrol Hypertens 2020; 28:321-327. [PMID: 30958403 PMCID: PMC6587226 DOI: 10.1097/mnh.0000000000000505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Sodium glucose cotransporter 2 (SGLT2) inhibitors are relatively novel antidiabetic drugs that improve glycemic control and reduce cardiovascular outcomes as well as renal function decline. SGLT2 inhibitors act by inhibiting glucose reabsorption in the proximal tubule of the kidney. Emerging data suggest that these drugs may also influence bone and mineral metabolism. This review summarizes clinical trial data on bone and mineral outcomes, and discusses potential underlying mechanisms. Recent findings Three large randomized controlled trials documented cardiovascular and renal protective effects of SGLT2 inhibitors. Recent studies indicate that SGLT2 inhibitors influence renal phosphate reabsorption and calciuria. Although the CANVAS trial suggested an increased fracture risk associated with canagliflozin compared with placebo, the vast majority of trials and meta-analyses did not demonstrate an increased fracture risk associated with SGLT2 inhibitor use. Summary SGLT2 inhibitors have shown clinically relevant cardiovascular and renal protective effects. The long-term implications for bone health, in particular in the context of chronic kidney disease, are still incompletely understood and warrant further investigation.
Collapse
|
17
|
Plain A, Pan W, O’Neill D, Ure M, Beggs MR, Farhan M, Dimke H, Cordat E, Alexander RT. Claudin-12 Knockout Mice Demonstrate Reduced Proximal Tubule Calcium Permeability. Int J Mol Sci 2020; 21:ijms21062074. [PMID: 32197346 PMCID: PMC7139911 DOI: 10.3390/ijms21062074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 01/13/2023] Open
Abstract
The renal proximal tubule (PT) is responsible for the reabsorption of approximately 65% of filtered calcium, primarily via a paracellular pathway. However, which protein(s) contribute this paracellular calcium pore is not known. The claudin family of tight junction proteins confers permeability properties to an epithelium. Claudin-12 is expressed in the kidney and when overexpressed in cell culture contributes paracellular calcium permeability (PCa). We therefore examined claudin-12 renal localization and its contribution to tubular paracellular calcium permeability. Claudin-12 null mice (KO) were generated by replacing the single coding exon with β-galactosidase from Escherichia coli. X-gal staining revealed that claudin-12 promoter activity colocalized with aquaporin-1, consistent with the expression in the PT. PTs were microperfused ex vivo and PCa was measured. PCa in PTs from KO mice was significantly reduced compared with WT mice. However, urinary calcium excretion was not different between genotypes, including those on different calcium containing diets. To assess downstream compensation, we examined renal mRNA expression. Claudin-14 expression, a blocker of PCa in the thick ascending limb (TAL), was reduced in the kidney of KO animals. Thus, claudin-12 is expressed in the PT, where it confers paracellular calcium permeability. In the absence of claudin-12, reduced claudin-14 expression in the TAL may compensate for reduced PT calcium reabsorption.
Collapse
Affiliation(s)
- Allein Plain
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - Wanling Pan
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - Deborah O’Neill
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - Megan Ure
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - Megan R. Beggs
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
- The Women’s & Children’s Health Research Institute, 11405-87 Avenue, Edmonton, AB T6G 1C9 Canada;
| | - Maikel Farhan
- The Women’s & Children’s Health Research Institute, 11405-87 Avenue, Edmonton, AB T6G 1C9 Canada;
- Department of Pediatrics, The University of Alberta, Edmonton, AB T6J 2R7, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - Emmanuelle Cordat
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
| | - R. Todd Alexander
- Department of Physiology, The University of Alberta, Edmonton, AB T6J 2R7, Canada; (A.P.); (W.P.); (D.O.); (M.U.); (M.R.B.); (E.C.)
- The Women’s & Children’s Health Research Institute, 11405-87 Avenue, Edmonton, AB T6G 1C9 Canada;
- Department of Pediatrics, The University of Alberta, Edmonton, AB T6J 2R7, Canada
- Correspondence: ; Tel.: +1-(780)-248-5560
| |
Collapse
|
18
|
Developmental Changes in Phosphate Homeostasis. Rev Physiol Biochem Pharmacol 2020; 179:117-138. [PMID: 33398502 DOI: 10.1007/112_2020_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphate is a multivalent ion critical for a variety of physiological functions including bone formation, which occurs rapidly in the developing infant. In order to ensure maximal bone mineralization, young animals must maintain a positive phosphate balance. To accomplish this, intestinal absorption and renal phosphate reabsorption are greater in suckling and young animals relative to adults. This review discusses the known intestinal and renal adaptations that occur in young animals in order to achieve a positive phosphate balance. Additionally, we discuss the ontogenic changes in phosphotropic endocrine signalling as it pertains to intestinal and renal phosphate handling, including several endocrine factors not always considered in the traditional dogma of phosphotropic endocrine signalling, such as growth hormone, triiodothyronine, and glucocorticoids. Finally, a proposed model of how these factors may contribute to achieving a positive phosphate balance during development is proposed.
Collapse
|
19
|
Thomas SR. Mathematical models for kidney function focusing on clinical interest. Morphologie 2019; 103:161-168. [PMID: 31722814 DOI: 10.1016/j.morpho.2019.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Abstract
We give an overview of mathematical models of renal physiology and anatomy with the clinician in mind. Beyond the past focus on issues of local transport mechanisms along the nephron and the urine concentrating mechanism, recent models have brought insight into difficult problems such as renal ischemia (oxygen and CO2 diffusion in the medulla) or calcium and potassium homeostasis. They have also provided revealing 3D reconstructions of the full trajectories of families of nephrons and collecting ducts through cortex and medulla. The recent appearance of sophisticated whole-kidney models representing nephrons and their associated renal vasculature promises more realistic simulation of renal pathologies and pharmacological treatments in the foreseeable future.
Collapse
Affiliation(s)
- S Randall Thomas
- Inserm, LTSI - UMR 1099, Université Rennes, 35000 Rennes, France.
| |
Collapse
|
20
|
Cianciolo G, De Pascalis A, Capelli I, Gasperoni L, Di Lullo L, Bellasi A, La Manna G. Mineral and Electrolyte Disorders With SGLT2i Therapy. JBMR Plus 2019; 3:e10242. [PMID: 31768494 PMCID: PMC6874177 DOI: 10.1002/jbm4.10242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
The newly developed sodium‐glucose cotransporter 2 inhibitors (SGLT2is) effectively modulate glucose metabolism in diabetes. Although clinical data suggest that SGLT2is (empagliflozin, dapagliflozin, ertugliflozin, canagliflozin, ipragliflozin) are safe and protect against renal and cardiovascular events, very little attention has been dedicated to the effects of these compounds on different electrolytes. As with other antidiabetic compounds, some effects on water and electrolytes balance have been documented. Although the natriuretic effect and osmotic diuresis are expected with SGLT2is, these compounds may also modulate urinary potassium, magnesium, phosphate, and calcium excretion. Notably, they have had no effect on plasma sodium levels and promoted only small increases in serum potassium and magnesium concentrations in clinical trials. Moreover, SGLT2is may induce an increase in serum phosphate, FGF‐23, and PTH; reduce 1,25‐dihydroxyvitamin D; and generate normal serum calcium. Some published and preliminary reports, as well as unconfirmed reports have suggested an association with bone fractures. Some homeostasis perturbations are transient, whereas others may persist, suggesting that the administration of SGLT2is may affect electrolyte balances in exposed subjects. Although current evidence supports their safety, additional efforts are needed to elucidate the long‐term impact of these compounds on chronic kidney disease, mineral metabolism, and bone health. Indeed, the limited follow‐up studies and the heterogeneity of the case‐mix of different randomized controlled trials preclude a definitive answer on the impact of these compounds on long‐term outcomes such as the risk of bone fracture. Here we review the current understanding of the mechanisms involved in electrolyte handling and the available data on the clinical implications of electrolytes and mineral metabolism perturbations induced by SGLT2i administration. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital University of Bologna Bologna Italy
| | | | - Irene Capelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital University of Bologna Bologna Italy
| | - Lorenzo Gasperoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital University of Bologna Bologna Italy
| | - Luca Di Lullo
- Department of Nephrology and Dialysis Parodi-Delfino Hospital Colleferro Italy
| | - Antonio Bellasi
- Department of Research Innovation and Brand Reputation, ASST Papa Giovanni XXIII Bergamo Italy
| | - Gaetano La Manna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital University of Bologna Bologna Italy
| |
Collapse
|
21
|
Edwards A, McDonough AA. Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling. Am J Physiol Renal Physiol 2019; 317:F1656-F1668. [PMID: 31657247 DOI: 10.1152/ajprenal.00335.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Angiotensin II (ANG II) raises blood pressure partly by stimulating tubular Na+ reabsorption. The effects of ANG II on tubular Na+ transporters (i.e., channels, pumps, cotransporters, and exchangers) vary between short-term and long-term exposure. To better understand the physiological impact, we used a computational model of transport along the rat nephron to predict the effects of short- and long-term ANG II-induced transporter activation on Na+ and K+ reabsorption/secretion, and to compare measured and calculated excretion rates. Three days of ANG II infusion at 200 ng·kg-1·min-1 is nonpressor, yet stimulates transporter accumulation. The increase in abundance of Na+/H+ exchanger 3 (NHE3) or activated Na+-K+-2Cl- cotransporter-2 (NKCC2-P) predicted significant reductions in urinary Na+ excretion, yet there was no observed change in urine Na+. The lack of antinatriuresis, despite Na+ transporter accumulation, was supported by Li+ and creatinine clearance measurements, leading to the conclusion that 3-day nonpressor ANG II increases transporter abundance without proportional activation. Fourteen days of ANG II infusion at 400 ng·kg-1·min-1 raises blood pressure and increases Na+ transporter abundance along the distal nephron; proximal tubule and medullary loop transporters are decreased and urine Na+ and volume output are increased, evidence for pressure natriuresis. Simulations indicate that decreases in NHE3 and NKCC2-P contribute significantly to reducing Na+ reabsorption along the nephron and to pressure natriuresis. Our results also suggest that differential regulation of medullary (decrease) and cortical (increase) NKCC2-P is important to preserve K+ while minimizing Na+ retention during ANG II infusion. Lastly, our model indicates that accumulation of active Na+-Cl- cotransporter counteracts epithelial Na+ channel-induced urinary K+ loss.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| |
Collapse
|
22
|
Anglani F, Gianesello L, Beara-Lasic L, Lieske J. Dent disease: A window into calcium and phosphate transport. J Cell Mol Med 2019; 23:7132-7142. [PMID: 31472005 PMCID: PMC6815805 DOI: 10.1111/jcmm.14590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
This review examines calcium and phosphate transport in the kidney through the lens of the rare X-linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC-5, a Cl- /H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC-5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC-5 KO models suggests that ClC-5 mediates parathormone endocytosis from tubular fluid. In addition, ClC-5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investigated, either in DD models or in patients with DD1, even though patients with DD1 exhibit renal sodium and potassium wasting, especially when exposed to even a low dose of thiazide diuretic. Thus, insights from the rare disease DD1 may inform possible underlying mechanisms for the phenotype of hypercalciuria and idiopathic calcium stones.
Collapse
Affiliation(s)
- Franca Anglani
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lisa Gianesello
- Division of Nephrology, Department of Medicine, Laboratory of Histomorphology and Molecular Biology of the Kidney, University of Padua, Padua, Italy
| | - Lada Beara-Lasic
- Division of Nephrology, New York University School of Medicine, New York, NY, USA
| | - John Lieske
- Division of Nephrology and Hypertension, Department of Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Edwards A, Auberson M, Ramakrishnan SK, Bonny O. A model of uric acid transport in the rat proximal tubule. Am J Physiol Renal Physiol 2019; 316:F934-F947. [DOI: 10.1152/ajprenal.00603.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The objective of the present study was to theoretically investigate the mechanisms underlying uric acid transport in the proximal tubule (PT) of rat kidneys, and their modulation by factors, including Na+, parathyroid hormone, ANG II, and Na+-glucose cotransporter-2 inhibitors. To that end, we incorporated the transport of uric acid and its conjugate anion urate in our mathematical model of water and solute transport in the rat PT. The model accounts for parallel urate reabsorption and secretion pathways on apical and basolateral membranes and their coupling to lactate and α-ketoglutarate transport. Model results agree with experimental findings at the segment level. Net reabsorption of urate by the rat PT is predicted to be ~70% of the filtered load, with a rate of urate removal from the lumen that is 50% higher than the rate of urate secretion. The model suggests that apical URAT1 deletion significantly reduces net urate reabsorption across the PT, whereas ATP-binding cassette subfamily G member 2 dysfunction affects it only slightly. Inactivation of basolateral glucose transporter-9 raises fractional urate excretion above 100%, as observed in patients with renal familial hypouricemia. Furthermore, our results suggest that reducing Na+ reabsorption across Na+/H+ exchangers or Na+-glucose cotransporters augments net urate reabsorption. The model predicts that parathyroid hormone reduces urate excretion, whereas ANG II increases it. In conclusion, we have developed the first model of uric acid transport in the rat PT; this model provides a framework to gain greater insight into the numerous solutes and coupling mechanisms that affect the renal handing of uric acid.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Muriel Auberson
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Suresh K. Ramakrishnan
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
24
|
Curry JN, Yu ASL. Paracellular calcium transport in the proximal tubule and the formation of kidney stones. Am J Physiol Renal Physiol 2019; 316:F966-F969. [PMID: 30838875 DOI: 10.1152/ajprenal.00519.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The proximal tubule (PT) is responsible for the majority of calcium reabsorption by the kidney. Most PT calcium transport appears to be passive, although the molecular facilitators have not been well established. Emerging evidence supports a major role for PT calcium transport in idiopathic hypercalciuria and the development of kidney stones. This review will cover recent developments in our understanding of PT calcium transport and the role of the PT in kidney stone formation.
Collapse
Affiliation(s)
- Joshua N Curry
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
25
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
26
|
Affiliation(s)
- Alan M Weinstein
- Department of Physiology and Biophysics Department of Medicine, Weill Medical College of Cornell University , New York, New York
| |
Collapse
|