1
|
Liang L, Ueda K, Ogura S, Shimosawa T. Hypoxia Modulates Sodium Chloride Co-transporter via CaMKII-β Pathway: An In Vitro Study with mDCT15 Cells. Life (Basel) 2024; 14:1229. [PMID: 39459529 PMCID: PMC11508333 DOI: 10.3390/life14101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hypoxia plays a crucial role in regulating various cellular functions, including ion-transport mechanisms in the kidney. The sodium-chloride co-transporter (NCC) is essential for sodium reabsorption in the distal convoluted tubule (DCT). However, the effects of hypoxia on NCC expression and its regulatory pathways remain unclear. We aimed to explore the effects and potential mechanisms of hypoxia on NCC in vitro. METHODS mDCT15 cells were treated with cobalt chloride (CoCl2) at a concentration of 300 μmol/L to induce hypoxia. The cells were harvested at different time points, namely 30 min, 1 h, 6 h, and 24 h, and the expression of NCC and CaMKII-β was analyzed using Western blot. RESULTS A time-dependent upregulation of NCC and CaMKII-β expression in response to CoCl2-induced hypoxia. KN93 reversed the effect of CoCl2 on NCC and phosphorylated NCC expression. CONCLUSIONS Hypoxia, mediated through cobalt chloride treatment, upregulates NCC expression via the CaMKII-β pathway in mDCT15 cells.
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Clinical Laboratory, International University of Health and Welfare, Chiba 286-8686, Japan;
| | - Kohei Ueda
- Department of Physiology, International University of Health and Welfare, Chiba 286-8686, Japan;
| | - Sayoko Ogura
- Department of Pathology and Microbiology, Division of Laboratory Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, International University of Health and Welfare, Chiba 286-8686, Japan;
| |
Collapse
|
2
|
Modi AD, Khan AN, Cheng WYE, Modi DM. KCCs, NKCCs, and NCC: Potential targets for cardiovascular therapeutics? A comprehensive review of cell and region specific expression and function. Acta Histochem 2023; 125:152045. [PMID: 37201245 DOI: 10.1016/j.acthis.2023.152045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular diseases, the leading life-threatening conditions, involve cardiac arrhythmia, coronary artery disease, myocardial infarction, heart failure, cardiomyopathy, and heart valve disease that are associated with the altered functioning of cation-chloride cotransporters. The decreased number of cation-chloride cotransporters leads to reduced reactivity to adrenergic stimulation. The KCC family is crucial for numerous physiological processes including cell proliferation and invasion, regulation of membrane trafficking, maintaining ionic and osmotic homeostasis, erythrocyte swelling, dendritic spine formation, maturation of postsynaptic GABAergic inhibition, and inhibitory/excitatory signaling in neural tracts. KCC2 maintains intracellular chlorine homeostasis and opposes β-adrenergic stimulation-induced Cl- influx to prevent arrhythmogenesis. KCC3-inactivated cardiac tissue shows increased vascular resistance, aortic distensibility, heart size and weight (i.e. hypertrophic cardiomyopathy). Due to KCC4's high affinity for K+, it plays a vital role in cardiac ischemia with increased extracellular K+. The NKCC and NCC families play a vital role in the regulation of saliva volume, establishing the potassium-rich endolymph in the cochlea, sodium uptake in astrocytes, inhibiting myogenic response in microcirculatory beds, regulation of smooth muscle tone in resistance vessels, and blood pressure. NKCC1 regulates chlorine homeostasis and knocking it out impairs cardiomyocyte depolarization and cardiac contractility as well as impairs depolarization and contractility of vascular smooth muscle rings in the aorta. The activation of NCC in vascular cells promotes the formation of the abdominal aortic aneurysm. This narrative review provides a deep insight into the structure and function of KCCs, NKCCs, and NCC in human physiology and cardiac pathobiology. Also, it provides cell-specific (21 cell types) and region-specific (6 regions) expression of KCC1, KCC2, KCC3, KCC4, NKCC1, NKCC2, and NCC in heart.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Areej Naim Khan
- Department of Human Biology, University of Toronto, Toronto, Ontario M5S 3J6, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wing Yan Elizabeth Cheng
- Department of Neuroscience, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Biochemistry, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| | | |
Collapse
|
3
|
Yue Q, Al-Khalili O, Moseley A, Yoshigi M, Wynne BM, Ma H, Eaton DC. PIP 2 Interacts Electrostatically with MARCKS-like Protein-1 and ENaC in Renal Epithelial Cells. BIOLOGY 2022; 11:biology11121694. [PMID: 36552204 PMCID: PMC9774185 DOI: 10.3390/biology11121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC β and γ with a high concentration of basic residues. Normal channel activity requires MLP-1's strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 -binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.
Collapse
Affiliation(s)
- Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Otor Al-Khalili
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Auriel Moseley
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Masaaki Yoshigi
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Brandi Michele Wynne
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Douglas C. Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-4533; Fax: +1-404-727-3425
| |
Collapse
|
4
|
Wynne BM, Samson TK, Moyer HC, van Elst HJ, Moseley AS, Hecht G, Paul O, Al-Khalili O, Gomez-Sanchez C, Ko B, Eaton DC, Hoover RS. Interleukin 6 mediated activation of the mineralocorticoid receptor in the aldosterone-sensitive distal nephron. Am J Physiol Cell Physiol 2022; 323:C1512-C1523. [PMID: 35912993 PMCID: PMC9662807 DOI: 10.1152/ajpcell.00272.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Hypertension is characterized by increased sodium (Na+) reabsorption along the aldosterone-sensitive distal nephron (ASDN) as well as chronic systemic inflammation. Interleukin-6 (IL-6) is thought to be a mediator of this inflammatory process. Interestingly, increased Na+ reabsorption within the ASDN does not always correlate with increases in aldosterone (Aldo), the primary hormone that modulates Na+ reabsorption via the mineralocorticoid receptor (MR). Thus, understanding how increased ASDN Na+ reabsorption may occur independent of Aldo stimulation is critical. Here, we show that IL-6 can activate the MR by activating Rac1 and stimulating the generation of reactive oxygen species (ROS) with a consequent increase in thiazide-sensitive Na+ uptake. Using an in vitro model of the distal convoluted tubule (DCT2), mDCT15 cells, we observed nuclear translocation of eGFP-tagged MR after IL-6 treatment. To confirm the activation of downstream transcription factors, mDCT15 cells were transfected with mineralocorticoid response element (MRE)-luciferase reporter constructs; then treated with vehicle, Aldo, or IL-6. Aldosterone or IL-6 treatment increased luciferase activity that was reversed with MR antagonist cotreatment, but IL-6 treatment was reversed by Rac1 inhibition or ROS reduction. In both mDCT15 and mpkCCD cells, IL-6 increased amiloride-sensitive transepithelial Na+ current. ROS and IL-6 increased 22Na+ uptake via the thiazide-sensitive sodium chloride cotransporter (NCC). These results are the first to demonstrate that IL-6 can activate the MR resulting in MRE activation and that IL-6 increases NCC-mediated Na+ reabsorption, providing evidence for an alternative mechanism for stimulating ASDN Na+ uptake during conditions where Aldo-mediated MR stimulation may not occur.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Department of Internal Medicine, Nephrology & Hypertension, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Immunology, Inflammation and Infectious Disease Initiative, University of Utah, Salt Lake City, Utah
| | - Trinity K Samson
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Hayley C Moyer
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Henrieke J van Elst
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Auriel S Moseley
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Gillian Hecht
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Oishi Paul
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Otor Al-Khalili
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Celso Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Mississippi
| | - Benjamin Ko
- Department of Medicine, Nephrology, University of Chicago, Chicago, Illinois
| | - Douglas C Eaton
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Robert S Hoover
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
- Section of Nephrology and Hypertension, Deming Department of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
5
|
Carotti V, van der Wijst J, Verschuren EHJ, Rutten L, Sommerdijk N, Kaffa C, Sommers V, Rigalli JP, Hoenderop JGJ. Involvement of ceramide biosynthesis in increased extracellular vesicle release in Pkd1 knock out cells. Front Endocrinol (Lausanne) 2022; 13:1005639. [PMID: 36299464 PMCID: PMC9589111 DOI: 10.3389/fendo.2022.1005639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is an inherited disorder characterized by the development of renal cysts, which frequently leads to renal failure. Hypertension and other cardiovascular symptoms contribute to the high morbidity and mortality of the disease. ADPKD is caused by mutations in the PKD1 gene or, less frequently, in the PKD2 gene. The disease onset and progression are highly variable between patients, whereby the underlying mechanisms are not fully elucidated. Recently, a role of extracellular vesicles (EVs) in the progression of ADPKD has been postulated. However, the mechanisms stimulating EV release in ADPKD have not been addressed and the participation of the distal nephron segments is still uninvestigated. Here, we studied the effect of Pkd1 deficiency on EV release in wild type and Pkd1-/- mDCT15 and mIMCD3 cells as models of the distal convoluted tubule (DCT) and inner medullary collecting duct (IMCD), respectively. By using nanoparticle tracking analysis, we observed a significant increase in EV release in Pkd1-/- mDCT15 and mIMCD3 cells, with respect to the wild type cells. The molecular mechanisms leading to the changes in EV release were further investigated in mDCT15 cells through RNA sequencing and qPCR studies. Specifically, we assessed the relevance of purinergic signaling and ceramide biosynthesis enzymes. Pkd1-/- mDCT15 cells showed a clear upregulation of P2rx7 expression compared to wild type cells. Depletion of extracellular ATP by apyrase (ecto-nucleotidase) inhibited EV release only in wild type cells, suggesting an exacerbated signaling of the extracellular ATP/P2X7 pathway in Pkd1-/- cells. In addition, we identified a significant up-regulation of the ceramide biosynthesis enzymes CerS6 and Smpd3 in Pkd1-/- cells. Altogether, our findings suggest the involvement of the DCT in the EV-mediated ADPKD progression and points to the induction of ceramide biosynthesis as an underlying molecular mechanism. Further studies should be performed to investigate whether CerS6 and Smpd3 can be used as biomarkers of ADPKD onset, progression or severity.
Collapse
Affiliation(s)
- Valentina Carotti
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eric H. J. Verschuren
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luco Rutten
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Charlotte Kaffa
- Radboud Technology Center for Bioinformatics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vera Sommers
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Juan P. Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Joost G. J. Hoenderop,
| |
Collapse
|
6
|
The Pharmacological Inhibition of CaMKII Regulates Sodium Chloride Cotransporter Activity in mDCT15 Cells. BIOLOGY 2021; 10:biology10121335. [PMID: 34943250 PMCID: PMC8698651 DOI: 10.3390/biology10121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) in the distal convoluted tubule is responsible for reabsorbing up to one-tenth of the total filtered load of sodium in the kidney. The actin cytoskeleton is thought to regulate various transport proteins in the kidney but the regulation of the NCC by the actin cytoskeleton is largely unknown. Here, we identify a direct interaction between the NCC and the cytoskeletal protein filamin A in mouse distal convoluted tubule (mDCT15) cells and in the native kidney. We show that the disruption of the actin cytoskeleton by two different mechanisms downregulates NCC activity. As filamin A is a substrate of the Ca2+/calmodulin-dependent protein kinase II (CaMKII), we investigate the physiological significance of CaMKII inhibition on NCC luminal membrane protein expression and NCC activity in mDCT15 cells. The pharmacological inhibition of CaMKII with the compound KN93 increases the active form of the NCC (phospho-NCC) at the luminal membrane and also increases NCC activity in mDCT15 cells. These data suggest that the interaction between the NCC and filamin A is dependent on CaMKII activity, which may serve as a feedback mechanism to maintain basal levels of NCC activity in the distal nephron.
Collapse
|
7
|
Duan XP, Wu P, Zhang DD, Gao ZX, Xiao Y, Ray EC, Wang WH, Lin DH. Deletion of Kir5.1 abolishes the effect of high Na + intake on Kir4.1 and Na +-Cl - cotransporter. Am J Physiol Renal Physiol 2021; 320:F1045-F1058. [PMID: 33900854 DOI: 10.1152/ajprenal.00004.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High sodium (HS) intake inhibited epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron and Na+-Cl- cotransporter (NCC) by suppressing basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT), thereby increasing renal Na+ excretion but not affecting K+ excretion. The aim of the present study was to explore whether deletion of Kir5.1 compromises the inhibitory effect of HS on NCC expression/activity and renal K+ excretion. Patch-clamp experiments demonstrated that HS failed to inhibit DCT basolateral K+ channels and did not depolarize K+ current reversal potential of the DCT in Kir5.1 knockout (KO) mice. Moreover, deletion of Kir5.1 not only increased the expression of Kir4.1, phospho-NCC, and total NCC but also abolished the inhibitory effect of HS on the expression of Kir4.1, phospho-NCC, and total NCC and thiazide-induced natriuresis. Also, low sodium-induced stimulation of NCC expression/activity and basolateral K+ channels in the DCT were absent in Kir5.1 KO mice. Deletion of Kir5.1 decreased ENaC currents in the late DCT, and HS further inhibited ENaC activity in Kir5.1 KO mice. Finally, measurement of the basal renal K+ excretion rate with the modified renal clearance method demonstrated that long-term HS inhibited the renal K+ excretion rate and steadily increased plasma K+ levels in Kir5.1 KO mice but not in wild-type mice. We conclude that Kir5.1 plays an important role in mediating the effect of HS intake on basolateral K+ channels in the DCT and NCC activity/expression. Kir5.1 is involved in maintaining renal ability of K+ excretion during HS intake. NEW & NOTEWORTHY Kir5.1 plays an important role in mediating the effect of high sodium intake on basolateral K+ channels in the distal convoluted tubule and Na+-Cl- cotransporter activity/expression.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Institute of Hypertension and Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, People's Republic of China
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Institute of Hypertension and Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yu Xiao
- Department of Pharmacology, New York Medical College, Valhalla, New York.,Department of Physiology, Qiqihar Medical University, Qiqihar, People's Republic of China
| | - Evan C Ray
- Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
8
|
Olde Hanhof CJA, Yousef Yengej FA, Rookmaaker MB, Verhaar MC, van der Wijst J, Hoenderop JG. Modeling Distal Convoluted Tubule (Patho)Physiology: An Overview of Past Developments and an Outlook Toward the Future. Tissue Eng Part C Methods 2021; 27:200-212. [PMID: 33544049 DOI: 10.1089/ten.tec.2020.0345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kidneys are essential for maintaining electrolyte homeostasis. Blood electrolyte composition is controlled by active reabsorption and secretion processes in dedicated segments of the kidney tubule. Specifically, the distal convoluted tubule (DCT) and connecting tubule are important for regulating the final excretion of sodium, magnesium, and calcium. Studies unravelling the specific function of these segments have greatly improved our understanding of DCT (patho)physiology. Over the years, experimental models used to study the DCT have changed and the field has advanced from early dissection studies with rats and rabbits to the use of various transgenic mouse models. Developments in dissection techniques and cell culture methods have resulted in immortalized mouse DCT cell lines and made it possible to specifically obtain DCT fragments for ex vivo studies. However, we still do not fully understand the complex (patho)physiology of this segment and there is need for advanced human DCT models. Recently, kidney organoids and tubuloids have emerged as new complex cell models that provide excellent opportunities for physiological studies, disease modeling, drug discovery, and even personalized medicine in the future. This review presents an overview of cell models used to study the DCT and provides an outlook on kidney organoids and tubuloids as model for DCT (patho)physiology. Impact statement This study provides a detailed overview of past and future developments on cell models used to study kidney (patho)physiology and specifically the distal convoluted tubule (DCT) segment. Hereby, we highlight the need for an advanced human cell model of this segment and summarize recent advances in the field of kidney organoids and tubuloids with a focus on DCT properties. The findings reported in this review are significant for future developments toward an advanced human model of the DCT that will help to increase our understanding of DCT (patho)physiology.
Collapse
Affiliation(s)
- Charlotte J A Olde Hanhof
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Verschuren EHJ, Rigalli JP, Castenmiller C, Rohrbach MU, Bindels RJM, Peters DJM, Arjona FJ, Hoenderop JGJ. Pannexin-1 mediates fluid shear stress-sensitive purinergic signaling and cyst growth in polycystic kidney disease. FASEB J 2020; 34:6382-6398. [PMID: 32159259 DOI: 10.1096/fj.201902901r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022]
Abstract
Tubular ATP release is regulated by mechanosensation of fluid shear stress (FSS). Polycystin-1/polycystin-2 (PC1/PC2) functions as a mechanosensory complex in the kidney. Extracellular ATP is implicated in polycystic kidney disease (PKD), where PC1/PC2 is dysfunctional. This study aims to provide new insights into the ATP signaling under physiological conditions and PKD. Microfluidics, pharmacologic inhibition, and loss-of-function approaches were combined to assess the ATP release in mouse distal convoluted tubule 15 (mDCT15) cells. Kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/- ) and zebrafish pkd2 morphants (pkd2-MO) were as models for PKD. FSS-exposed mDCT15 cells displayed increased ATP release. Pannexin-1 inhibition and knockout decreased FSS-modulated ATP release. In iKsp-Pkd1-/- mice, elevated renal pannexin-1 mRNA expression and urinary ATP were observed. In Pkd1-/- mDCT15 cells, elevated ATP release was observed upon the FSS mechanosensation. In these cells, increased pannexin-1 mRNA expression was observed. Importantly, pannexin-1 inhibition in pkd2-MO decreased the renal cyst growth. Our results demonstrate that pannexin-1 channels mediate ATP release into the tubular lumen due to pro-urinary flow. We present pannexin-1 as novel therapeutic target to prevent the renal cyst growth in PKD.
Collapse
Affiliation(s)
- Eric H J Verschuren
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Juan P Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte Castenmiller
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Meike U Rohrbach
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Francisco J Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Abstract
AIM Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. METHODS Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. RESULTS PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. CONCLUSION Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.
Collapse
|
11
|
Rogers RT, Sun MA, Yue Q, Bao HF, Sands JM, Blount MA, Eaton DC. Lack of urea transporters, UT-A1 and UT-A3, increases nitric oxide accumulation to dampen medullary sodium reabsorption through ENaC. Am J Physiol Renal Physiol 2019; 316:F539-F549. [PMID: 30539654 PMCID: PMC6459308 DOI: 10.1152/ajprenal.00166.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022] Open
Abstract
Although the role of urea in urine concentration is known, the effect of urea handling by the urea transporters (UTs), UT-A1 and UT-A3, on sodium balance remains elusive. Serum and urinary sodium concentration is similar between wild-type mice (WT) and UT-A3 null (UT-A3 KO) mice; however, mice lacking both UT-A1 and UT-A3 (UT-A1/A3 KO) have significantly lower serum sodium and higher urinary sodium. Protein expression of renal sodium transporters is unchanged among all three genotypes. WT, UT-A3 KO, and UT-A1/A3 KO acutely respond to hydrochlorothiazide and furosemide; however, UT-A1/A3 KO fail to show a diuretic or natriuretic response following amiloride administration, indicating that baseline epithelial Na+ channel (ENaC) activity is impaired. UT-A1/A3 KO have more ENaC at the apical membrane than WT mice, and single-channel analysis of ENaC in split-open inner medullary collecting duct (IMCD) isolated in saline shows that ENaC channel density and open probability is higher in UT-A1/A3 KO than WT. UT-A1/A3 KO excrete more urinary nitric oxide (NO), a paracrine inhibitor of ENaC, and inner medullary nitric oxide synthase 1 mRNA expression is ~40-fold higher than WT. Because endogenous NO is unstable, ENaC activity was reassessed in split-open IMCD with the NO donor PAPA NONOate [1-propanamine-3-(2-hydroxy-2-nitroso-1-propylhydrazine)], and ENaC activity was almost abolished in UT-A1/A3 KO. In summary, loss of both UT-A1 and UT-A3 (but not UT-A3 alone) causes elevated medullary NO production and salt wasting. NO inhibition of ENaC, despite elevated apical accumulation of ENaC in UT-A1/A3 KO IMCD, appears to be the main contributor to natriuresis in UT-A1/A3 KO mice.
Collapse
Affiliation(s)
- Richard T Rogers
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Michael A Sun
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
| | - Qiang Yue
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Hui-Fang Bao
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Mitsi A Blount
- Renal Division, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine , Atlanta, Georgia
| |
Collapse
|
12
|
Williams CR, Mistry M, Cheriyan AM, Williams JM, Naraine MK, Ellis CL, Mallick R, Mistry AC, Gooch JL, Ko B, Cai H, Hoover RS. Zinc deficiency induces hypertension by promoting renal Na + reabsorption. Am J Physiol Renal Physiol 2019; 316:F646-F653. [PMID: 30649891 DOI: 10.1152/ajprenal.00487.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Zn2+ deficiency (ZnD) is a common comorbidity of many chronic diseases. In these settings, ZnD exacerbates hypertension. Whether ZnD alone is sufficient to alter blood pressure (BP) is unknown. To explore the role of Zn2+ in BP regulation, adult mice were fed a Zn2+-adequate (ZnA) or a Zn2+-deficient (ZnD) diet. A subset of ZnD mice were either returned to the ZnA diet or treated with hydrochlorothiazide (HCTZ), a Na+-Cl- cotransporter (NCC) inhibitor. To reduce intracellular Zn2+ in vitro, mouse distal convoluted tubule cells were cultured in N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN, a Zn2+ chelator)- or vehicle (DMSO)-containing medium. To replete intracellular Zn2+, TPEN-exposed cells were then cultured in Zn2+-supplemented medium. ZnD promoted a biphasic BP response, characterized by episodes of high BP. BP increases were accompanied by reduced renal Na+ excretion and NCC upregulation. These effects were reversed in Zn2+-replete mice. Likewise, HCTZ stimulated natriuresis and reversed BP increases. In vitro, Zn2+ depletion increased NCC expression. Furthermore, TPEN promoted NCC surface localization and Na+ uptake activity. Zn2+ repletion reversed TPEN effects on NCC. These data indicate that 1) Zn2+ contributes to BP regulation via modulation of renal Na+ transport, 2) renal NCC mediates ZnD-induced hypertension, and 3) NCC is a Zn2+-regulated transporter that is upregulated with ZnD. This study links dysregulated renal Na+ handling to ZnD-induced hypertension. Furthermore, NCC is identified as a novel mechanism by which Zn2+ regulates BP. Understanding the mechanisms of ZnD-induced BP dysregulation may have an important therapeutic impact on hypertension.
Collapse
Affiliation(s)
- Clintoria R Williams
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia.,Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, and College of Science and Mathematics, Wright State University , Dayton, Ohio
| | - Monisha Mistry
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Aswathy M Cheriyan
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Jasmine M Williams
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Meagan K Naraine
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Carla L Ellis
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Rickta Mallick
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| | - Abinash C Mistry
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| | - Jennifer L Gooch
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| | - Benjamin Ko
- Department of Medicine, University of Chicago , Chicago, Illinois
| | - Hui Cai
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| |
Collapse
|
13
|
Verschuren EHJ, Hoenderop JGJ, Peters DJM, Arjona FJ, Bindels RJM. Tubular flow activates magnesium transport in the distal convoluted tubule. FASEB J 2018; 33:5034-5044. [DOI: 10.1096/fj.201802094r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eric H. J. Verschuren
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen The Netherlands
| | - Joost G. J. Hoenderop
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen The Netherlands
| | - Dorien J. M. Peters
- Department of Human GeneticsLeiden University Medical Centre Leiden The Netherlands
| | - Francisco J. Arjona
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen The Netherlands
| | - René J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
14
|
Malik S, Lambert E, Zhang J, Wang T, Clark HL, Cypress M, Goldman BI, Porter GA, Pena S, Nino W, Gray DA. Potassium conservation is impaired in mice with reduced renal expression of Kir4.1. Am J Physiol Renal Physiol 2018; 315:F1271-F1282. [PMID: 30110571 DOI: 10.1152/ajprenal.00022.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To better understand the role of the inward-rectifying K channel Kir4.1 (KCNJ10) in the distal nephron, we initially studied a global Kir4.1 knockout mouse (gKO), which demonstrated the hypokalemia and hypomagnesemia seen in SeSAME/EAST syndrome and was associated with reduced Na/Cl cotransporter (NCC) expression. Lethality by ~3 wk, however, limits the usefulness of this model, so we developed a kidney-specific Kir4.1 "knockdown" mouse (ksKD) using a cadherin 16 promoter and Cre-loxP methodology. These mice appeared normal and survived to adulthood. Kir4.1 protein expression was decreased ~50% vs. wild-type (WT) mice by immunoblotting, and immunofluorescence showed moderately reduced Kir4.1 staining in distal convoluted tubule that was minimal or absent in connecting tubule and cortical collecting duct. Under control conditions, the ksKD mice showed metabolic alkalosis and relative hypercalcemia but were normokalemic and mildly hypermagnesemic despite decreased NCC expression. In addition, the mice had a severe urinary concentrating defect associated with hypernatremia, enlarged kidneys with tubulocystic dilations, and reduced aquaporin-3 expression. On a K/Mg-free diet for 1 wk, however, ksKD mice showed marked hypokalemia (serum K: 1.5 ± 0.1 vs. 3.0 ± 0.1 mEq/l for WT), which was associated with renal K wasting (transtubular K gradient: 11.4 ± 0.8 vs. 1.6 ± 0.4 in WT). Phosphorylated-NCC expression increased in WT but not ksKD mice on the K/Mg-free diet, suggesting that loss of NCC adaptation underlies the hypokalemia. In conclusion, even modest reduction in Kir4.1 expression results in impaired K conservation, which appears to be mediated by reduced expression of activated NCC.
Collapse
Affiliation(s)
- Sundeep Malik
- Department of Pharmacology and Physiology, School of Medicine, University of Rochester , Rochester, New York
| | - Emily Lambert
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Junhui Zhang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Heather L Clark
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Michael Cypress
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Bruce I Goldman
- Pathology and Laboratory Medicine, University of Rochester , Rochester, New York
| | - George A Porter
- Cardiology Division, Department of Pediatrics, University of Rochester , Rochester, New York
| | - Salvador Pena
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Wilson Nino
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Daniel A Gray
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Abundant evidence supports that the NaCl cotransporter (NCC) activity is tightly regulated by the with-no-lysine (WNK) kinases. Here, we summarize the data regarding NCC regulation by WNKs, with a particular emphasis on WNK4. RECENT FINDINGS Several studies involving in-vivo and in-vitro models have provided paradoxical data regarding WNK4 regulation of the NCC. Although some studies show that WNK4 can activate the NCC, other equally compelling studies show that WNK4 inhibits the NCC. Recent studies have shown that WNK4 is regulated by the intracellular chloride concentration ([Cl]i), which could account for these paradoxical results. In conditions of high [Cl]i, WNK4 could act as an inhibitor via heterodimer formation with other WNKs. In contrast, when [Cl]i is low, WNK4 can activate Ste20-related, proline-alanine-rich kinase (SPAK)/oxidative stress responsive kinase 1 (OSR1) and thus the NCC. Modulation of WNK4 by [Cl]i has been shown to account for the potassium-sensing properties of the distal convoluted tubule. Other regulators of WNK4 include hormones and ubiquitination. SUMMARY Modulation of WNK4 activity by [Cl]i can account for its dual role on the NCC, and this has important physiological implications regarding the regulation of extracellular potassium concentration. Defective regulation of WNKs by ubiquitination explains most cases of familial hyperkalemic hypertension.
Collapse
|
16
|
Rosenbaek LL, Rizzo F, MacAulay N, Staub O, Fenton RA. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells. Am J Physiol Renal Physiol 2017; 313:F495-F504. [DOI: 10.1152/ajprenal.00088.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na+) and, indirectly, serum potassium (K+) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 (22Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K+, the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion.
Collapse
Affiliation(s)
- Lena L. Rosenbaek
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Federica Rizzo
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
- National Centre of Competence in Research “Kidney.ch,” Lausanne, Switzerland
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
- National Centre of Competence in Research “Kidney.ch,” Lausanne, Switzerland
| | - Robert A. Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Wynne BM, Mistry AC, Al-Khalili O, Mallick R, Theilig F, Eaton DC, Hoover RS. Aldosterone Modulates the Association between NCC and ENaC. Sci Rep 2017. [PMID: 28646163 PMCID: PMC5482882 DOI: 10.1038/s41598-017-03510-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Distal sodium transport is a final step in the regulation of blood pressure. As such, understanding how the two main sodium transport proteins, the thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC), are regulated is paramount. Both are expressed in the late distal nephron; however, no evidence has suggested that these two sodium transport proteins interact. Recently, we established that these two sodium transport proteins functionally interact in the second part of the distal nephron (DCT2). Given their co-localization within the DCT2, we hypothesized that NCC and ENaC interactions might be modulated by aldosterone (Aldo). Aldo treatment increased NCC and αENaC colocalization (electron microscopy) and interaction (coimmunoprecipitation). Finally, with co-expression of the Aldo-induced protein serum- and glucocorticoid-inducible kinase 1 (SGK1), NCC and αENaC interactions were increased. These data demonstrate that Aldo promotes increased interaction of NCC and ENaC, within the DCT2 revealing a novel method of regulation for distal sodium reabsorption.
Collapse
Affiliation(s)
- Brandi M Wynne
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA. .,Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, 30322, USA.
| | - Abinash C Mistry
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Otor Al-Khalili
- Department of Physiology, Emory University, Atlanta, GA, 30322, USA
| | - Rickta Mallick
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Franziska Theilig
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Douglas C Eaton
- Department of Physiology, Emory University, Atlanta, GA, 30322, USA.,Center for Cell and Molecular Signaling, Emory University, Atlanta, GA, 30322, USA
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.,Department of Physiology, Emory University, Atlanta, GA, 30322, USA.,Research Service, Atlanta Veteran's Administration Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
18
|
Valinsky WC, Touyz RM, Shrier A. Characterization of constitutive and acid-induced outwardly rectifying chloride currents in immortalized mouse distal tubular cells. Biochim Biophys Acta Gen Subj 2017; 1861:2007-2019. [PMID: 28483640 PMCID: PMC5482324 DOI: 10.1016/j.bbagen.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl− channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl− channels, however the nature of these Cl− channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl− current at extracellular pH 7.4. This constitutive Cl− current was more permeable to larger anions (Eisenman sequence I; I− > Br− ≥ Cl−) and was substantially inhibited by > 100 mM [Ca2+]o, which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl− current was blocked by NPPB, along with other Cl− channel inhibitors (4,4′-diisothiocyanatostilbene-2,2′-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH < 5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl− current. This acid-induced Cl− current was also anion permeable (I− > Br− > Cl−), but was distinguished from the constitutive Cl− current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl− current would be particularly relevant in the acidic IMCD (pH < 5.5). To our knowledge, the properties of these Cl− currents are unique and provide the mechanisms to account for the Cl− efflux previously speculated to be present in MDCT cells. MDCT cells express a dominant NPPB-sensitive Cl− current at pH 7.4. The constitutive Cl− current (pH 7.4) does not arise from ClC-K2/barttin. MDCT cells also express an acid-induced NPPB-sensitive Cl− current (pH < 5.5). Both the constitutive and acid-induced Cl− currents are unique. mIMCD-3 cells express currents with similar biophysical properties.
Collapse
Affiliation(s)
- William C Valinsky
- Department of Physiology, McGill University, 3649 Promenade sir William Osler, Montreal, Quebec H3G 0B1, Canada
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Alvin Shrier
- Department of Physiology, McGill University, 3649 Promenade sir William Osler, Montreal, Quebec H3G 0B1, Canada.
| |
Collapse
|
19
|
Liu Y, Rafferty TM, Rhee SW, Webber JS, Song L, Ko B, Hoover RS, He B, Mu S. CD8 + T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nat Commun 2017; 8:14037. [PMID: 28067240 PMCID: PMC5227995 DOI: 10.1038/ncomms14037] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl- channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Tonya M Rafferty
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Jessica S Webber
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Li Song
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Robert S Hoover
- Department of Medicine, Division of Nephrology, Emory University, Atlanta, Georgia 30322, USA.,Research Service Atlanta, Veteran's Administration Medical Center, Decatur, Georgia 30033, USA
| | - Beixiang He
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| |
Collapse
|
20
|
Valdez-Flores MA, Vargas-Poussou R, Verkaart S, Tutakhel OAZ, Valdez-Ortiz A, Blanchard A, Treard C, Hoenderop JGJ, Bindels RJM, Jeleń S. Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay. Am J Physiol Renal Physiol 2016; 311:F1159-F1167. [DOI: 10.1152/ajprenal.00124.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/26/2016] [Indexed: 12/27/2022] Open
Abstract
Gitelman syndrome (GS) is an autosomal recessive salt-wasting tubular disorder resulting from loss-of-function mutations in the thiazide-sensitive NaCl cotransporter (NCC). Functional analysis of these mutations has been limited to the use of Xenopus laevis oocytes. The aim of the present study was, therefore, to analyze the functional consequences of NCC mutations in a mammalian cell-based assay, followed by analysis of mutated NCC protein expression as well as glycosylation and phosphorylation profiles using human embryonic kidney (HEK) 293 cells. NCC activity was assessed with a novel assay based on thiazide-sensitive iodide uptake in HEK293 cells expressing wild-type or mutant NCC (N59I, R83W, I360T, C421Y, G463R, G731R, L859P, or R861C). All mutations caused a significantly lower NCC activity. Immunoblot analysis of the HEK293 cells revealed that 1) all NCC mutants have decreased NCC protein expression; 2) mutant N59I, R83W, I360T, C421Y, G463R, and L859P have decreased NCC abundance at the plasma membrane; 3) mutants C421Y and L859P display impaired NCC glycosylation; and 4) mutants N59I, R83W, C421Y, C731R, and L859P show affected NCC phosphorylation. In conclusion, we developed a mammalian cell-based assay in which NCC activity assessment together with a profiling of mutated protein processing aid our understanding of the pathogenic mechanism of the NCC mutations.
Collapse
Affiliation(s)
- Marco A. Valdez-Flores
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Programa Regional en Doctorado en Biotecnología, Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Rosa Vargas-Poussou
- Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France; and
| | - Sjoerd Verkaart
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Omar A. Z. Tutakhel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angel Valdez-Ortiz
- Programa Regional en Doctorado en Biotecnología, Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Anne Blanchard
- Clinical Research Center, Hôpital Européen Georges Pompidou, Paris, France
| | - Cyrielle Treard
- Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France; and
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sabina Jeleń
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol 2016; 312:C47-C55. [PMID: 27806940 DOI: 10.1152/ajpcell.00208.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
Zn2+ deficiency (ZnD) is comorbid with chronic kidney disease and worsens kidney complications. Oxidative stress is implicated in the detrimental effects of ZnD. However, the sources of oxidative stress continue to be identified. Since NADPH oxidases (Nox) are the primary enzymes that contribute to renal reactive oxygen species generation, this study's objective was to determine the role of these enzymes in ZnD-induced oxidative stress. We hypothesized that ZnD promotes NADPH oxidase upregulation, resulting in oxidative stress and kidney damage. To test this hypothesis, wild-type mice were pair-fed a ZnD or Zn2+-adequate diet. To further investigate the effects of Zn2+ bioavailability on NADPH oxidase regulation, mouse tubular epithelial cells were exposed to the Zn2+ chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or vehicle followed by Zn2+ supplementation. We found that ZnD diet-fed mice develop microalbuminuria, electrolyte imbalance, and whole kidney hypertrophy. These markers of kidney damage are accompanied by elevated Nox2 expression and H2O2 levels. In mouse tubular epithelial cells, TPEN-induced ZnD stimulates H2O2 generation. In this in vitro model of ZnD, enhanced H2O2 generation is prevented by NADPH oxidase inhibition with diphenyleneiodonium. Specifically, TPEN promotes Nox2 expression and activation, which are reversed when intracellular Zn2+ levels are restored following Zn2+ supplementation. Finally, Nox2 knockdown by siRNA prevents TPEN-induced H2O2 generation and cellular hypertrophy in vitro. Together, these findings reveal that Nox2 is a Zn2+-regulated enzyme that mediates ZnD-induced oxidative stress and kidney hypertrophy. Understanding the specific mechanisms by which ZnD contributes to kidney damage may have an important impact on the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Mirandy S Li
- School of Medicine, Emory University, Atlanta, Georgia
| | - Sherry E Adesina
- School of Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Carla L Ellis
- School of Medicine, Emory University, Atlanta, Georgia
| | - Jennifer L Gooch
- School of Medicine, Emory University, Atlanta, Georgia.,Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee, Georgia; and.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Robert S Hoover
- School of Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Clintoria R Williams
- School of Medicine, Emory University, Atlanta, Georgia; .,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
22
|
The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochem J 2016; 473:3237-52. [PMID: 27422782 DOI: 10.1042/bcj20160312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.
Collapse
|
23
|
Norlander AE, Saleh MA, Kamat NV, Ko B, Gnecco J, Zhu L, Dale BL, Iwakura Y, Hoover RS, McDonough AA, Madhur MS. Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II-Induced Hypertension. Hypertension 2016; 68:167-74. [PMID: 27141060 DOI: 10.1161/hypertensionaha.116.07493] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/01/2016] [Indexed: 01/11/2023]
Abstract
Angiotensin II-induced hypertension is associated with an increase in T-cell production of interleukin-17A (IL-17A). Recently, we reported that IL-17A(-/-) mice exhibit blunted hypertension, preserved natriuresis in response to a saline challenge, and decreased renal sodium hydrogen exchanger 3 expression after 2 weeks of angiotensin II infusion compared with wild-type mice. In the current study, we performed renal transporter profiling in mice deficient in IL-17A or the related isoform, IL-17F, after 4 weeks of Ang II infusion, the time when the blood pressure reduction in IL-17A(-/-) mice is most prominent. Deficiency of IL-17A abolished the activation of distal tubule transporters, specifically the sodium-chloride cotransporter and the epithelial sodium channel and protected mice from glomerular and tubular injury. In human proximal tubule (HK-2) cells, IL-17A increased sodium hydrogen exchanger 3 expression through a serum and glucocorticoid-regulated kinase 1-dependent pathway. In mouse distal convoluted tubule cells, IL-17A increased sodium-chloride cotransporter activity in a serum and glucocorticoid-regulated kinase 1/Nedd4-2-dependent pathway. In both cell types, acute treatment with IL-17A induced phosphorylation of serum and glucocorticoid-regulated kinase 1 at serine 78, and treatment with a serum and glucocorticoid-regulated kinase 1 inhibitor blocked the effects of IL-17A on sodium hydrogen exchanger 3 and sodium-chloride cotransporter. Interestingly, both HK-2 and mouse distal convoluted tubule 15 cells produce endogenous IL-17A. IL17F had little or no effect on blood pressure or renal sodium transporter abundance. These studies provide a mechanistic link by which IL-17A modulates renal sodium transport and suggest that IL-17A inhibition may improve renal function in hypertension and other autoimmune disorders.
Collapse
Affiliation(s)
- Allison E Norlander
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Mohamed A Saleh
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Nikhil V Kamat
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Benjamin Ko
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Juan Gnecco
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Linjue Zhu
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Bethany L Dale
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Yoichiro Iwakura
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Robert S Hoover
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Alicia A McDonough
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| | - Meena S Madhur
- From the Departments of Molecular Physiology and Biophysics (A.E.N., B.L.D., M.S.M.) and Microbiology, Immunology, and Pathology (J.G.), Vanderbilt University, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.A.S., L.Z., M.S.M.); Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt (M.A.S.); Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles (N.V.K., A.A.M.D.); Department of Medicine, Chicago University School of Medicine, IL (B.K.); Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan (Y.I.); and Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA (R.S.H.)
| |
Collapse
|
24
|
Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 2016; 89:127-34. [PMID: 26422504 PMCID: PMC4814375 DOI: 10.1038/ki.2015.289] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/13/2015] [Accepted: 07/31/2015] [Indexed: 11/09/2022]
Abstract
Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo.
Collapse
|
25
|
Hoover RS, Tomilin V, Hanson L, Pochynyuk O, Ko B. PTH modulation of NCC activity regulates TRPV5 Ca2+ reabsorption. Am J Physiol Renal Physiol 2015; 310:F144-51. [PMID: 26608788 DOI: 10.1152/ajprenal.00323.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023] Open
Abstract
Since parathyroid hormone (PTH) is known to increase transient receptor potential vanilloid (TRPV)5 activity and decrease Na(+)-Cl(-) cotransporter (NCC) activity, we hypothesized that decreased NCC-mediated Na(+) reabsorption contributes to the enhanced TRPV5 Ca(2+) reabsorption seen with PTH. To test this, we used mDCT15 cells expressing functional TRPV5 and ruthenium red-sensitive (45)Ca(2+) uptake. PTH increased (45)Ca(2+) uptake to 8.8 ± 0.7 nmol·mg(-1)·min(-1) (n = 4, P < 0.01) and decreased NCC activity from 75.4 ± 2.7 to 20.3 ± 1.3 nmol·mg(-1)·min(-1) (n = 4, P < 0.01). Knockdown of Ras guanyl-releasing protein (RasGRP)1 had no baseline effect on (45)Ca(2+) uptake but significantly attenuated the response to PTH from a 45% increase (6.0 ± 0.2 to 8.7 ± 0.4 nmol·mg(-1)·min(-1)) in control cells to only 20% in knockdown cells (6.1 ± 0.1 to 7.3 ± 0.2 nmol·mg(-1)·min(-1), n = 4, P < 0.01). Inhibition of PKC and PKA resulted in further attenuation of the PTH effect. RasGRP1 knockdown decreased the magnitude of the TRPV5 response to PTH (7.9 ± 0.1 nmol·mg(-1)·min(-1) for knockdown compared with 9.1 ± 0.1 nmol·mg(-1)·min(-1) in control), and the addition of thiazide eliminated this effect (a nearly identical 9.0 ± 0.1 nmol·mg(-1)·min(-1)). This indicates that functionally active NCC is required for RasGRP1 knockdown to impact the PTH effect on TRPV5 activity. Knockdown of with no lysine kinase (WNK)4 resulted in an attenuation of the increase in PTH-mediated TRPV5 activity. TRPV5 activity increased by 36% compared with 45% in control (n = 4, P < 0.01 between PTH-treated groups). PKC blockade further attenuated the PTH effect, whereas combined PKC and PKA blockade in WNK4KD cells abolished the effect. We conclude that modulation of NCC activity contributes to the response to PTH, implying a role for hormonal modulation of NCC activity in distal Ca(2+) handling.
Collapse
Affiliation(s)
- Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; Atlanta Veteran's Administration Medical Center, Decatur, Georgia
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas; Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation; and
| | - Lauren Hanson
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas
| | - Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Labarca M, Nizar JM, Walczak EM, Dong W, Pao AC, Bhalla V. Harvest and primary culture of the murine aldosterone-sensitive distal nephron. Am J Physiol Renal Physiol 2015; 308:F1306-15. [PMID: 25810438 PMCID: PMC4451330 DOI: 10.1152/ajprenal.00668.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/19/2015] [Indexed: 11/22/2022] Open
Abstract
The aldosterone-sensitive distal nephron (ASDN) exhibits axial heterogeneity in structure and function from the distal convoluted tubule to the medullary collecting duct. Ion and water transport is primarily divided between the cortex and medulla of the ASDN, respectively. Transcellular transport in this segment is highly regulated in health and disease and is integrated across different cell types. We currently lack an inexpensive, high-yield, and tractable technique to harvest and culture cells for the study of gene expression and physiological properties of mouse cortical ASDN. To address this need, we harvested tubules bound to Dolichos biflorus agglutinin lectin-coated magnetic beads from the kidney cortex and characterized these cell preparations. We determined that these cells are enriched for markers of distal convoluted tubule, connecting tubule, and cortical collecting duct, including principal and intercalated cells. In primary culture, these cells develop polarized monolayers with high resistance (1,000-1,500 Ω * cm(2)) and maintain expression and activity of key channels. These cells demonstrate an amiloride-sensitive short-circuit current that can be enhanced with aldosterone and maintain measurable potassium and anion secretion. Our method can be easily adopted to study the biology of the ASDN and to investigate phenotypic differences between wild-type and transgenic mouse models.
Collapse
Affiliation(s)
- Mariana Labarca
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | - Jonathan M Nizar
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | - Elisabeth M Walczak
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | - Wuxing Dong
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| | - Alan C Pao
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and Division of Nephrology, Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, California; and
| |
Collapse
|
27
|
Wang L, Dong C, Xi YG, Su X. Thiazide-sensitive Na+-Cl- cotransporter: genetic polymorphisms and human diseases. Acta Biochim Biophys Sin (Shanghai) 2015; 47:325-34. [PMID: 25841442 DOI: 10.1093/abbs/gmv020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/26/2015] [Indexed: 12/16/2022] Open
Abstract
The thiazide-sensitive Na(+)-Cl(-) cotransporter (TSC) is responsible for the major sodium chloride reabsorption pathway, which is located in the apical membrane of the epithelial cells of the distal convoluted tubule. TSC is involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl(-) concentration below or above its electrochemical potential equilibrium. In addition, TSC serves as the target of thiazide-type diuretics that are the first line of therapy for the treatment of hypertension in the clinic, and its mutants are also reported to be associated with the hereditary disease, Gitelman's syndrome. This review aims to summarize the publications with regard to the TSC by focusing on the association between TSC mutants and human hypertension as well as Gitelman's syndrome.
Collapse
Affiliation(s)
- Linghong Wang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Chao Dong
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Ya-Guang Xi
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
28
|
Bazúa-Valenti S, Gamba G. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases. Am J Physiol Cell Physiol 2015; 308:C779-91. [PMID: 25788573 DOI: 10.1152/ajpcell.00065.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 01/26/2023]
Abstract
The renal thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is the salt transporter in the distal convoluted tubule. Its activity is fundamental for defining blood pressure levels. Decreased NCC activity is associated with salt-remediable arterial hypotension with hypokalemia (Gitelman disease), while increased activity results in salt-sensitive arterial hypertension with hyperkalemia (pseudohypoaldosteronism type II; PHAII). The discovery of four different genes causing PHAII revealed a complex multiprotein system that regulates the activity of NCC. Two genes encode for with-no-lysine (K) kinases WNK1 and WNK4, while two encode for kelch-like 3 (KLHL3) and cullin 3 (CUL3) proteins that form a RING type E3 ubiquitin ligase complex. Extensive research has shown that WNK1 and WNK4 are the targets for the KLHL3-CUL3 complex and that WNKs modulate the activity of NCC by means of intermediary Ste20-type kinases known as SPAK or OSR1. The understanding of the effect of WNKs on NCC is a complex issue, but recent evidence discussed in this review suggests that we could be reaching the end of the dark ages regarding this matter.
Collapse
Affiliation(s)
- Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
29
|
Ko B, Mistry A, Hanson L, Mallick R, Hoover RS. Mechanisms of angiotensin II stimulation of NCC are time-dependent in mDCT15 cells. Am J Physiol Renal Physiol 2015; 308:F720-7. [PMID: 25651566 DOI: 10.1152/ajprenal.00465.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/26/2015] [Indexed: 12/17/2022] Open
Abstract
Angiotensin II (ANG II) increases thiazide-sensitive sodium-chloride cotransporter (NCC) activity both acutely and chronically. ANG II has been implicated as a switch that turns WNK4 from an inhibitor of NCC into an activator of NCC, and ANG II's effect on NCC appears to require WNK4. Chronically, ANG II stimulation of NCC results in an increase in total and phosphorylated NCC, but the role of NCC phosphorylation in acute ANG II actions is unclear. Here, using a mammalian cell model with robust native NCC activity, we corroborate the role that ANG II plays in WNK4 regulation and clarify the role of Ste20-related proline alanine-rich kinase (SPAK)-induced NCC phosphorylation in ANG II action. ANG II was noted to have a biphasic effect on NCC, with a peak increase in NCC activity in the physiologic range of 10(-11) M ANG II. This effect was apparent as early as 15 min and remained sustained through 120 min. These changes correlated with significant increases in NCC surface protein expression. Knockdown of WNK4 expression sharply attenuated the effect of ANG II. SPAK knockdown did not affect ANG II action at early time points (15 and 30 min), but it did attenuate the response at 60 min. Correspondingly, NCC phosphorylation did not increase at 15 or 30 min, but increased significantly at 60 min. We therefore conclude that within minutes of an increase in ANG II, NCC is rapidly trafficked to the cell surface in a phosphorylation-independent but WNK4-dependent manner. Then, after 60 min, ANG II induces SPAK-dependent phosphorylation of NCC.
Collapse
Affiliation(s)
- Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois;
| | - Abinash Mistry
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Lauren Hanson
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Rickta Mallick
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; and Atlanta Veteran's Administration Medical Center, Decatur, Georgia
| |
Collapse
|
30
|
Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, Siler DA, Park HJ, Fu Y, Cohen DM, Weinstein AM, Wang WH, Yang CL, Ellison DH. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 2015; 21:39-50. [PMID: 25565204 PMCID: PMC4332769 DOI: 10.1016/j.cmet.2014.12.006] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
Dietary potassium deficiency, common in modern diets, raises blood pressure and enhances salt sensitivity. Potassium homeostasis requires a molecular switch in the distal convoluted tubule (DCT), which fails in familial hyperkalemic hypertension (pseudohypoaldosteronism type 2), activating the thiazide-sensitive NaCl cotransporter, NCC. Here, we show that dietary potassium deficiency activates NCC, even in the setting of high salt intake, thereby causing sodium retention and a rise in blood pressure. The effect is dependent on plasma potassium, which modulates DCT cell membrane voltage and, in turn, intracellular chloride. Low intracellular chloride stimulates WNK kinases to activate NCC, limiting potassium losses, even at the expense of increased blood pressure. These data show that DCT cells, like adrenal cells, sense potassium via membrane voltage. In the DCT, hyperpolarization activates NCC via WNK kinases, whereas in the adrenal gland, it inhibits aldosterone secretion. These effects work in concert to maintain potassium homeostasis.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Cell Line
- Chlorides/metabolism
- Electrolytes/urine
- Humans
- Kidney Tubules, Distal/metabolism
- Membrane Potentials/drug effects
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Minor Histocompatibility Antigens
- Potassium/blood
- Potassium/metabolism
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Potassium, Dietary/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pseudohypoaldosteronism/metabolism
- Pseudohypoaldosteronism/pathology
- Sodium Chloride, Dietary/pharmacology
- Solute Carrier Family 12, Member 3/deficiency
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
- WNK Lysine-Deficient Protein Kinase 1
Collapse
Affiliation(s)
- Andrew S Terker
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chong Zhang
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Department of Nephrology, Xinhua Hostpital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - James A McCormick
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rebecca A Lazelle
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chengbiao Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Nicholas P Meermeier
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dominic A Siler
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hae J Park
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yi Fu
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - David M Cohen
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; VA Portland Health Care System, Portland, OR 97239, USA
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weil Medical College, New York, NY 10065, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Chao-Ling Yang
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; VA Portland Health Care System, Portland, OR 97239, USA
| | - David H Ellison
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; VA Portland Health Care System, Portland, OR 97239, USA.
| |
Collapse
|
31
|
Bazúa-Valenti S, Chávez-Canales M, Rojas-Vega L, González-Rodríguez X, Vázquez N, Rodríguez-Gama A, Argaiz ER, Melo Z, Plata C, Ellison DH, García-Valdés J, Hadchouel J, Gamba G. The Effect of WNK4 on the Na+-Cl- Cotransporter Is Modulated by Intracellular Chloride. J Am Soc Nephrol 2014; 26:1781-6. [PMID: 25542968 DOI: 10.1681/asn.2014050470] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/30/2014] [Indexed: 11/03/2022] Open
Abstract
It is widely recognized that the phenotype of familial hyperkalemic hypertension is mainly a consequence of increased activity of the renal Na(+)-Cl(-) cotransporter (NCC) because of altered regulation by with no-lysine-kinase 1 (WNK1) or WNK4. The effect of WNK4 on NCC, however, has been controversial because both inhibition and activation have been reported. It has been recently shown that the long isoform of WNK1 (L-WNK1) is a chloride-sensitive kinase activated by a low Cl(-) concentration. Therefore, we hypothesized that WNK4 effects on NCC could be modulated by intracellular chloride concentration ([Cl(-)]i), and we tested this hypothesis in oocytes injected with NCC cRNA with or without WNK4 cRNA. At baseline in oocytes, [Cl(-)]i was near 50 mM, autophosphorylation of WNK4 was undetectable, and NCC activity was either decreased or unaffected by WNK4. A reduction of [Cl(-)]i, either by low chloride hypotonic stress or coinjection of oocytes with the solute carrier family 26 (anion exchanger)-member 9 (SLC26A9) cRNA, promoted WNK4 autophosphorylation and increased NCC-dependent Na(+) transport in a WNK4-dependent manner. Substitution of the leucine with phenylalanine at residue 322 of WNK4, homologous to the chloride-binding pocket in L-WNK1, converted WNK4 into a constitutively autophosphorylated kinase that activated NCC, even without chloride depletion. Elimination of the catalytic activity (D321A or D321K-K186D) or the autophosphorylation site (S335A) in mutant WNK4-L322F abrogated the positive effect on NCC. These observations suggest that WNK4 can exert differential effects on NCC, depending on the intracellular chloride concentration.
Collapse
Affiliation(s)
- Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | | | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Alejandro Rodríguez-Gama
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Eduardo R Argaiz
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Zesergio Melo
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Consuelo Plata
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Jesús García-Valdés
- Analytical Chemistry Department, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juliette Hadchouel
- INSERM UMR970, Paris Cardiovascular Research Center, Paris, France; and Faculty of Medicine, University Paris-Descartes, Sorbonne Paris City, Paris, France
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico;
| |
Collapse
|
32
|
Zhang C, Wang L, Zhang J, Su XT, Lin DH, Scholl UI, Giebisch G, Lifton RP, Wang WH. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci U S A 2014; 111:11864-9. [PMID: 25071208 PMCID: PMC4136599 DOI: 10.1073/pnas.1411705111] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The renal phenotype induced by loss-of-function mutations of inwardly rectifying potassium channel (Kir), Kcnj10 (Kir4.1), includes salt wasting, hypomagnesemia, metabolic alkalosis and hypokalemia. However, the mechanism by which Kir.4.1 mutations cause the tubulopathy is not completely understood. Here we demonstrate that Kcnj10 is a main contributor to the basolateral K conductance in the early distal convoluted tubule (DCT1) and determines the expression of the apical Na-Cl cotransporter (NCC) in the DCT. Immunostaining demonstrated Kcnj10 and Kcnj16 were expressed in the basolateral membrane of DCT, and patch-clamp studies detected a 40-pS K channel in the basolateral membrane of the DCT1 of p8/p10 wild-type Kcnj10(+/+) mice (WT). This 40-pS K channel is absent in homozygous Kcnj10(-/-) (knockout) mice. The disruption of Kcnj10 almost completely eliminated the basolateral K conductance and decreased the negativity of the cell membrane potential in DCT1. Moreover, the lack of Kcnj10 decreased the basolateral Cl conductance, inhibited the expression of Ste20-related proline-alanine-rich kinase and diminished the apical NCC expression in DCT. We conclude that Kcnj10 plays a dominant role in determining the basolateral K conductance and membrane potential of DCT1 and that the basolateral K channel activity in the DCT determines the apical NCC expression possibly through a Ste20-related proline-alanine-rich kinase-dependent mechanism.
Collapse
Affiliation(s)
- Chengbiao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221002, China;Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Lijun Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Junhui Zhang
- Department of Genetics, Howard Hughes Medical Institute, and
| | - Xiao-Tong Su
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Ute I Scholl
- Department of Genetics, Howard Hughes Medical Institute, and
| | - Gerhard Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510
| | | | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| |
Collapse
|
33
|
Chávez-Canales M, Zhang C, Soukaseum C, Moreno E, Pacheco-Alvarez D, Vidal-Petiot E, Castañeda-Bueno M, Vázquez N, Rojas-Vega L, Meermeier NP, Rogers S, Jeunemaitre X, Yang CL, Ellison DH, Gamba G, Hadchouel J. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4. Hypertension 2014; 64:1047-53. [PMID: 25113964 DOI: 10.1161/hypertensionaha.114.04036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The with-no-lysine (K) kinases, WNK1 and WNK4, are key regulators of blood pressure. Their mutations lead to familial hyperkalemic hypertension (FHHt), associated with an activation of the Na-Cl cotransporter (NCC). Although it is clear that WNK4 mutants activate NCC via Ste20 proline-alanine-rich kinase, the mechanisms responsible for WNK1-related FHHt and alterations in NCC activity are not as clear. We tested whether WNK1 modulates NCC through WNK4, as predicted by some models, by crossing our recently developed WNK1-FHHt mice (WNK1(+/FHHt)) with WNK4(-/-) mice. Surprisingly, the activated NCC, hypertension, and hyperkalemia of WNK1(+/FHHt) mice remain in the absence of WNK4. We demonstrate that WNK1 powerfully stimulates NCC in a WNK4-independent and Ste20 proline-alanine-rich kinase-dependent manner. Moreover, WNK4 decreases the WNK1 and WNK3-mediated activation of NCC. Finally, the formation of oligomers of WNK kinases through their C-terminal coiled-coil domain is essential for their activity toward NCC. In conclusion, WNK kinases form a network in which WNK4 associates with WNK1 and WNK3 to regulate NCC.
Collapse
Affiliation(s)
- María Chávez-Canales
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Chong Zhang
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Christelle Soukaseum
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Erika Moreno
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Diana Pacheco-Alvarez
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Emmanuelle Vidal-Petiot
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - María Castañeda-Bueno
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Norma Vázquez
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Lorena Rojas-Vega
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Nicholas P Meermeier
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Shaunessy Rogers
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Xavier Jeunemaitre
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Chao-Ling Yang
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - David H Ellison
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.)
| | - Gerardo Gamba
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.).
| | - Juliette Hadchouel
- From the Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico (M.C.-C., M.C.-B., N.V., L.R.-V., G.G.); Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico (M.C.-C., E.M., M.C.-B., N.V., L.R.-V., G.G.); Division of Nephrology and Hypertension, Oregon Health and Science University, Portland (C.Z., N.P.M., S.R., X.J., C.-L.Y., D.H.E.); INSERM UMR970-Paris Cardiovascular Research Center, Paris, France (C.S., E.V.-P., X.J., J.H.); Faculty of Medicine, University Paris-Descartes, Sorbonne Paris Cité, Paris, France (C.S., E.V.-P., J.H.); Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico (D.P.-A.); AP-HP, Department of Genetics, Hôpital Européen Georges Pompidou, Paris, France (X.J.); and Veterans Affairs Medical Center, Portland, OR (D.H.E.).
| |
Collapse
|
34
|
Rosenbaek LL, Kortenoeven MLA, Aroankins TS, Fenton RA. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis. J Biol Chem 2014; 289:13347-61. [PMID: 24668812 DOI: 10.1074/jbc.m113.543710] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT.
Collapse
Affiliation(s)
- Lena L Rosenbaek
- From the Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus DK-8000, Denmark
| | | | | | | |
Collapse
|
35
|
Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML. A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J Biol Chem 2014; 289:11791-11806. [PMID: 24610784 DOI: 10.1074/jbc.m113.531095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been well established that blood pressure and renal function undergo circadian fluctuations. We have demonstrated that the circadian protein Per1 regulates multiple genes involved in sodium transport in the collecting duct of the kidney. However, the role of Per1 in other parts of the nephron has not been investigated. The distal convoluted tubule (DCT) plays a critical role in renal sodium reabsorption. Sodium is reabsorbed in this segment through the actions of the NaCl co-transporter (NCC), which is regulated by the with-no-lysine kinases (WNKs). The goal of this study was to test if Per1 regulates sodium transport in the DCT through modulation of NCC and the WNK kinases, WNK1 and WNK4. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of NCC and WNK1 but increased expression of WNK4 in the renal cortex of mice. These findings were confirmed by using Per1 siRNA and pharmacological blockade of Per1 nuclear entry in mDCT15 cells, a model of the mouse distal convoluted tubule. Transcriptional regulation was demonstrated by changes in short lived heterogeneous nuclear RNA. Chromatin immunoprecipitation experiments demonstrated interaction of Per1 and CLOCK with the promoters of NCC, WNK1, and WNK4. This interaction was modulated by blockade of Per1 nuclear entry. Importantly, NCC protein expression and NCC activity, as measured by thiazide-sensitive, chloride-dependent (22)Na uptake, were decreased upon pharmacological inhibition of Per1 nuclear entry. Taken together, these data demonstrate a role for Per1 in the transcriptional regulation of NCC, WNK1, and WNK4.
Collapse
Affiliation(s)
- Jacob Richards
- Departments of Medicine, University of Florida, Gainesville, Florida 32610; Departments of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Sean All
- Departments of Medicine, University of Florida, Gainesville, Florida 32610
| | - Kit-Yan Cheng
- Departments of Medicine, University of Florida, Gainesville, Florida 32610
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia 30322; Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033
| | - Michelle L Gumz
- Departments of Medicine, University of Florida, Gainesville, Florida 32610; Departments of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610.
| |
Collapse
|
36
|
Katori M, Majima M. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:59-109. [PMID: 25130040 DOI: 10.1007/978-3-319-06683-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension.
Collapse
|
37
|
Chávez-Canales M, Arroyo JP, Ko B, Vázquez N, Bautista R, Castañeda-Bueno M, Bobadilla NA, Hoover RS, Gamba G. Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens 2013; 31:303-11. [PMID: 23303355 DOI: 10.1097/hjh.0b013e32835bbb83] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Insulin is recognized to increase renal salt reabsorption in the distal nephron and hyperinsulinemic states have been shown to be associated with increased expression of the renal NaCl cotransporter (NCC). However, the effect of insulin on NCC functional activity has not been reported. METHODS Using a heterologous expression system of Xenopus laevis oocytes, a mouse distal convoluted cell line, mDCT15 cells, endogenously expressing NCC, and an ex-vivo kidney perfusion technique, we assessed the effect of insulin on the activity and phosphorylation of NCC. The signaling pathway involved was analyzed. RESULTS In Xenopus oocytes insulin increases the activity of NCC together with its phosphorylation at threonine residue 58. Activation of NCC by insulin was also observed in mDCT15 cells. Additionally, insulin increased the NCC phosphorylation in kidney under the ex-vivo perfusion technique. In oocytes and mDCT15 cells, insulin effect on NCC was prevented with inhibitors of phosphatidylinositol 3-kinase (PI3K), mTORC2, and AKT1 kinases, but not by inhibitors of MAP or mTORC1 kinases, suggesting that PI3K-mTORC2-AKT1 is the intracellular pathway required. Additionally, activation of NCC by insulin was not affected by wild-type or mutant versions of with no lysine kinase 1, with no lysine kinase 4, or serum glucocorticoid kinase 1, but it was no longer observed in the presence of wild-type or the dominant negative, catalytically inactive with no lysine kinase 3, implicating this kinase in the process. CONCLUSION Insulin induces activation and phosphorylation of NCC. This effect could play an important role in arterial hypertension associated with hyperinsulinemic states, such as obesity, metabolic syndrome, or type 2 diabetes mellitus.
Collapse
Affiliation(s)
- María Chávez-Canales
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ko B, Mistry AC, Hanson L, Mallick R, Wynne BM, Thai TL, Bailey JL, Klein JD, Hoover RS. Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway. Am J Physiol Renal Physiol 2013; 305:F645-52. [PMID: 23739593 DOI: 10.1152/ajprenal.00053.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertension is a leading cause of morbidity and mortality worldwide, and disordered sodium balance has long been implicated in its pathogenesis. Aldosterone is perhaps the key regulator of sodium balance and thus blood pressure. The sodium chloride cotransporter (NCC) in the distal convoluted tubule of the kidney is a major site of sodium reabsorption and plays a key role in blood pressure regulation. Chronic exposure to aldosterone increases NCC protein expression and function. However, more acute effects of aldosterone on NCC are unknown. In our salt-abundant modern society where chronic salt deprivation is rare, understanding the acute effects of aldosterone is critical. Here, we examined the acute effects (12-36 h) of aldosterone on NCC in the rodent kidney and in a mouse distal convoluted tubule cell line. Studies demonstrated that aldosterone acutely stimulated NCC activity and phosphorylation without affecting total NCC abundance or surface expression. This effect was dependent upon the presence of the mineralocorticoid receptor and serum- and glucocorticoid-regulated kinase 1 (SGK1). Furthermore, STE20/SPS-1-related proline/alanine-rich kinase (SPAK) phosphorylation also increased, and gene silencing of SPAK eliminated the effect of aldosterone on NCC activity. Aldosterone administration via a minipump in adrenalectomized rodents confirmed an increase in NCC phosphorylation without a change in NCC total protein. These data indicate that acute aldosterone-induced SPAK-dependent phosphorylation of NCC increases individual transporter activity.
Collapse
Affiliation(s)
- Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rosenbaek LL, Assentoft M, Pedersen NB, MacAulay N, Fenton RA. Characterization of a novel phosphorylation site in the sodium-chloride cotransporter, NCC. J Physiol 2012; 590:6121-39. [PMID: 22966159 DOI: 10.1113/jphysiol.2012.240986] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The sodium-chloride cotransporter, NCC, is essential for renal electrolyte balance. NCC function can be modulated by protein phosphorylation. In this study, we characterized the role and physiological regulation of a novel phosphorylation site in NCC at Ser124 (S124). Novel phospho-specific antibodies targeting pS124-NCC demonstrated a band of 160 kDa in the kidney cortex, but not medulla, which was preabsorbed by a corresponding phosphorylated peptide. Confocal microscopy with kidney tubule segment-specific markers localized pS124-NCC to all distal convoluted tubule cells. Double immunogold electron microscopy demonstrated that pS124-NCC co-localized with total NCC in the apical plasma membrane of distal convoluted tubule cells and intracellular vesicles. Acute treatment of Munich-Wistar rats or vasopressin-deficient Brattleboro rats with the vasopressin type 2 receptor-specific agonist dDAVP significantly increased pS124-NCC abundance, with no changes in total NCC plasma membrane abundance. pS124-NCC levels also increased in abundance in rats after stimulation of the renin-angiotensin-aldosterone system by dietary low sodium intake. In contrast to other NCC phosphorylation sites, the STE20/SPS1-related proline-alanine-rich kinase and oxidative stress-response kinases (SPAK and OSR1) were not able to phosphorylate NCC at S124. Protein kinase arrays identified multiple kinases that were able to bind to the region surrounding S124. Four of these kinases (IRAK2, CDK6/Cyclin D1, NLK and mTOR/FRAP) showed weak but significant phosphorylation activity at S124. In oocytes, (36)Cl uptake studies combined with biochemical analysis showed decreased activity of plasma membrane-associated NCC when replacing S124 with alanine (A) or aspartic acid (D). In novel tetracycline-inducible MDCKII-NCC cell lines, S124A and S124D mutants were able to traffic to the plasma membrane similarly to wildtype NCC.
Collapse
Affiliation(s)
- L L Rosenbaek
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | | | | |
Collapse
|