1
|
Yarcusko RS, Song MH, Neuger GC, Romero MF, Piermarini PM, Gillen CM. Function and regulation of the insect NaCCC2 sodium transport proteins. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111685. [PMID: 38914258 DOI: 10.1016/j.cbpa.2024.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
NaCCC2 transport proteins, including those from Drosophila melanogaster (Ncc83) and Aedes aegypti (aeCCC2), are an insect-specific clade with sequence similarity to Na+-K+-2Cl- cotransporters. Whereas the Na+-K+-2Cl- cotransporters and other cation-chloride cotransporters are electroneutral, recent work indicates that Ncc83 and aeCCC2 carry charge across membranes. Here, we further characterize the regulation and transport properties of Ncc83 and aeCCC2 expressed in Xenopus oocytes. In cation uptake experiments, Li+ was used as a tracer for Na+ and Rb+ was used as a tracer for K+. Li+ uptake of oocytes expressing either aeCCC2 or Ncc83 was greater than uptake in water-injected controls, activated by hypotonic swelling, and not inhibited by ouabain or ethyl cinnamate. Rb+ uptake of oocytes expressing either aeCCC2 or Ncc83 was not different than water injected controls. In oocytes expressing either aeCCC2 or Ncc83, Li+ uptake plateaued with increasing Li+ concentrations, with apparent Km values in the range of 10 to 20 mM. Following exposure to ouabain, intracellular [Na+] was greater in oocytes expressing aeCCC2 than in controls. Elevating intracellular cAMP (via 8-bromo-cAMP) in Ncc83 oocytes significantly stimulated both Li+ uptake and membrane conductances. Elevating intracellular cAMP in aeCCC2 oocytes did not affect Li+ uptake, but stimulated membrane conductances. Overall, these results confirm that the NaCCC2s resemble other cation-chloride cotransporters in their regulation and some transport properties. However, unlike other cation-chloride cotransporters, they carry charge across membranes.
Collapse
Affiliation(s)
- Ryan S Yarcusko
- Department of Biology, Kenyon College, Gambier, OH 43050, USA
| | | | - Grace C Neuger
- Department of Biology, Kenyon College, Gambier, OH 43050, USA
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55902, USA
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | |
Collapse
|
2
|
Duan XP, Zhang CB, Wang WH, Lin DH. Role of calcineurin in regulating renal potassium (K +) excretion: Mechanisms of calcineurin inhibitor-induced hyperkalemia. Acta Physiol (Oxf) 2024; 240:e14189. [PMID: 38860527 PMCID: PMC11250626 DOI: 10.1111/apha.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Biao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
3
|
Duan XP, Zheng JY, Jiang SP, Wang MX, Zhang C, Chowdhury T, Wang WH, Lin DH. mTORc2 in Distal Convoluted Tubule and Renal K + Excretion during High Dietary K + Intake. J Am Soc Nephrol 2024; 35:00001751-990000000-00330. [PMID: 38788191 PMCID: PMC11387030 DOI: 10.1681/asn.0000000000000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
Key Points
High K stimulates mechanistic target of rapamycin complex 2 (mTORc2) in the distal convoluted tubule (DCT).Inhibition of mTORc2 decreased the basolateral Kir4.1/Kir5.1 and Na-Cl cotransporter in the DCT.Inhibition of mTORc2 of the DCT compromised kidneys' ability to excrete potassium during high K intake.
Background
Renal mechanistic target of rapamycin complex 2 (mTORc2) plays a role in regulating renal K+ excretion (renal-EK) and K+ homeostasis. Inhibition of renal mTORc2 causes hyperkalemia due to suppressing epithelial Na+ channel and renal outer medullary K+ (Kir1.1) in the collecting duct. We now explore whether mTORc2 of distal convoluted tubules (DCTs) regulates basolateral Kir4.1/Kir5.1, Na-Cl cotransporter (NCC), and renal-EK.
Methods
We used patch-clamp technique to examine basolateral Kir4.1/Kir5.1 in early DCT, immunoblotting, and immunofluorescence to examine NCC expression and in vivo measurement of urinary K+ excretion to determine baseline renal-EK in mice treated with an mTORc2 inhibitor and in DCT-specific rapamycin-insensitive companion of mTOR knockout (DCT-RICTOR-KO) mice.
Results
Inhibition of mTORc2 with AZD8055 abolished high-K+–induced inhibition of Kir4.1/Kir5.1 in DCT, high potassium–induced depolarization of the DCT membrane, and high potassium–induced suppression of phosphorylated Na-Cl cotransporter (pNCC) expression. AZD8055 stimulated the 40-pS inwardly rectifying K+ channel (Kir4.1/Kir5.1-heterotetramer) in early DCT in the mice on overnight high potassium intake; this effect was absent in the presence of protein kinase C inhibitors, which also stimulated Kir4.1/Kir5.1. AZD8055 treatment decreased renal-EK in animals on overnight high-potassium diet. Deletion of RICTOR in the DCT increased the Kir4.1/Kir5.1-mediated K+ currents, hyperpolarized the DCT membrane, and increased the expression of pWNK4 and pNCC. Renal-EK was lower and plasma K+ was higher in DCT-RICTOR-KO mice than corresponding control mice. In addition, overnight high-potassium diet did not inhibit Kir4.1/Kir5.1 activity in the DCT and failed to inhibit the expression of pNCC in DCT-RICTOR-KO mice. Overnight high potassium intake stimulated renal-EK in control mice, but this effect was attenuated in DCT-RICTOR-KO mice. Thus, overnight high potassium intake induced hyperkalemia in DCT-RICTOR-KO mice but not in control mice.
Conclusions
mTORc2 of the DCT inhibits Kir4.1/Kir5.1 activity and NCC expression and stimulates renal-EK during high potassium intake.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Jun-Ya Zheng
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Shao-Peng Jiang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ming-Xiao Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chengbiao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Tanzina Chowdhury
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
4
|
Subramanya AR, Boyd-Shiwarski CR. Molecular Crowding: Physiologic Sensing and Control. Annu Rev Physiol 2024; 86:429-452. [PMID: 37931170 PMCID: PMC11472293 DOI: 10.1146/annurev-physiol-042222-025920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.
Collapse
Affiliation(s)
- Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
- Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Hassan N, Murray BG, Jagadeeshan S, Thomas R, Katselis GS, Ianowski JP. Intracellular Ca 2+ oscillation frequency and amplitude modulation mediate epithelial apical and basolateral membranes crosstalk. iScience 2024; 27:108629. [PMID: 38188522 PMCID: PMC10767210 DOI: 10.1016/j.isci.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Since the early seminal studies on epithelial solute transport, it has been understood that there must be crosstalk among different members of the transport machinery to coordinate their activity and, thus, generate localized electrochemical gradients that force solute flow in the required direction that would otherwise be thermodynamically unfavorable. However, mechanisms underlying intracellular crosstalk remain unclear. We present evidence that crosstalk between apical and basolateral membrane transporters is mediated by intracellular Ca2+ signaling in insect renal epithelia. Ion flux across the basolateral membrane is encoded in the intracellular Ca2+ oscillation frequency and amplitude modulation and that information is used by the apical membrane to adjust ion flux accordingly. Moreover, imposing experimentally generated intracellular Ca2+ oscillation modulation causes cells to predictably adjust their ion transport properties. Our results suggest that intracellular Ca2+ oscillation frequency and amplitude modulation encode information on transmembrane ion flux that is required for crosstalk.
Collapse
Affiliation(s)
- Noman Hassan
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Brendan G. Murray
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | | | - Robert Thomas
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - George S. Katselis
- Department of Medicine, Division of Canadian Centre for Rural and Agricultural Health, College of Medicine, University of Saskatchewan, Saskatoon S7N 2Z4, Canada
| | - Juan P. Ianowski
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
6
|
Yarikipati P, Jonusaite S, Pleinis JM, Dominicci Cotto C, Sanchez-Hernandez D, Morrison DE, Goyal S, Schellinger J, Pénalva C, Curtiss J, Rodan AR, Jenny A. Unanticipated domain requirements for Drosophila Wnk kinase in vivo. PLoS Genet 2023; 19:e1010975. [PMID: 37819975 PMCID: PMC10593226 DOI: 10.1371/journal.pgen.1010975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 10/23/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
WNK (With no Lysine [K]) kinases have critical roles in the maintenance of ion homeostasis and the regulation of cell volume. Their overactivation leads to pseudohypoaldosteronism type II (Gordon syndrome) characterized by hyperkalemia and high blood pressure. More recently, WNK family members have been shown to be required for the development of the nervous system in mice, zebrafish, and flies, and the cardiovascular system of mice and fish. Furthermore, human WNK2 and Drosophila Wnk modulate canonical Wnt signaling. In addition to a well-conserved kinase domain, animal WNKs have a large, poorly conserved C-terminal domain whose function has been largely mysterious. In most but not all cases, WNKs bind and activate downstream kinases OSR1/SPAK, which in turn regulate the activity of various ion transporters and channels. Here, we show that Drosophila Wnk regulates Wnt signaling and cell size during the development of the wing in a manner dependent on Fray, the fly homolog of OSR1/SPAK. We show that the only canonical RF(X)V/I motif of Wnk, thought to be essential for WNK interactions with OSR1/SPAK, is required to interact with Fray in vitro. However, this motif is unexpectedly dispensable for Fray-dependent Wnk functions in vivo during fly development and fluid secretion in the Malpighian (renal) tubules. In contrast, a structure function analysis of Wnk revealed that the less-conserved C-terminus of Wnk, that recently has been shown to promote phase transitions in cell culture, is required for viability in vivo. Our data thus provide novel insights into unexpected in vivo roles of specific WNK domains.
Collapse
Affiliation(s)
- Prathibha Yarikipati
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States of America
| | - Sima Jonusaite
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - John M. Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Carihann Dominicci Cotto
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States of America
| | - David Sanchez-Hernandez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States of America
| | - Daryl E. Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Suhani Goyal
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Jeffrey Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Clothilde Pénalva
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Jennifer Curtiss
- Department of Cell & Developmental Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Aylin R. Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States of America
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
| |
Collapse
|
7
|
Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L, Morrison DE, Wang J, Mann J, Tennant W, Anderson EN, Franks J, Calderon M, Connolly KA, Cheema MU, Weaver CJ, Nkashama LJ, Weckerly CC, Querry KE, Pandey UB, Donnelly CJ, Sun D, Rodan AR, Subramanya AR. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 2022; 185:4488-4506.e20. [PMID: 36318922 PMCID: PMC9699283 DOI: 10.1016/j.cell.2022.09.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Shawn E Griffiths
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rebecca T Beacham
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Wang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jacob Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - William Tennant
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Eric N Anderson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Calderon
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelly A Connolly
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Muhammad Umar Cheema
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire J Weaver
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lubika J Nkashama
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Katherine E Querry
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Aylin R Rodan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| | - Arohan R Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
8
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
9
|
Duong PC, McCabe TC, Riley GF, Holmes HL, Piermarini PM, Romero MF, Gillen CM. Sequence analysis and function of mosquito aeCCC2 and Drosophila Ncc83 orthologs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103729. [PMID: 35150868 PMCID: PMC9012228 DOI: 10.1016/j.ibmb.2022.103729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 05/08/2023]
Abstract
Dipteran insects have genes that code for two different Na+-dependent cation-chloride cotransporter (CCC) paralogs. Aedes aegypti aeNKCC1 is an ortholog of Drosophila melanogaster Ncc69, a bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC). Aedes aegypti aeCCC2 and aeCCC3 are orthologs of Drosophila Ncc83. Prior work suggests that the transport properties of aeCCC2 differ from canonical NKCCs. In particular, Xenopus oocytes expressing aeCCC2 have increased Na+-dependent membrane currents compared to controls, whereas NKCCs are electroneutral. Here, we further evaluated the function and localization of aeCCC2 and Ncc83. In oocytes expressing aeCCC2 or Ncc83, membrane potential (Vm) hyperpolarized upon Na+ removal; following hypotonic exposure the change in Vm was greater than it was in controls. In voltage-clamp experiments, membrane currents were concentration dependent on Na+ with an apparent affinity (Km) of approximately 4.6 mM. In Malpighian tubules of larval and adult mosquitoes, aeCCC2 was localized along the basolateral aspect of principal cells. Sequence comparisons among transporters from Drosophila, Aedes, Anopheles, and Culex revealed 33 residues within the transmembrane domains (TMDs) that are fully conserved within paralogs but that differ between orthologs of NKCC1 and orthologs of aeCCC2/Ncc83. These residues are distributed across all 12 TMDs. Our results provide a foundation for further exploration of the structural basis for functional differences between insect Na+-dependent CCCs.
Collapse
Affiliation(s)
- Phu C Duong
- Department of Biology, Kenyon College, Gambier, OH, 43050, USA
| | - Tobias C McCabe
- Department of Biology, Kenyon College, Gambier, OH, 43050, USA
| | - Grace F Riley
- Department of Biology, Kenyon College, Gambier, OH, 43050, USA
| | - Heather L Holmes
- Physiology and Biomedical Engineering, Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, 55902, USA
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, 44691, USA
| | - Michael F Romero
- Physiology and Biomedical Engineering, Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, 55902, USA
| | | |
Collapse
|
10
|
Wang S, Ju Y, Gao L, Miao Y, Qiao H, Wang Y. The fruit fly kidney stone models and their application in drug development. Heliyon 2022; 8:e09232. [PMID: 35399385 PMCID: PMC8987614 DOI: 10.1016/j.heliyon.2022.e09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.
Collapse
Affiliation(s)
- Shiyao Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yingjie Ju
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Lujuan Gao
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Huanhuan Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yiwen Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| |
Collapse
|
11
|
Schellinger JN, Sun Q, Pleinis JM, An SW, Hu J, Mercenne G, Titos I, Huang CL, Rothenfluh A, Rodan AR. Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Curr Biol 2022; 32:1429-1438.e6. [PMID: 35303418 PMCID: PMC8972083 DOI: 10.1016/j.cub.2022.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/02/2021] [Accepted: 03/04/2022] [Indexed: 12/21/2022]
Abstract
Central pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies.1,2 Circadian variation in the intracellular chloride concentration of mammalian pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABAA receptor chloride channels.3 However, results have been contradictory,4-9 and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response.10 Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila small ventral lateral (sLNv) pacemaker neurons. In control flies, intracellular chloride increases in sLNvs over the course of the morning. Chloride transport through sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations.11Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride 6 h after lights on, loss of morning anticipation, and a prolonged circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of WNK (with no lysine [K]) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila sLNv pacemakers restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.
Collapse
Affiliation(s)
- Jeffrey N Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Qifei Sun
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung-Wan An
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jianrui Hu
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Gaëlle Mercenne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Adrian Rothenfluh
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84148, USA.
| |
Collapse
|
12
|
Dow JAT, Krause SA, Herzyk P. Updates on ion and water transport by the Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:31-37. [PMID: 33705976 PMCID: PMC9586879 DOI: 10.1016/j.cois.2021.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 05/29/2023]
Abstract
The Malpighian (renal) tubule is capable of transporting fluid at remarkable rates. This review will focus on recent insights into the mechanisms by which these high rates are achieved and controlled, with particular reference to the tubules of Drosophila melanogaster, in which the combination of physiology and genetics has led to particularly rapid progress. Like many vertebrate epithelia, the Drosophila tubule has specialized cell types, with active cation transport confined to a large, metabolically active principal cell; whereas the smaller intercalated stellate cell controls chloride and water shunts to achieve net fluid secretion. Recently, the genes underlying many of these processes have been identified, functionally validated and localized within the tubule. The imminent arrival of new types of post-genomic data (notably single cell sequencing) will herald an exciting era of new discovery.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Sue Ann Krause
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pawel Herzyk
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Xiao Y, Duan XP, Zhang DD, Wang WH, Lin DH. Deletion of renal Nedd4-2 abolishes the effect of high K + intake on Kir4.1/Kir5.1 and NCC activity in the distal convoluted tubule. Am J Physiol Renal Physiol 2021; 321:F1-F11. [PMID: 34029145 DOI: 10.1152/ajprenal.00072.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-dietary K+ (HK) intake inhibits basolateral Kir4.1/Kir5.1 activity in the distal convoluted tubule (DCT), and HK-induced inhibition of Kir4.1/Kir5.1 is essential for HK-induced inhibition of NaCl cotransporter (NCC). Here, we examined whether neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) deletion compromises the effect of HK on basolateral Kir4.1/Kir5.1 and NCC in the DCT. Single-channel recording and whole cell recording showed that neither HK decreased nor low-dietary K+ (LK) increased basolateral Kir4.1/Kir5.1 activity of the DCT in kidney tubule-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. In contrast, HK inhibited and LK increased Kir4.1/Kir5.1 activity in control mice [neural precursor cell expressed developmentally downregulated 4-like (Nedd4l)flox/flox]. Also, HK intake decreased the negativity of K+ current reversal potential in the DCT (depolarization) only in control mice but not in Ks-Nedd4-2 KO mice. Renal clearance experiments showed that HK intake decreased, whereas LK intake increased, hydrochlorothiazide-induced renal Na+ excretion only in control mice, but this effect was absent in Ks-Nedd4-2 KO mice. Western blot analysis also demonstrated that HK-induced inhibition of phosphorylated NCC (Thr53) and total NCC was observed only in control mice but not in Ks-Nedd4-2 KO mice. Furthermore, expression of all three subunits of the epithelial Na+ channel in Ks-Nedd4-2 KO mice on HK was higher than in control mice. Thus, plasma K+ concentrations were similar between Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HK for 7 days despite high NCC expression. We conclude that Nedd4-2 plays a role in regulating HK-induced inhibition of Kir4.1/Kir5.1 and NCC in the DCT.NEW & NOTEWORTHY Basolateral Kir4.1/Kir5.1 in the distal convoluted tubule plays an important role as a "K+ sensor" in the regulation of renal K+ excretion after high K+ intake. We found that neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) a role in mediating the effect of K+ diet on Kir4.1/Kir5.1 and NaCl cotransporter because high K+ intake failed to inhibit basolateral Kir4.1/Kir5.1 and NaCl cotransporter in kidney tubule-specific Nedd4-2 knockout mice.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China.,Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
14
|
Zhang DD, Duan XP, Xiao Y, Wu P, Gao ZX, Wang WH, Lin DH. Deletion of renal Nedd4-2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC and causes hypokalemia during high HS. Am J Physiol Renal Physiol 2021; 320:F883-F896. [PMID: 33818128 DOI: 10.1152/ajprenal.00555.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated protein 4-2 (Nedd4-2) regulates the expression of Kir4.1, thiazide-sensitive NaCl cotransporter (NCC), and epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN), and Nedd4-2 deletion causes salt-sensitive hypertension. We now examined whether Nedd4-2 deletion compromises the effect of high-salt (HS) diet on Kir4.1, NCC, ENaC, and renal K+ excretion. Immunoblot analysis showed that HS diet decreased the expression of Kir4.1, Ca2+-activated large-conductance K+ channel subunit-α (BKα), ENaCβ, ENaCγ, total NCC, and phospho-NCC (at Thr53) in floxed neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4lfl/fl) mice, whereas these effects were absent in kidney-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. Renal clearance experiments also demonstrated that Nedd4-2 deletion abolished the inhibitory effect of HS diet on hydrochlorothiazide-induced natriuresis. Patch-clamp experiments showed that neither HS diet nor low-salt diet had an effect on Kir4.1/Kir5.1 currents of the distal convoluted tubule in Nedd4-2-deficient mice, whereas we confirmed that HS diet inhibited and low-salt diet increased Kir4.1/Kir5.1 activity in Nedd4lflox/flox mice. Nedd4-2 deletion increased ENaC currents in the ASDN, and this increase was more robust in the cortical collecting duct than in the distal convoluted tubule. Also, HS-induced inhibition of ENaC currents in the ASDN was absent in Nedd4-2-deficient mice. Renal clearance experiments showed that HS intake for 2 wk increased the basal level of renal K+ excretion and caused hypokalemia in Ks-Nedd4-2-KO mice but not in Nedd4lflox/flox mice. In contrast, plasma Na+ concentrations were similar in Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HS diet. We conclude that Nedd4-2 plays an important role in mediating the inhibitory effect of HS diet on Kir4.1, ENaC, and NCC and is essential for maintaining normal renal K+ excretion and plasma K+ ranges during long-term HS diet.NEW & NOTEWORTHY The present study suggests that Nedd4-2 is involved in mediating the inhibitory effect of high salt (HS) diet on Kir4.1/kir5.1 in the distal convoluted tubule, NaCl cotransporter function, and epithelial Na+ channel activity and that Nedd4-2 plays an essential role in maintaining K+ homeostasis in response to a long-term HS diet. This suggests the possibility that HS intake could lead to hypokalemia in subjects lacking proper Nedd4-2 E3 ubiquitin ligase activity in aldosterone-sensitive distal nephron.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.,Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Yu Xiao
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China.,Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Zhong-Xiuzi Gao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
15
|
Fu Y, Yuan PP, Cao YG, Ke YY, Zhang Q, Hou Y, Zhang YL, Feng WS, Zheng XK. Geniposide in Gardenia jasminoides var. radicans Makino modulates blood pressure via inhibiting WNK pathway mediated by the estrogen receptors. J Pharm Pharmacol 2020; 72:1956-1969. [DOI: 10.1111/jphp.13361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Abstract
Objectives
To investigate the effects of geniposide in an iridoid found in Gardenia jasminoides var. radicans Makino (GJRM) in spontaneous hypertensive rat (SHR) and explore the possible mechanisms.
Methods
In this study, we detected the content of geniposide in GJRM by high-performance liquid chromatography (HPLC). Then, we used acute diuretic experiments to determine whether geniposide has diuretic effect. Moreover, we carried out experiments on SHR to further study the mechanism of hypertension, while real-time PCR, Western blot and immunohistochemistry were used for the experiments in vivo test. Hypotonic model was used for in vitro test.
Key findings
Our data showed that the content of geniposide in the extract of GJRM is 27.54%. Meanwhile, 50 mg/kg geniposide showed the strongest effect on promoting urine volume. Further study indicated that the extract of GJRM and geniposide could significantly reduce blood pressure and promote the excretion of urine and Na+ in SHR. In addition, geniposide significantly inhibited the activation of the with-no-lysine kinase (WNK) signalling pathway and significantly increases the protein expressions of estrogen receptor α (ERα), estrogen receptor β (ERβ) and G protein-coupled receptor 30 (GPR30) in SHR. In hypotonic model, geniposide significantly inhibits the phosphorylation of NKCC and NCC and could be antagonistic to estrogen receptor antagonists.
Conclusions
Collectively, we would suggest that geniposide may potentially be utilized as an adjunct to existing thiazide and thiazide-like diuretics to control hypertension, mainly through inhibiting the activation of the WNK signalling pathway mediated by the estrogen receptor.
Collapse
Affiliation(s)
- Yang Fu
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Pei-pei Yuan
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Yan-gang Cao
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Ying-ying Ke
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Qi Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Ying Hou
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Yan-li Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Wei-sheng Feng
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| | - Xiao-ke Zheng
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Wu D, Lai N, Deng R, Liang T, Pan P, Yuan G, Li X, Li H, Shen H, Wang Z, Chen G. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Exp Neurol 2020; 332:113386. [PMID: 32589890 DOI: 10.1016/j.expneurol.2020.113386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is the common brain diseases in middle-aged and elderly people, with high disability and/or mortality rate, and is a serious public health concern. Both WNK3 kinase and the WNK3/SPAK/NKCC1 signaling pathway play an integral role in maintaining normal cell homeostasis. However, their role and underlying mechanisms in ICH-induced secondary brain injury (SBI) have yet to be elucidated. METHODS We established an ICH model using male Sprague-Dawley (SD) rats by injecting autologous arterial blood into the unilateral basal ganglia. To establish ICH model in vitro, oxyhemoglobin (OxyHb; 20 μM) and neurons were cultured for 6 h at 37 °C, 5% CO2 atmosphere. To investigate the role of WNK3 and the WNK3/SPAK/NKCC1 signaling pathway in SBI, after genetic interventions, rotation and water maze test, brain edema and neuroinflammation were detected, and terminal-deoxynucleoitidyl transferase mediated dUTP nick end labeling (TUNEL), Fluoro-Jade C (FJC), and Nissl staining were performed. RESULTS Our data showed that WNK3 expression in brain tissue were upregulated after ICH induction. In addition, silencing of WNK3 reduced neuronal apoptosis, and inflammatory responses in rats that underwent ICH. Inhibition of WNK3 expression reduced the damaged blood-brain barrier (BBB), alleviated the impaired degree of cerebral edema, and improved disruptive neurobehavioral cognition caused by ICH. Moreover, overexpression of WNK3 had the opposite effects. Finally, WNK3/SPAK/NKCC1 signaling pathway may be involved in the above-mentioned processes. CONCLUSIONS In conclusion, our findings showed that WNK3 and WNK3/SPAK/NKCC1 signaling pathway play a vital biological function in ICH-induced SBI. Depletion of WNK3 attenuated brain injury after ICH both in vivo and in vitro. Thus, WNK3 and WNK3/SPAK/NKCC1 signaling pathway are potential targets for treating SBI after ICH.
Collapse
Affiliation(s)
- Degang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui Province, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui Province, China
| | - Niansheng Lai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui Province, China; Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui Province, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Department of Neurosurgery, The people's Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Pengjie Pan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Guiqiang Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Studies of the genetic model organism, Drosophila melanogaster, have unraveled molecular pathways relevant to human physiology and disease. The Malpighian tubule, the Drosophila renal epithelium, is described here, including tools available to study transport; conserved transporters, channels, and the signaling pathways regulating them; and fly models of kidney stone disease. RECENT FINDINGS Tools to measure Malpighian tubule transport continue to advance, including use of a transgenic sensor to quantify intracellular pH and proton fluxes. A recent study generated an RNA-sequencing-based atlas of tissue-specific gene expression, with resulting insights into Malpighian tubule gene expression of transporters and channels. Advances have been made in understanding the molecular physiology of the With No Lysine kinase-Ste20-related proline/alanine rich kinase/oxidative stress response kinase cascade that regulates epithelial ion transport in flies and mammals. New studies in Drosophila kidney stone models have characterized zinc transporters and used Malpighian tubules to study the efficacy of a plant metabolite in decreasing stone burden. SUMMARY Study of the Drosophila Malpighian tubule affords opportunities to better characterize the molecular physiology of epithelial transport mechanisms relevant to mammalian renal physiology.
Collapse
|
18
|
Thomson MN, Cuevas CA, Bewarder TM, Dittmayer C, Miller LN, Si J, Cornelius RJ, Su XT, Yang CL, McCormick JA, Hadchouel J, Ellison DH, Bachmann S, Mutig K. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Am J Physiol Renal Physiol 2019; 318:F216-F228. [PMID: 31736353 DOI: 10.1152/ajprenal.00232.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
K+ deficiency stimulates renal salt reuptake via the Na+-Cl- cotransporter (NCC) of the distal convoluted tubule (DCT), thereby reducing K+ losses in downstream nephron segments while increasing NaCl retention and blood pressure. NCC activation is mediated by a kinase cascade involving with no lysine (WNK) kinases upstream of Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive kinase-1 (OSR1). In K+ deficiency, WNKs and SPAK/OSR1 concentrate in spherical cytoplasmic domains in the DCT termed "WNK bodies," the significance of which is undetermined. By feeding diets of varying salt and K+ content to mice and using genetically engineered mouse lines, we aimed to clarify whether WNK bodies contribute to WNK-SPAK/OSR1-NCC signaling. Phosphorylated SPAK/OSR1 was present both at the apical membrane and in WNK bodies within 12 h of dietary K+ deprivation, and it was promptly suppressed by K+ loading. In WNK4-deficient mice, however, larger WNK bodies formed, containing unphosphorylated WNK1, SPAK, and OSR1. This suggests that WNK4 is the primary active WNK isoform in WNK bodies and catalyzes SPAK/OSR1 phosphorylation therein. We further examined mice carrying a kidney-specific deletion of the basolateral K+ channel-forming protein Kir4.1, which is required for the DCT to sense plasma K+ concentration. These mice displayed remnant mosaic expression of Kir4.1 in the DCT, and upon K+ deprivation, WNK bodies developed only in Kir4.1-expressing cells. We postulate a model of DCT function in which NCC activity is modulated by plasma K+ concentration via WNK4-SPAK/OSR1 interactions within WNK bodies.
Collapse
Affiliation(s)
- Martin N Thomson
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Catherina A Cuevas
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Tim M Bewarder
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Dittmayer
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lauren N Miller
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jinge Si
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon.,Renal Section, Veterans Affairs Portland Health Care System, Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon.,Renal Section, Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Moscow, Russia
| |
Collapse
|
19
|
Stenesen D, Moehlman AT, Schellinger JN, Rodan AR, Krämer H. The glial sodium-potassium-2-chloride cotransporter is required for synaptic transmission in the Drosophila visual system. Sci Rep 2019; 9:2475. [PMID: 30792494 PMCID: PMC6385505 DOI: 10.1038/s41598-019-38850-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Drosophila Ncc69 gene encodes a Na+-K+-2Cl−-cotransporter (NKCC) that is critical for regulating intra- and extracellular ionic conditions in different tissues. Here, we show that the Ncc69 transporter is necessary for fly vision and that its expression is required non-autonomously in glia to maintain visual synaptic transmission. Flies mutant for Ncc69 exhibit normal photoreceptor depolarization in response to a light pulse but lack the ON and OFF-transients characteristic of postsynaptic responses of lamina neurons, indicating a failure in synaptic transmission. We also find that synaptic transmission requires the Ncc69 regulatory kinases WNK and Fray in glia. The ERG phenotype is associated with a defect in the recycling of the histamine neurotransmitter. Ncc69 mutants exhibit higher levels of the transport metabolite carcinine in lamina cartridges, with its accumulation most intense in the extracellular space. Our work reveals a novel role of glial NKCC transporters in synaptic transmission, possibly through regulating extracellular ionic conditions.
Collapse
Affiliation(s)
- Drew Stenesen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Biology Department, University of Dallas, Irving, TX, 75062, USA
| | - Andrew T Moehlman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeffrey N Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Internal Medicine, Division of Nephrology and Hypertension and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA. .,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA.
| | - Helmut Krämer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|