1
|
Mungara P, Waiss M, Hartwig S, Burger D, Cordat E. Unraveling the molecular landscape of kAE1: a narrative review. Can J Physiol Pharmacol 2024; 102:396-407. [PMID: 38669699 DOI: 10.1139/cjpp-2023-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Kidney anion exchanger 1 (kAE1) is an isoform of the AE1 protein encoded by the SLC4A1 gene. It is a basolateral membrane protein expressed by α-intercalated cells in the connecting tubules and collecting duct of the kidney. Its main function is to exchange bicarbonate and chloride ions between the blood and urine to maintain blood pH at physiological threshold. The kAE1 protein undergoes multiple post-translational modifications such as phosphorylation and ubiquitination and interacts with many different proteins such as claudin-4 and carbonic anhydrase II. Mutations in the gene may lead to the development of distal renal tubular acidosis, characterized by the failure to acidify the urine, which may result in nephrocalcinosis and in more severe cases, renal failure. In this review, we discuss the structure and function of kAE1, its post-translational modifications, and protein-protein interactions. Finally, we discuss insights gained from the study of kAE1 mutations in humans and in mice.
Collapse
Affiliation(s)
- Priyanka Mungara
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Moubarak Waiss
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Dylan Burger
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Kidney Research Centre, Ottawa, ON, Canada
| | - Emmanuelle Cordat
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 2023; 19:384-400. [PMID: 37016093 DOI: 10.1038/s41581-023-00699-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK.
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Sergio C Lopez-Garcia
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Kleta
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Stephen Walsh
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
3
|
Deejai N, Sawasdee N, Nettuwakul C, Wanachiwanawin W, Sritippayawan S, Yenchitsomanus PT, Rungroj N. Impaired trafficking and instability of mutant kidney anion exchanger 1 proteins associated with autosomal recessive distal renal tubular acidosis. BMC Med Genomics 2022; 15:228. [PMID: 36320073 PMCID: PMC9623938 DOI: 10.1186/s12920-022-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Mutations in solute carrier family 4 member 1 (SLC4A1) encoding anion exchanger 1 (AE1) are the most common cause of autosomal recessive distal renal tubular acidosis (AR dRTA) in Southeast Asians. To explain the molecular mechanism of this disease with hematological abnormalities in an affected family, we conducted a genetic analysis of SLC4A1 and studied wild-type and mutant AE1 proteins expressed in human embryonic kidney 293T (HEK293T) cells. Methods SLC4A1 mutations in the patient and family members were analyzed by molecular genetic techniques. Protein structure modeling was initially conducted to evaluate the effects of mutations on the three-dimensional structure of the AE1 protein. The mutant kidney anion exchanger 1 (kAE1) plasmid construct was created to study protein expression, localization, and stability in HEK293T cells. Results We discovered that the patient who had AR dRTA coexisting with mild hemolytic anemia carried a novel compound heterozygous SLC4A1 mutations containing c.1199_1225del (p.Ala400_Ala408del), resulting in Southeast Asian ovalocytosis (SAO), and c.1331C > A (p.Thr444Asn). Homologous modeling and in silico mutagenesis indicated that these two mutations affected the protein structure in the transmembrane regions of kAE1. We found the wild-type and mutant kAE1 T444N to be localized at the cell surface, whereas the mutants kAE1 SAO and SAO/T444N were intracellularly retained. The half-life of the kAE1 SAO, T444N, and SAO/T444N mutants was shorter than that of the wild-type protein. Conclusion These results suggest impaired trafficking and instability of kAE1 SAO/T444N as the likely underlying molecular mechanism explaining the pathogenesis of the novel SLC4A1 compound heterozygous mutation identified in this patient. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01381-y.
Collapse
Affiliation(s)
- Nipaporn Deejai
- grid.10223.320000 0004 1937 0490Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nunghathai Sawasdee
- grid.10223.320000 0004 1937 0490Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Choochai Nettuwakul
- grid.10223.320000 0004 1937 0490Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanchai Wanachiwanawin
- grid.10223.320000 0004 1937 0490Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suchai Sritippayawan
- grid.10223.320000 0004 1937 0490Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- grid.10223.320000 0004 1937 0490Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanyawan Rungroj
- grid.10223.320000 0004 1937 0490Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
5
|
Bertocchio JP, Genetet S, Da Costa L, Walsh SB, Knebelmann B, Galimand J, Bessenay L, Guitton C, De Lafaille R, Vargas-Poussou R, Eladari D, Mouro-Chanteloup I. Red Blood Cell AE1/Band 3 Transports in Dominant Distal Renal Tubular Acidosis Patients. Kidney Int Rep 2020; 5:348-357. [PMID: 32154456 PMCID: PMC7056926 DOI: 10.1016/j.ekir.2019.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 12/31/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction Anion exchanger 1 (AE1) (SLC4A1 gene product) is a membrane protein expressed in both kidney and red blood cells (RBCs): it exchanges extracellular bicarbonate (HCO3–) for intracellular chloride (Cl–) and participates in acid−base homeostasis. AE1 mutations in kidney α-intercalated cells can lead to distal renal tubular acidosis (dRTA). In RBC, AE1 (known as band 3) is also implicated in membrane stability: deletions can cause South Asian ovalocytosis (SAO). Methods We retrospectively collected clinical and biological data from patients harboring dRTA due to a SLC4A1 mutation and analyzed HCO3– and Cl– transports (by stopped-flow spectrophotometry) and expression (by flow cytometry, fluorescence activated cell sorting, and Coomassie blue staining) in RBCs, as well as RBC membrane stability (ektacytometry). Results Fifteen patients were included. All experience nephrolithiasis and/or nephrocalcinosis, 2 had SAO and dRTA (dRTA SAO+), 13 dominant dRTA (dRTA SAO−). The latter did not exert specific RBC membrane anomalies. Both HCO3– and Cl– transports were lower in patients with dRTA SAO+ than in those with dRTA SAO− or controls. Using 3 different extracellular probes, we report a decreased expression (by 52%, P < 0.05) in dRTA SAO+ patients by fluorescence activated cell sorting, whereas total amount of protein was not affected. Conclusion Band 3 transport function and expression in RBCs from dRTA SAO− patients is normal. However, in SAO RBCs, impaired conformation of AE1/band 3 corresponds to an impaired function. Thus, the driver of acid−base defect during dominant dRTA is probably an impaired membrane expression.
Collapse
Affiliation(s)
- Jean-Philippe Bertocchio
- Renal and Metabolic Diseases Unit, Assistance Publique-Hôpitaux de Paris, European Georges Pompidou Hospital, Paris, France.,Faculty of Medicine, Paris Descartes University, Paris, France.,Reference Center for Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Genito-urinary Medical Oncology and Research Department, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sandrine Genetet
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,Team 1, Physiology of Normal and Pathologic Red Blood Cell, Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - Lydie Da Costa
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,UMR_S1134, Inserm, Paris, France.,Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Stephen B Walsh
- Department of Renal Medicine, University College of London, London, UK
| | - Bertrand Knebelmann
- Nephrology Department, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France
| | - Julie Galimand
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Lucie Bessenay
- Pediatrics Department, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Guitton
- Pediatrics Department, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Renaud De Lafaille
- Nephrology Department, University Hospital of Bordeaux, Bordeaux, Aquitaine, France
| | - Rosa Vargas-Poussou
- Reference Center for Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche UMRS1138, Cordeliers Research Center, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, European Georges Pompidou Hospital, Paris, France
| | - Dominique Eladari
- Renal and Metabolic Diseases Department, CHU de la Réunion, Felix Guyon Hospital, Saint Denis, France.,INSERM, UMRS 1283-European Genomic Institute for Diabetes, Lille, France
| | - Isabelle Mouro-Chanteloup
- UMR_S1134, Integrated Red Globule Biology (IRGB), Inserm, University of Paris, Paris, France.,Team 1, Physiology of Normal and Pathologic Red Blood Cell, Institut National de la Transfusion Sanguine (INTS), Paris, France
| |
Collapse
|
6
|
Huang Y, Zhang Y, Chi Z, Huang R, Huang H, Liu G, Zhang Y, Yang H, Lin J, Yang T, Cao S. The Handling of Oxalate in the Body and the Origin of Oxalate in Calcium Oxalate Stones. Urol Int 2019; 104:167-176. [DOI: 10.1159/000504417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/28/2019] [Indexed: 11/19/2022]
|
7
|
Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2018; 9:181-190. [PMID: 30588151 PMCID: PMC6296208 DOI: 10.2147/phmt.s174459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal acidification due to a failure of type A intercalated cells (A-ICs) in the collecting tubule. dRTA is characterized by persistent hyperchloremia, a normal plasma anion gap, and the inability to maximally lower urinary pH in the presence of systemic metabolic acidosis. Common clinical features of dRTA include vomiting, failure to thrive, polyuria, hypercalciuria, hypocitraturia, nephrocalcinosis, nephrolithiasis, growth delay, and rickets. Mutations in genes encoding three distinct transport proteins in A-ICs have been identified as causes of dRTA, including the B1/ATP6V1B1 and a4/ATP6V0A4 subunits of the vacuolar-type H+-ATPase (H+-ATPase) and the chloride–bicarbonate exchanger AE1/SLC4A1. Homozygous or compound heterozygous mutations in ATP6V1B1 and ATP6V0A4 lead to autosomal recessive (AR) dRTA. dRTA caused by SLC4A1 mutations can occur with either autosomal dominant or AR transmission. Red blood cell abnormalities have been associated with AR dRTA due to SLC4A1 mutations, including hereditary spherocytosis, Southeast Asia ovalocytosis, and others. Some patients with dRTA exhibit atypical clinical features, including transient and reversible proximal tubular dysfunction and hyperammonemia. Incomplete dRTA presents with inadequate urinary acidification, but without spontaneous metabolic acidosis and recurrent urinary stones. Heterozygous mutations in the AE1 or H+-ATPase genes have recently been reported in patients with incomplete dRTA. Early and sufficient doses of alkali treatment are needed for patients with dRTA. Normalized serum bicarbonate, urinary calcium excretion, urinary low-molecular-weight protein levels, and growth rate are good markers of adherence to and/or efficacy of treatment. The prognosis of dRTA is generally good in patients with appropriate treatment. However, recent studies showed an increased frequency of chronic kidney disease (CKD) in patients with dRTA during long-term follow-up. The precise pathogenic mechanisms of CKD in patients with dRTA are unknown.
Collapse
Affiliation(s)
- Toru Watanabe
- Department of Pediatrics, Niigata City General Hospital, Niigata City 950-1197, Japan,
| |
Collapse
|
8
|
A Ser725Arg mutation in Band 3 abolishes transport function and leads to anemia and renal tubular acidosis. Blood 2018; 131:1759-1763. [PMID: 29483102 DOI: 10.1182/blood-2018-01-827725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
9
|
Ficici E, Faraldo-Gómez JD, Jennings ML, Forrest LR. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism. J Gen Physiol 2017; 149:1149-1164. [PMID: 29167180 PMCID: PMC5715908 DOI: 10.1085/jgp.201711836] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/10/2017] [Indexed: 12/02/2022] Open
Abstract
Anion exchanger 1 catalyzes the transmembrane antiport of chloride and bicarbonate ions through a mechanism that has remained unclear. By modeling its inward-facing state and comparing it with the known outward-facing form, Ficici et al. hypothesize that this transporter features an elevator-like mechanism. The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation.
Collapse
Affiliation(s)
- Emel Ficici
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lucy R Forrest
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
γ-COPI mediates the retention of kAE1 G701D protein in Golgi apparatus – a mechanistic explanation of distal renal tubular acidosis associated with the G701D mutation. Biochem J 2017. [DOI: 10.1042/bcj20170088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations of the solute carrier family 4 member 1 (SLC4A1) gene encoding kidney anion (chloride/bicarbonate ion) exchanger 1 (kAE1) can cause genetic distal renal tubular acidosis (dRTA). Different SLC4A1 mutations give rise to mutant kAE1 proteins with distinct defects in protein trafficking. The mutant kAE1 protein may be retained in endoplasmic reticulum (ER) or Golgi apparatus, or mis-targeted to the apical membrane, failing to display its function at the baso-lateral membrane. The ER-retained mutant kAE1 interacts with calnexin chaperone protein; disruption of this interaction permits the mutant kAE1 to reach the cell surface and display anion exchange activity. However, the mechanism of Golgi retention of mutant kAE1 G701D protein, which is otherwise functional, is still unclear. In the present study, we show that Golgi retention of kAE1 G701D is due to a stable interaction with the Golgi-resident protein, coat protein complex I (COPI), that plays a role in retrograde vesicular trafficking and Golgi-based quality control. The interaction and co-localization of kAE1 G701D with the γ-COPI subunit were demonstrated in human embryonic kidney (HEK-293T) cells by co-immunoprecipitation and immunofluorescence staining. Small interference RNA (siRNA) silencing of COPI expression in the transfected HEK-293T cells increased the cell surface expression of transgenic kAE1 G701D, as shown by immunofluorescence staining. Our data unveil the molecular mechanism of Golgi retention of kAE1 G701D and suggest that disruption of the COPI-kAE1 G701D interaction could be a therapeutic strategy to treat dRTA caused by this mutant.
Collapse
|
11
|
Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis. Blood 2017; 130:1845-1856. [PMID: 28716860 DOI: 10.1182/blood-2017-05-786004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
Mutations in PIEZO1 are the primary cause of hereditary xerocytosis, a clinically heterogeneous, dominantly inherited disorder of erythrocyte dehydration. We used next-generation sequencing-based techniques to identify PIEZO1 mutations in individuals from 9 kindreds referred with suspected hereditary xerocytosis (HX) and/or undiagnosed congenital hemolytic anemia. Mutations were primarily found in the highly conserved, COOH-terminal pore-region domain. Several mutations were novel and demonstrated ethnic specificity. We characterized these mutations using genomic-, bioinformatic-, cell biology-, and physiology-based functional assays. For these studies, we created a novel, cell-based in vivo system for study of wild-type and variant PIEZO1 membrane protein expression, trafficking, and electrophysiology in a rigorous manner. Previous reports have indicated HX-associated PIEZO1 variants exhibit a partial gain-of-function phenotype with generation of mechanically activated currents that inactivate more slowly than wild type, indicating that increased cation permeability may lead to dehydration of PIEZO1-mutant HX erythrocytes. In addition to delayed channel inactivation, we found additional alterations in mutant PIEZO1 channel kinetics, differences in response to osmotic stress, and altered membrane protein trafficking, predicting variant alleles that worsen or ameliorate erythrocyte hydration. These results extend the genetic heterogeneity observed in HX and indicate that various pathophysiologic mechanisms contribute to the HX phenotype.
Collapse
|
12
|
Mumtaz R, Trepiccione F, Hennings JC, Huebner AK, Serbin B, Picard N, Ullah AKMS, Păunescu TG, Capen DE, Lashhab RM, Mouro-Chanteloup I, Alper SL, Wagner CA, Cordat E, Brown D, Eladari D, Hübner CA. Intercalated Cell Depletion and Vacuolar H +-ATPase Mistargeting in an Ae1 R607H Knockin Model. J Am Soc Nephrol 2017; 28:1507-1520. [PMID: 27932475 PMCID: PMC5407715 DOI: 10.1681/asn.2016020169] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 11/08/2016] [Indexed: 12/27/2022] Open
Abstract
Distal nephron acid secretion is mediated by highly specialized type A intercalated cells (A-ICs), which contain vacuolar H+-ATPase (V-type ATPase)-rich vesicles that fuse with the apical plasma membrane on demand. Intracellular bicarbonate generated by luminal H+ secretion is removed by the basolateral anion-exchanger AE1. Chronically reduced renal acid excretion in distal renal tubular acidosis (dRTA) may lead to nephrocalcinosis and renal failure. Studies in MDCK monolayers led to the proposal of a dominant-negative trafficking mechanism to explain AE1-associated dominant dRTA. To test this hypothesis in vivo, we generated an Ae1 R607H knockin mouse, which corresponds to the most common dominant dRTA mutation in human AE1, R589H. Compared with wild-type mice, heterozygous and homozygous R607H knockin mice displayed incomplete dRTA characterized by compensatory upregulation of the Na+/HCO3- cotransporter NBCn1. Red blood cell Ae1-mediated anion-exchange activity and surface polypeptide expression did not change. Mutant mice expressed far less Ae1 in A-ICs, but basolateral targeting of the mutant protein was preserved. Notably, mutant mice also exhibited reduced expression of V-type ATPase and compromised targeting of this proton pump to the plasma membrane upon acid challenge. Accumulation of p62- and ubiquitin-positive material in A-ICs of knockin mice suggested a defect in the degradative pathway, which may explain the observed loss of A-ICs. R607H knockin did not affect type B intercalated cells. We propose that reduced basolateral anion-exchange activity in A-ICs inhibits trafficking and regulation of V-type ATPase, compromising luminal H+ secretion and possibly lysosomal acidification.
Collapse
Affiliation(s)
- Rizwan Mumtaz
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris Descartes University, Department of Physiology, Hôpital Européen Georges Pompidou, Paris, France
- Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy
| | - J Christopher Hennings
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Bettina Serbin
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris Descartes University, Department of Physiology, Hôpital Européen Georges Pompidou, Paris, France
| | - Nicolas Picard
- Centre National de la Recherche Scientifique, Équipe de Recherche Labellisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - A K M Shahid Ullah
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Teodor G Păunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and
| | - Diane E Capen
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and
| | - Rawad M Lashhab
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Isabelle Mouro-Chanteloup
- Institut National de la Transfusion Sanguine, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1134, Laboratory of Excellence Globule Rouge-Excellence, Paris Diderot University, Paris, France
| | - Seth L Alper
- Nephrology Division and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and
| | - Dominique Eladari
- Service de Physiologie Explorations Fonctionnelles Rénales, Centre Hospitalier Universitaire de la Réunion, Hôpital Felix Guyon; and
- Institut National de la Santé et de la Recherche Médicale U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint Denis, La Réunion, France
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany;
| |
Collapse
|
13
|
Vichot AA, Zsengellér ZK, Shmukler BE, Adams ND, Dahl NK, Alper SL. Loss of kAE1 expression in collecting ducts of end-stage kidneys from a family with SLC4A1 G609R-associated distal renal tubular acidosis. Clin Kidney J 2016. [PMID: 28638614 PMCID: PMC5469557 DOI: 10.1093/ckj/sfw074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Distal renal tubular acidosis caused by missense mutations in kidney isoform of anion exchanger 1 (kAE1/SLC4A1), the basolateral membrane Cl−/HCO3− exchanger of renal alpha-intercalated cells, has been extensively investigated in heterologous expression systems but rarely in human kidneys. The preferential apical localization of distal renal tubular acidosis (dRTA)-associated kAE1 mutants R901X, G609R and M909T in cultured epithelial monolayers has not been examined in human kidney. Here, we present kidney tissues from dRTA-affected siblings heterozygous for kAE1 G609R, characterized by predominant absence rather than mistargeting of kAE1 in intercalated cells. Thus, studies of heterologous recombinant expression of mutant proteins should be, whenever possible, interpreted in comparison to affected patient tissues.
Collapse
Affiliation(s)
- Alfred A Vichot
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Zsuzsanna K Zsengellér
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Boris E Shmukler
- Division of Nephrology and Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nancy D Adams
- Division of Nephrology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Neera K Dahl
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Almomani E, Lashhab R, Alexander RT, Cordat E. The carboxyl-terminally truncated kidney anion exchanger 1 R901X dRTA mutant is unstable at the plasma membrane. Am J Physiol Cell Physiol 2016; 310:C764-72. [DOI: 10.1152/ajpcell.00305.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
Abstract
Mutations in the SLC4A1 gene coding for kidney anion exchanger 1 (kAE1) cause distal renal tubular acidosis (dRTA). We investigated the fate of the most common truncated dominant dRTA mutant kAE1 R901X. In renal epithelial cells, we found that kAE1 R901X is less abundant than kAE1 wild-type (WT) at the plasma membrane. Although kAE1 WT and kAE1 R901X have similar half-lives, the decreased abundance of kAE1 R901X at the surface is due to an increased endocytosis rate and a decreased recycling rate of endocytosed proteins. We propose that, in polarized renal epithelial cells, the apically mistargeted kAE1 R901X mutant is endocytosed faster than kAE1 WT and its recycling to the basolateral membrane is delayed. This resets the equilibrium, such that kAE1 R901X resides predominantly in an endomembrane compartment, thereby likely participating in development of dRTA disease.
Collapse
Affiliation(s)
- Ensaf Almomani
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Rawad Lashhab
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1507-32. [PMID: 27058983 DOI: 10.1016/j.bbamem.2016.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 02/03/2023]
Abstract
The crystal structure of the dimeric membrane domain of human Band 3(1), the red cell chloride/bicarbonate anion exchanger 1 (AE1, SLC4A1), provides a structural context for over four decades of studies into this historic and important membrane glycoprotein. In this review, we highlight the key structural features responsible for anion binding and translocation and have integrated the following topological markers within the Band 3 structure: blood group antigens, N-glycosylation site, protease cleavage sites, inhibitor and chemical labeling sites, and the results of scanning cysteine and N-glycosylation mutagenesis. Locations of mutations linked to human disease, including those responsible for Southeast Asian ovalocytosis, hereditary stomatocytosis, hereditary spherocytosis, and distal renal tubular acidosis, provide molecular insights into their effect on Band 3 folding. Finally, molecular dynamics simulations of phosphatidylcholine self-assembled around Band 3 provide a view of this membrane protein within a lipid bilayer.
Collapse
Affiliation(s)
- Reinhart A F Reithmeier
- Department of Biochemistry, 1 King's College Circle, University of Toronto, Toronto M5S 1A8, Canada.
| | - Joseph R Casey
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Antreas C Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
16
|
Ito N, Ihara K, Kamoda T, Akamine S, Kamezaki K, Tsuru N, Sumazaki R, Hara T. Autosomal dominant distal renal tubular acidosis caused by a mutation in the anion exchanger 1 gene in a Japanese family. CEN Case Rep 2015; 4:218-222. [PMID: 28509104 DOI: 10.1007/s13730-015-0172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022] Open
Abstract
Autosomal dominant distal renal tubular acidosis (dRTA) is a rare disorder caused by a mutation in the AE1 gene encoding the chloride-bicarbonate (Cl-/HCO3-) anion exchanger 1 (AE1). Most patients with this disorder present with clinical symptoms in adulthood and their phenotype is milder than that of those with autosomal recessive dRTA. In this report, we describe a Japanese family with autosomal dominant dRTA in which the mother and her daughter presented with severe symptoms caused by hypokalemia at 2 years of age. The heterozygous AE1 mutation G609R, which is a known causative mutation of dRTA, was identified in both patients. To our knowledge, this is the first report of a Japanese family with autosomal dominant type dRTA caused by an AE1 mutation. We, therefore, propose that alterations of AE1 should be considered causative of autosomal dominant dRTA even if typical symptoms appear during early childhood and the clinical features are severe.
Collapse
Affiliation(s)
- Naoko Ito
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8583, Japan.
| | - Kenji Ihara
- Department of Pediatrics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Tomohiro Kamoda
- Department of Pediatrics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoshi Akamine
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, 10-1 Harugaoka, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-8533, Japan
| | - Kentaro Kamezaki
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, 10-1 Harugaoka, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-8533, Japan
| | - Noboru Tsuru
- Tsuru Noboru Clinic, 2-5-8 Hirao, Chuo-ku, Fukuoka, 810-0014, Japan
| | - Ryo Sumazaki
- Department of Pediatrics, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8583, Japan
| |
Collapse
|
17
|
Schaeffer C, Creatore A, Rampoldi L. Protein trafficking defects in inherited kidney diseases. Nephrol Dial Transplant 2014; 29 Suppl 4:iv33-44. [PMID: 25165184 DOI: 10.1093/ndt/gfu231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nephron, the basic structural and functional unit of the kidney, is lined by different, highly differentiated polarized epithelial cells. Their concerted action modifies the composition of the glomerular ultrafiltrate through reabsorption and secretion of essential solutes to finally produce urine. The highly specialized properties of the different epithelial cell types of the nephron are remarkable and rely on the regulated delivery of specific proteins to their final subcellular localization. Hence, mutations affecting sorting of individual proteins or inactivating the epithelial trafficking machinery have severe functional consequences causing disease. The presence of mutations leading to protein trafficking defect is indeed a mechanism of pathogenesis seen in an increasing number of disorders, including about one-third of monogenic diseases affecting the kidney. In this review, we focus on representative diseases to discuss different molecular mechanisms that primarily lead to defective protein transport, such as endoplasmic reticulum retention, mistargeting, defective endocytosis or degradation, eventually resulting in epithelial cell and kidney dysfunction. For each disease, we discuss the type of reported mutations, their molecular and cellular consequences and possible strategies for therapeutic intervention. Particular emphasis is given to new and prospective therapies aimed at rescuing the trafficking defect at the basis of these conformational diseases.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, Dulbecco Telethon Institute c/o IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Creatore
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, Dulbecco Telethon Institute c/o IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, Dulbecco Telethon Institute c/o IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Zhang J, Fuster DG, Cameron MA, Quiñones H, Griffith C, Xie XS, Moe OW. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit. Am J Physiol Renal Physiol 2014; 307:F1063-71. [PMID: 25164082 DOI: 10.1152/ajprenal.00408.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Congenital distal renal tubular acidosis (RTA) from mutations of the B1 subunit of V-ATPase is considered an autosomal recessive disease. We analyzed a distal RTA kindred with a truncation mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of V-ATPase. All heterozygous carriers in this kindred have normal plasma HCO3- concentrations and thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria were present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also had inappropriate urinary acidification with acute ammonium chloride loading and an impaired urine-blood Pco2 gradient during bicarbonaturia, indicating the presence of a H+ gradient and flux defects. In normal human renal papillae, wild-type B1 is located primarily on the plasma membrane, but papilla from one of the heterozygote who had kidney stones but not nephrocalcinosis showed B1 in both the plasma membrane as well as diffuse intracellular staining. Titration of increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+ pump activity of wild-type B1 in mammalian human embryonic kidney-293 cells and in V-ATPase-deficient Saccharomyces cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of a mutant B1 subunit that cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia.
Collapse
Affiliation(s)
- Jianning Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel G Fuster
- Department of Nephrology and Hypertension and Institute of Biochemistry and Molecular Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Mary Ann Cameron
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Henry Quiñones
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carolyn Griffith
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiao-Song Xie
- McDermott Center of Human Development, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
19
|
Chu CY, King J, Berrini M, Rumley AC, Apaja PM, Lukacs GL, Alexander RT, Cordat E. Degradation mechanism of a Golgi-retained distal renal tubular acidosis mutant of the kidney anion exchanger 1 in renal cells. Am J Physiol Cell Physiol 2014; 307:C296-307. [DOI: 10.1152/ajpcell.00310.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Distal renal tubular acidosis (dRTA) can be caused by mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1). Both recessive and dominant mutations result in mistrafficking of proteins, preventing them from reaching the basolateral membrane of renal epithelial cells, where their function is needed. In this study, we show that two dRTA mutants are prematurely degraded. Therefore, we investigated the degradation pathway of the kidney AE1 G701D mutant that is retained in the Golgi. Little is known about degradation of nonnative membrane proteins from the Golgi compartments in mammalian cells. We show that the kidney AE1 G701D mutant is polyubiquitylated and degraded by the lysosome and the proteosome. This mutant reaches the plasma membrane, where it is endocytosed and degraded by the lysosome via a mechanism dependent on the peripheral quality control machinery. Furthermore, we show that the function of the mutant is rescued at the cell surface upon inhibition of the lysosome and incubation with a chemical chaperone. We conclude that modulating the peripheral quality control machinery may provide a novel therapeutic option for treatment of patients with dRTA due to a Golgi-retained mutant.
Collapse
Affiliation(s)
- Carmen Y. Chu
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Jennifer King
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Mattia Berrini
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Alina C. Rumley
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Pirjo M. Apaja
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; and
| |
Collapse
|
20
|
|
21
|
Cordat E, Reithmeier RA. Structure, Function, and Trafficking of SLC4 and SLC26 Anion Transporters. CURRENT TOPICS IN MEMBRANES 2014; 73:1-67. [DOI: 10.1016/b978-0-12-800223-0.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Shnitsar V, Li J, Li X, Calmettes C, Basu A, Casey JR, Moraes TF, Reithmeier RAF. A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem 2013; 288:33848-33860. [PMID: 24121512 DOI: 10.1074/jbc.m113.511865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Anion exchanger 1 (AE1; Band 3; SLC4A1) is the founding member of the solute carrier 4 (SLC4) family of bicarbonate transporters that includes chloride/bicarbonate AEs and Na(+)-bicarbonate co-transporters (NBCs). These membrane proteins consist of an amino-terminal cytosolic domain involved in protein interactions and a carboxyl-terminal membrane domain that carries out the transport function. Mutation of a conserved arginine residue (R298S) in the cytosolic domain of NBCe1 (SLC4A4) is linked to proximal renal tubular acidosis and results in impaired transport function, suggesting that the cytosolic domain plays a role in substrate permeation. Introduction of single and double mutations at the equivalent arginine (Arg(283)) and at an interacting glutamate (Glu(85)) in the cytosolic domain of human AE1 (cdAE1) had no effect on the cell surface expression or the transport activity of AE1 expressed in HEK-293 cells. In addition, the membrane domain of AE1 (mdAE1) efficiently mediated anion transport. A 2.1-Å resolution crystal structure of cdΔ54AE1 (residues 55-356 of cdAE1) lacking the amino-terminal and carboxyl-terminal disordered regions, produced at physiological pH, revealed an extensive hydrogen-bonded network involving Arg(283) and Glu(85). Mutations at these residues affected the pH-dependent conformational changes and stability of cdΔ54AE1. As these structural alterations did not impair functional expression of AE1, the cytosolic and membrane domains operate independently. A substrate access tunnel within the cytosolic domain is not present in AE1 and therefore is not an essential feature of the SLC4 family of bicarbonate transporters.
Collapse
Affiliation(s)
- Volodymyr Shnitsar
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jing Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xuyao Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles Calmettes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Arghya Basu
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joseph R Casey
- Department of Biochemistry and Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
23
|
Functional rescue of a kidney anion exchanger 1 trafficking mutant in renal epithelial cells. PLoS One 2013; 8:e57062. [PMID: 23460825 PMCID: PMC3584104 DOI: 10.1371/journal.pone.0057062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1) can cause distal renal tubular acidosis (dRTA), a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK) cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients.
Collapse
|
24
|
Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant 2013; 27:3691-704. [PMID: 23114896 DOI: 10.1093/ndt/gfs442] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The primary or hereditary forms of distal renal tubular acidosis (dRTA) have received increased attention because of advances in the understanding of the molecular mechanism, whereby mutations in the main proteins involved in acid-base transport result in impaired acid excretion. Dysfunction of intercalated cells in the collecting tubules accounts for all the known genetic causes of dRTA. These cells secrete protons into the tubular lumen through H(+)-ATPases functionally coupled to the basolateral anion exchanger 1 (AE1). The substrate for both transporters is provided by the catalytic activity of the cytosolic carbonic anhydrase II (CA II), an enzyme which is also present in the proximal tubular cells and osteoclasts. Mutations in ATP6V1B1, encoding the B-subtype unit of the apical H(+) ATPase, and ATP6V0A4, encoding the a-subtype unit, lead to the loss of function of the apical H(+) ATPase and are usually responsible for patients with autosomal recessive dRTA often associated with early or late sensorineural deafness. Mutations in the gene encoding the cytosolic CA II are associated with the autosomal recessive syndrome of osteopetrosis, mixed distal and proximal RTA and cerebral calcification. Mutations in the AE1, the gene that encodes the Cl(-)/HCO(3)(-) exchanger, usually present as dominant dRTA, but a recessive pattern has been recently described. Several studies have shown trafficking defects in the mutant protein rather than the lack of function as the major mechanism underlying the pathogenesis of dRTA from AE1 mutations.
Collapse
|
25
|
Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 2012; 120:1908-15. [PMID: 22529292 DOI: 10.1182/blood-2012-04-422253] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hereditary xerocytosis (HX, MIM 194380) is an autosomal dominant hemolytic anemia characterized by primary erythrocyte dehydration. Copy number analyses, linkage studies, and exome sequencing were used to identify novel mutations affecting PIEZO1, encoded by the FAM38A gene, in 2 multigenerational HX kindreds. Segregation analyses confirmed transmission of the PIEZO1 mutations and cosegregation with the disease phenotype in all affected persons in both kindreds. All patients were heterozygous for FAM38A mutations, except for 3 patients predicted to be homozygous by clinical and physiologic studies who were also homozygous at the DNA level. The FAM38A mutations were both in residues highly conserved across species and within members of the Piezo family of proteins. PIEZO proteins are the recently identified pore-forming subunits of channels that mediate mechanotransduction in mammalian cells. FAM38A transcripts were identified in human erythroid cell mRNA, and discovery proteomics identified PIEZO1 peptides in human erythrocyte membranes. These findings, the first report of mutation in a mammalian mechanosensory transduction channel-associated with genetic disease, suggest that PIEZO proteins play an important role in maintaining erythrocyte volume homeostasis.
Collapse
|
26
|
Fry AC, Su Y, Yiu V, Cuthbert AW, Trachtman H, Karet Frankl FE. Mutation conferring apical-targeting motif on AE1 exchanger causes autosomal dominant distal RTA. J Am Soc Nephrol 2012; 23:1238-49. [PMID: 22518001 DOI: 10.1681/asn.2012020112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in SLC4A1 that mislocalize its product, the chloride/bicarbonate exchanger AE1, away from its normal position on the basolateral membrane of the α-intercalated cell cause autosomal dominant distal renal tubular acidosis (dRTA). We studied a family exhibiting dominant inheritance and defined a mutation (AE1-M909T) that affects the C terminus of AE1, a region rich in potential targeting motifs that are incompletely characterized. Expression of AE1-M909T in Xenopus oocytes confirmed preservation of its anion exchange function. Wild-type GFP-tagged AE1 localized to the basolateral membrane of polarized MDCK cells, but AE1-M909T localized to both the apical and basolateral membranes. Wild-type AE1 trafficked directly to the basolateral membrane without apical passage, whereas AE1-M909T trafficked to both cell surfaces, implying the gain of an apical-targeting signal. We found that AE1-M909T acquired class 1 PDZ ligand activity that the wild type did not possess. In summary, the AE1-M909T mutation illustrates the role of abnormal targeting in dRTA and provides insight into C-terminal motifs that govern normal trafficking of AE1.
Collapse
Affiliation(s)
- Andrew C Fry
- Department of Medical Genetics, University of Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Almomani EY, Chu CY, Cordat E. Mis-trafficking of bicarbonate transporters: implications to human diseasesThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:157-77. [DOI: 10.1139/o10-153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bicarbonate is a waste product of mitochondrial respiration and one of the main buffers in the human body. Thus, bicarbonate transporters play an essential role in maintaining acid-base balance but also during fetal development as they ensure tight regulation of cytosolic and extracellular environments. Bicarbonate transporters belong to two gene families, SLC4A and SLC26A. Proteins from these two families are widely expressed, and thus mutations in their genes result in various diseases that affect bones, pancreas, reproduction, brain, kidneys, eyes, heart, thyroid, red blood cells, and lungs. In this minireview, we discuss the current state of knowledge regarding the effect of SLC4A and SLC26A mutants, with a special emphasis on mutants that have been studied in mammalian cell lines and how they correlate with phenotypes observed in mice models.
Collapse
Affiliation(s)
- Ensaf Y. Almomani
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carmen Y.S. Chu
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
28
|
Protein 4.2 interaction with hereditary spherocytosis mutants of the cytoplasmic domain of human anion exchanger 1. Biochem J 2010; 433:313-22. [DOI: 10.1042/bj20101375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AE1 (anion exchanger 1) and protein 4.2 associate in a protein complex bridging the erythrocyte membrane and cytoskeleton; disruption of the complex results in unstable erythrocytes and HS (hereditary spherocytosis). Three HS mutations (E40K, G130R and P327R) in cdAE1 (the cytoplasmic domain of AE1) occur with deficiencies of protein 4.2. The interaction of wild-type AE1, AE1HS mutants, mdEA1 (the membrane domain of AE1), kAE1 (the kidney isoform of AE1) and AE1SAO (Southeast Asian ovalocytosis AE1) with protein 4.2 was examined in transfected HEK (human embryonic kidney)-293 cells. The HS mutants had wild-type expression levels and plasma-membrane localization. Protein 4.2 expression was not dependent on AE1. Protein 4.2 was localized throughout the cytoplasm and co-localized at the plasma membrane with the HS mutants mdAE1 and kAE1, but at the ER (endoplasmic reticulum) with AE1SAO. Pull-down assays revealed diminished levels of protein 4.2 associated with the HS mutants relative to AE1. The mdAE1 did not bind protein 4.2, whereas kAE1 and AE1SAO bound wild-type amounts of protein 4.2. A protein 4.2 fatty acylation mutant, G2A/C173A, had decreased plasma-membrane localization compared with wild-type protein 4.2, and co-expression with AE1 enhanced its plasma-membrane localization. Subcellular fractionation showed the majority of wild-type and G2A/C173A protein 4.2 was associated with the cytoskeleton of HEK-293 cells. The present study shows that cytoplasmic HS mutants cause impaired binding of protein 4.2 to AE1, leaving protein 4.2 susceptible to loss during erythrocyte development.
Collapse
|
29
|
Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A). Biochem Biophys Res Commun 2010; 401:85-91. [DOI: 10.1016/j.bbrc.2010.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/05/2010] [Indexed: 01/04/2023]
|
30
|
Patterson ST, Reithmeier RAF. Cell surface rescue of kidney anion exchanger 1 mutants by disruption of chaperone interactions. J Biol Chem 2010; 285:33423-33434. [PMID: 20628050 DOI: 10.1074/jbc.m110.144261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the human kidney anion exchanger 1 (kAE1) membrane glycoprotein cause impaired urine acidification resulting in distal renal tubular acidosis (dRTA). Dominant and recessive dRTA kAE1 mutants exhibit distinct trafficking defects with retention in the endoplasmic reticulum (ER), Golgi, or mislocalization to the apical membrane in polarized epithelial cells. We examined the interaction of kAE1 with the quality control system responsible for the folding of membrane glycoproteins and the retention and degradation of misfolded mutants. Using small molecule inhibitors to disrupt chaperone interactions, two functional, dominant kAE1 mutants (R589H and R901stop), retained in the ER and targeted to the proteasome for degradation by ubiquitination, were rescued to the basolateral membrane of Madin-Darby canine kidney cells. In contrast, the Golgi-localized, recessive G701D and the severely misfolded, ER-retained dominant Southeast Asian ovalocytosis (SAO) mutants were not rescued. These results show that functional dRTA mutants are retained in the ER due to their interaction with molecular chaperones, particularly calnexin, and that disruption of these interactions can promote their escape from the ER and cell surface rescue.
Collapse
Affiliation(s)
- Sian T Patterson
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Reinhart A F Reithmeier
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
31
|
Vasuvattakul S. Molecular Approach for Distal Renal Tubular Acidosis Associated AE1 Mutations. Electrolyte Blood Press 2010; 8:25-31. [PMID: 21468194 PMCID: PMC3041492 DOI: 10.5049/ebp.2010.8.1.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 05/19/2010] [Indexed: 11/05/2022] Open
Abstract
The molecular approaches to distal renal tubular acidosis (dRTA) associated AE1 mutations lead us to understand the genetic and pathophysiological aspects of the acidification defects. An unanticipated high value of the urine-blood (U-B) PCO(2) after NaHCO(3) loading observed in a case of dRTA and southeast Asian ovalocytosis (SAO) might be from a mistarget of the AE1 to the luminal membrane of type A intercalated cells. The mutations of the AE1 gene resulted in SAO and also affected renal acidification function. Notwithstanding, after the NH4Cl loading in 20 individuals with SAO, the acidification in the distal nephron was normal. The presence of both SAO and G701D mutations of AE1 gene would explain the abnormal urinary acidification in the patients with the compound heterozogosity. In terms of the effect of the mutations on trafficking of AE1, truncated kidney isoform (kAE1) of wild-type showed a 'dominant-positive effect' in rescuing the recessive mutant kAE1 (S773P or G701D) trafficking to the plasma membrane, in contrast with the dominant mutant kAE1 (R589H) resulting in a 'dominant-negative effect' when heterodimerized with the wild-type kAE1. It is notable that the dominant mutants kAE1 (R901X or G609R) expression in MDCK cells clearly results in aberrant surface expression with some mutant protein appearing at the apical membrane. These might result in net bicarbonate secretion and increasing U-B PCO(2) in the distal nephron. The molecular physiological and genetic approaches have permitted identification of the molecular defects, predominantly in transporter proteins, and should in turn prompt development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Somkiat Vasuvattakul
- Renal Division, Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
32
|
Kittanakom S, Keskanokwong T, Akkarapatumwong V, Yenchitsomanus PT, Reithmeier RAF. Human kanadaptin and kidney anion exchanger 1 (kAE1) do not interact in transfected HEK 293 cells. Mol Membr Biol 2009; 21:395-402. [PMID: 15764369 DOI: 10.1080/09687860400011365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Kanadaptin (kidney anion exchanger adaptor protein) is a widely expressed protein, shown previously to interact with the cytosolic domain of mouse Cl-/HCO3- anion exchanger 1 (kAE1) but not erythroid AE1 (eAE1) by a yeast-two hybrid assay. Kanadaptin was co-localized with kAE1 in intracellular membranes but not at the plasma membrane in alpha-intercalated cells of rabbit kidney. It was suggested that kanadaptin is an adaptor protein or chaperone involved in targeting kAE1 to the plasma membrane. To test this hypothesis, the interaction of human kanadaptin with human kAE1 was studied in co-transfected HEK293 cells. Human kanadaptin contains 796 amino acids and was immuno-detected as a 90 kDa protein in transfected cells. Pulse-chase experiments showed that it has a half-life (t1/2) of 7 h. Human kanadaptin was localized predominantly to the nucleus, whereas kAE1 was present intracellularly and at the plasma membrane. Trafficking of kAE1 from its site of synthesis in the endoplasmic reticulum to the plasma membrane was unaffected by co-expression of human kanadaptin. Moreover, we found that no interaction between human kanadaptin and kAE1 or eAE1 could be detected in co-transfected cells either by co-immunoprecipitation or by histidine6-tagged co-purification. Taken together, we found that human kanadaptin did not interact with kAE1 and had no effect on trafficking of kAE1 to the plasma membrane in transfected cells. Kanadaptin may not be involved in the biosynthesis and targeting of kAE1. As such, defects in kanadaptin and its interaction with kAE1 are unlikely to be involved in the pathogenesis of the inherited kidney disease, distal renal tubular acidosis (dRTA).
Collapse
Affiliation(s)
- Saranya Kittanakom
- CIHR Group in Membrane Biology, Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
33
|
Patterson ST, Li J, Kang JA, Wickrema A, Williams DB, Reithmeier RAF. Loss of specific chaperones involved in membrane glycoprotein biosynthesis during the maturation of human erythroid progenitor cells. J Biol Chem 2009; 284:14547-57. [PMID: 19258325 PMCID: PMC2682903 DOI: 10.1074/jbc.m809076200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/23/2009] [Indexed: 11/06/2022] Open
Abstract
The production of erythrocytes requires the massive synthesis of red cell-specific proteins including hemoglobin, cytoskeletal proteins, as well as membrane glycoproteins glycophorin A (GPA) and anion exchanger 1 (AE1). We found that during the terminal differentiation of human CD34(+) erythroid progenitor cells in culture, key components of the endoplasmic reticulum (ER) protein translocation (Sec61alpha), glycosylation (OST48), and protein folding machinery, chaperones BiP, calreticulin (CRT), and Hsp90 were maintained to allow efficient red cell glycoprotein biosynthesis. Unexpected was the loss of calnexin (CNX), an ER glycoprotein chaperone, and ERp57, a protein-disulfide isomerase, as well as a major decrease of the cytosolic chaperones, Hsc70 and Hsp70, components normally involved in membrane glycoprotein folding and quality control. AE1 can traffic to the cell surface in mouse embryonic fibroblasts completely deficient in CNX or CRT, whereas disruption of the CNX/CRT-glycoprotein interactions in human K562 cells using castanospermine did not affect the cell-surface levels of endogenous GPA or expressed AE1. These results demonstrate that CNX and ERp57 are not required for major glycoprotein biosynthesis during red cell development, in contrast to their role in glycoprotein folding and quality control in other cells.
Collapse
Affiliation(s)
- Sian T Patterson
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid–base transport in the collecting duct. Pflugers Arch 2009; 458:137-56. [DOI: 10.1007/s00424-009-0657-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
|
35
|
Dominant-negative effect of Southeast Asian ovalocytosis anion exchanger 1 in compound heterozygous distal renal tubular acidosis. Biochem J 2008; 410:271-81. [PMID: 17941824 DOI: 10.1042/bj20070615] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022]
Abstract
The human chloride/bicarbonate AE1 (anion exchanger) is a dimeric glycoprotein expressed in the red blood cell membrane,and expressed as an N-terminal (Delta1-65) truncated form, kAE1(kidney AE1), in the basolateral membrane of alpha-intercalated cells in the distal nephron. Mutations in AE1 can cause SAO (Southeast Asian ovalocytosis) or dRTA (distal renal tubular acidosis), an inherited kidney disease resulting in impaired acid secretion. The dominant SAO mutation (Delta400-408) that results in an inactive transporter and altered erythrocyte shape occurs in manydRTA families, but does not itself result in dRTA. Compound heterozygotes of four dRTA mutations (R602H, G701D, DeltaV850 and A858D) with SAO exhibit dRTA and abnormal red blood cell properties. Co-expression of kAE1 and kAE1 SAO with the dRTAmutantswas studied in polarized epithelial MDCK(Madin-Darbycanine kidney) cells. Like SAO, the G701D and DeltaV850 mutants were predominantly retained intracellularly, whereas the R602H and A858D mutants could traffic to the basolateral membrane. When co-expressed in transfected cells, kAE1 WT (wild-type)and kAE1 SAO could interact with the dRTA mutants. MDCK cells co-expressing kAE1 SAO with kAE1 WT, kAE1 R602Hor kAE1 A858D showed a decrease in cell-surface expression of the co-expressed proteins. When co-expressed, kAE1 WT colocalized with the kAE1 R602H, kAE1 G701D, kAE1 DeltaV850 and kAE1 A858D mutants at the basolateral membrane, whereaskAE1 SAO co-localized with kAE1 WT, kAE1 R602H, kAE1 G701D, kAE1 DeltaV850 and kAE1 A858D in MDCK cells. The decrease in cell-surface expression of the dRTAmutants as a result of the interaction with kAE1 SAO would account for the impaired expression of functional kAE1 at the basolateral membrane of alpha-intercalated cells, resulting in dRTA in compound heterozygous patients.
Collapse
|
36
|
Williamson RC, Toye AM. Glycophorin A: Band 3 aid. Blood Cells Mol Dis 2008; 41:35-43. [PMID: 18304844 DOI: 10.1016/j.bcmd.2008.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 11/24/2022]
Abstract
Band 3 (B3) is a major site of cytoskeletal attachment to the erythrocyte membrane and is important for gas exchange. A truncated isoform of B3 (kB3) is expressed in the alpha-intercalated cells of the kidney and its functional activity and basolateral localization are essential for acid secretion. B3 mutations generally lead to red blood cell (RBC) specific disease (hereditary spherocytosis (HS), Southeast Asian Ovalocytosis or hereditary stomatocytosis) or kidney disease (distal Renal Tubular Acidosis--dRTA). It is rare for both the RBC and kidney disease phenotypes to co-exist, but this does occur in knockout mice, and also in humans (B3 Coimbra and B3 Courcouronne) or cattle with homozygous HS mutations. This is because RBCs express a B3 chaperone-like molecule in the form of Glycophorin A that can rescue the majority of B3 mutations that cause dRTA but probably not the majority of HS mutations. The study of naturally occurring B3 variant blood and expression of B3 or kB3 mutants in heterologous expression systems has provided valuable information concerning B3 trafficking and interactions in the RBC and kidney. This article will review these studies and comment on our current understanding of the interaction between GPA with B3 and also on the proposed B3 centred macrocomplex.
Collapse
Affiliation(s)
- Rosalind C Williamson
- University of Bristol, Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
37
|
Stewart AK, Kurschat CE, Vaughan-Jones RD, Shmukler BE, Alper SL. Acute regulation of mouse AE2 anion exchanger requires isoform-specific amino acid residues from most of the transmembrane domain. J Physiol 2007; 584:59-73. [PMID: 17690150 PMCID: PMC2277056 DOI: 10.1113/jphysiol.2007.136119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The widely expressed anion exchanger polypeptide AE2/SLC4A2 is acutely inhibited by acidic intracellular (pH(i)), by acidic extracellular pH (pH(o)), and by the calmodulin inhibitor, calmidazolium, whereas it is acutely activated by NH(4)(+). The homologous erythroid/kidney AE1/SLC4A1 polypeptide is insensitive to these regulators. Each of these AE2 regulatory responses requires the presence of AE2's C-terminal transmembrane domain (TMD). We have now measured (36)Cl(-) efflux from Xenopus oocytes expressing bi- or tripartite AE2-AE1 chimeras to define TMD subregions in which AE2-specific sequences contribute to acute regulation. The chimeric AE polypeptides were all functional at pH(o) 7.4, with the sole exception of AE2((1-920))/AE1((613-811))/AE2((1120-1237)). Reciprocal exchanges of the large third extracellular loops were without effect. AE2 regulation by pH(i), pH(o) and NH(4)(+) was retained after substitution of C-terminal AE2 amino acids 1120-1237 (including the putative second re-entrant loop, two TM spans and the cytoplasmic tail) with the corresponding AE1 sequence. In contrast, the presence of this AE2 C-terminal sequence was both necessary and sufficient for inhibition by calmidazolium. All other tested TMD substitutions abolished AE2 pH(i) sensitivity, abolished or severely attenuated sensitivity to pH(o) and removed sensitivity to NH(4)(+). Loss of AE2 pH(i) sensitivity was not rescued by co-expression of a complementary AE2 sequence within separate full-length chimeras or AE2 subdomains. Thus, normal regulation of AE2 by pH and other ligands requires AE2-specific sequence from most regions of the AE2 TMD, with the exceptions of the third extracellular loop and a short C-terminal sequence. We conclude that the individual TMD amino acid residues previously identified as influencing acute regulation of AE2 exert that influence within a regulatory structure requiring essential contributions from multiple regions of the AE2 TMD.
Collapse
Affiliation(s)
- A K Stewart
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Proteins that are exported from the cell, or targeted to the cell surface or other organelles, are synthesised and assembled in the endoplasmic reticulum and then delivered to their destinations. Point mutations – the most common cause of human genetic diseases – can inhibit folding and assembly of the protein in the endoplasmic reticulum. The unstable or partially folded mutant protein does not undergo trafficking and is usually rapidly degraded. A potential therapy for protein misfolding is to correct defective protein folding and trafficking using pharmacological chaperones. Pharmacological chaperones are substrates or modulators that appear to function by directly binding to the partially folded biosynthetic intermediate to stabilise the protein and allow it to complete the folding process to yield a functional protein. Initial clinical studies with pharmacological chaperones have successfully reduced clinical symptoms of disease. Therefore, pharmacological chaperones show great promise as a new class of therapeutic agents that can be specifically tailored for a particular genetic disease.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
39
|
Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA. Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl-/HCO3- exchanger (slc4a1). J Am Soc Nephrol 2007; 18:1408-18. [PMID: 17409310 DOI: 10.1681/asn.2006101072] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in the human gene that encodes the AE1 Cl(-)/HCO(3)(-) exchanger (SLC4A1) cause autosomal recessive and dominant forms of distal renal tubular acidosis (dRTA). A mouse model that lacks AE1/slc4a1 (slc4a1-/-) exhibited dRTA characterized by spontaneous hyperchloremic metabolic acidosis with low net acid excretion and, inappropriately, alkaline urine without bicarbonaturia. Basolateral Cl(-)/HCO(3)(-) exchange activity in acid-secretory intercalated cells of isolated superfused slc4a1-/- medullary collecting duct was reduced, but alternate bicarbonate transport pathways were upregulated. Homozygous mice had nephrocalcinosis associated with hypercalciuria, hyperphosphaturia, and hypocitraturia. A severe urinary concentration defect in slc4a1-/- mice was accompanied by dysregulated expression and localization of the aquaporin-2 water channel. Mice that were heterozygous for the AE1-deficient allele had no apparent defect. Thus, the slc4a1-/- mouse is the first genetic model of complete dRTA and demonstrates that the AE1/slc4a1 Cl(-)/HCO(3)(-) exchanger is required for maintenance of normal acid-base homeostasis by distal renal regeneration of bicarbonate in the mouse as well as in humans.
Collapse
Affiliation(s)
- Paul A Stehberger
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Cordat E. Unraveling trafficking of the kidney anion exchanger 1 in polarized MDCK epithelial cells. Biochem Cell Biol 2007; 84:949-59. [PMID: 17215882 DOI: 10.1139/o06-200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney anion exchanger 1 (kAE1) is a membrane glycoprotein expressed at the basolateral membrane of type A intercalated cells in the kidney collecting tubule. Mutations occurring in the gene encoding this protein can give rise to distal renal tubular acidosis (dRTA), a disease characterized by an impaired urine acidification, nephrocalcinosis, and renal failure. Here we review how the study of dRTA mutants in polarized epithelial cells has shed light on the cellular mechanisms resulting in this renal disease.
Collapse
Affiliation(s)
- Emmanuelle Cordat
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
41
|
Cordat E, Reithmeier RAF. Expression and interaction of two compound heterozygous distal renal tubular acidosis mutants of kidney anion exchanger 1 in epithelial cells. Am J Physiol Renal Physiol 2006; 291:F1354-61. [PMID: 16849697 DOI: 10.1152/ajprenal.00015.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney AE1 (kAE1) is a glycoprotein responsible for the electroneutral exchange of chloride for bicarbonate, promoting the reabsorption of bicarbonate into the blood by α-intercalated cells of the collecting tubule. Mutations occurring in the gene encoding kAE1 can induce defects in urinary acidification resulting in distal renal tubular acidosis (dRTA). We expressed two kAE1 dRTA mutants, A858D, a mild dominant mutation, and ΔV850, a recessive mutation, in epithelial Madin-Darby canine kidney (MDCK) cells. Individuals heterozygous with wild-type (WT) kAE1 either did not display any symptoms of dRTA (ΔV850/WT) or displayed a mild incomplete form of dRTA (A858D/WT), while compound heterozygotes (ΔV850/A858D) had dRTA. We found that the A858D mutant was slightly impaired in the endoplasmic reticulum (ER) exit but could target to the basolateral membrane of polarized MDCK cells. Despite an altered binding to an inhibitor affinity resin, anion transport assays showed that the A858D mutant was functional at the cell surface. The ΔV850 mutant showed altered binding to the affinity resin but was predominantly retained in the ER, resulting in undetectable AE1 expression at the basolateral membrane. When coexpressed in MDCK cells, the WT protein, and to a lesser extent the A858D mutant, enhanced the cell surface expression of the ΔV850 mutant. The ΔV850 mutant also affected the cell surface expression of the A858D mutant. Compound heterozygous (A858D/ΔV850) patients likely possess a decreased amount of functional anion exchangers at the basolateral membrane of their α-intercalated cells, resulting in impaired bicarbonate transport into the blood and defective acid transport into the urine.
Collapse
Affiliation(s)
- Emmanuelle Cordat
- Department of Biochemistry, Rm. 5216, Medical Sciences Bldg., Univ. of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | |
Collapse
|
42
|
Sawasdee N, Udomchaiprasertkul W, Noisakran S, Rungroj N, Akkarapatumwong V, Yenchitsomanus PT. Trafficking defect of mutant kidney anion exchanger 1 (kAE1) proteins associated with distal renal tubular acidosis and Southeast Asian ovalocytosis. Biochem Biophys Res Commun 2006; 350:723-30. [PMID: 17027918 DOI: 10.1016/j.bbrc.2006.09.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 01/01/2023]
Abstract
Compound heterozygous anion exchanger 1 (AE1) SAO/G701D mutations result in distal renal tubular acidosis with Southeast Asian ovalocytosis. Interaction, trafficking and localization of wild-type and mutant (SAO and G701D) kAE1 proteins fused with hemagglutinin, six-histidine, Myc, or green fluorescence protein (GFP) were examined in human embryonic kidney (HEK) 293 cells. When individually expressed, wild-type kAE1 was localized at cell surface while mutant kAE1 SAO and G701D were intracellularly retained. When co-expressed, wild-type kAE1 could form heterodimer with kAE1 SAO or kAE1 G701D and could rescue mutant kAE1 proteins to express on the cell surface. Co-expression of kAE1 SAO and kAE1 G701D also resulted in heterodimer formation but intracellular retention without cell surface expression, suggesting their trafficking defect and failure to rescue each other to the plasma membrane, most likely the molecular mechanism of the disease in the compound heterozygous condition.
Collapse
Affiliation(s)
- Nunghathai Sawasdee
- Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | | | |
Collapse
|
43
|
Toye AM, Parker MD, Daly CM, Lu J, Virkki LV, Pelletier MF, Boron WF. The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol 2006; 291:C788-801. [PMID: 16707554 DOI: 10.1152/ajpcell.00094.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human electrogenic renal Na-HCO(3) cotransporter (NBCe1-A; SLC4A4) is localized to the basolateral membrane of proximal tubule cells. Mutations in the SLC4A4 gene cause an autosomal recessive proximal renal tubular acidosis (pRTA), a disease characterized by impaired ability of the proximal tubule to reabsorb HCO(3)(-) from the glomerular filtrate. Other symptoms can include mental retardation and ocular abnormalities. Recently, a novel homozygous missense mutant (R881C) of NBCe1-A was reported from a patient with a severe pRTA phenotype. The mutant protein was described as having a lower than normal activity when expressed in Xenopus oocytes, despite having normal Na(+) affinity. However, without trafficking data, it is impossible to determine the molecular basis for the phenotype. In the present study, we expressed wild-type NBCe1-A (WT) and mutant NBCe1-A (R881C), tagged at the COOH terminus with enhanced green fluorescent protein (EGFP). This approach permitted semiquantification of surface expression in individual Xenopus oocytes before assay by two-electrode voltage clamp or measurements of intracellular pH. These data show that the mutation reduces the surface expression rather than the activity of the individual protein molecules. Confocal microscopy on polarized mammalian epithelial kidney cells [Madin-Darby canine kidney (MDCK)I] expressing nontagged WT or R881C demonstrates that WT is expressed at the basolateral membrane of these cells, whereas R881C is retained in the endoplasmic reticulum. In summary, the pathophysiology of pRTA caused by the R881C mutation is likely due to a deficit of NBCe1-A at the proximal tubule basolateral membrane, rather than a defect in the transport activity of individual molecules.
Collapse
Affiliation(s)
- Ashley M Toye
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Cordat E, Kittanakom S, Yenchitsomanus PT, Li J, Du K, Lukacs GL, Reithmeier RAF. Dominant and recessive distal renal tubular acidosis mutations of kidney anion exchanger 1 induce distinct trafficking defects in MDCK cells. Traffic 2006; 7:117-28. [PMID: 16420521 DOI: 10.1111/j.1600-0854.2005.00366.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Distal renal tubular acidosis (dRTA), a kidney disease resulting in defective urinary acidification, can be caused by dominant or recessive mutations in the kidney Cl-/HCO3- anion exchanger (kAE1), a glycoprotein expressed in the basolateral membrane of alpha-intercalated cells. We compared the effect of two dominant (R589H and S613F) and two recessive (S773P and G701D) dRTA point mutations on kAE1 trafficking in Madin-Darby canine kidney (MDCK) epithelial cells. In contrast to wild-type (WT) kAE1 that was localized to the basolateral membrane, the dominant mutants (kAE1 R589H and S613F) were retained in the endoplasmic reticulum (ER) in MDCK cells, with a few cells showing in addition some apical localization. The recessive mutant kAE1 S773P, while misfolded and largely retained in the ER in non-polarized MDCK cells, was targeted to the basolateral membrane after polarization. The other recessive mutants, kAE1 G701D and designed G701E, G701R but not G701A or G701L mutants, were localized to the Golgi in both non-polarized and polarized cells. The results suggest that introduction of a polar mutation into a transmembrane segment resulted in Golgi retention of the recessive G701D mutant. When coexpressed, the dominant mutants retained kAE1 WT intracellularly, while the recessive mutants did not. Coexpression of recessive G701D and S773P mutants in polarized cells showed that these proteins could interact, yet no G701D mutant was detected at the basolateral membrane. Therefore, compound heterozygous patients expressing both recessive mutants (G701D/S773P) likely developed dRTA due to the lack of a functional kAE1 at the basolateral surface of alpha-intercalated cells.
Collapse
Affiliation(s)
- Emmanuelle Cordat
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Cheung J, Cordat E, Reithmeier R. Trafficking defects of the Southeast Asian ovalocytosis deletion mutant of anion exchanger 1 membrane proteins. Biochem J 2006; 392:425-34. [PMID: 16107207 PMCID: PMC1316280 DOI: 10.1042/bj20051076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human AE1 (anion exchanger 1) is a membrane glycoprotein found in erythrocytes and as a truncated form (kAE1) in the BLM (basolateral membrane) of a-intercalated cells of the distal nephron, where they carry out electroneutral chloride/bicarbonate exchange. SAO (Southeast Asian ovalocytosis) is a dominant inherited haematological condition arising from deletion of Ala400-Ala408 in AE1, resulting in a misfolded and transport-inactive protein present in the ovalocyte membrane. Heterozygotes with SAO are able to acidify their urine, without symptoms of dRTA (distal renal tubular acidosis) that can be associated with mutations in kAE1. We examined the effect of the SAO deletion on stability and trafficking of AE1 and kAE1 in transfected HEK-293 (human embryonic kidney) cells and kAE1 in MDCK (Madin-Darby canine kidney) epithelial cells. In HEK-293 cells, expression levels and stabilities of SAO proteins were significantly reduced, and no mutant protein was detected at the cell surface. The intracellular retention of AE1 SAO in transfected HEK-293 cells suggests that erythroid-specific factors lacking in HEK-293 cells may be required for cell-surface expression. Although misfolded, SAO proteins could form heterodimers with the normal proteins, as well as homodimers. In MDCK cells, kAE1 was localized to the cell surface or the BLM after polarization, while kAE1 SAO was retained intracellularly. When kAE1 SAO was co-expressed with kAE1 in MDCK cells, kAE1 SAO was largely retained intracellularly; however, it also co-localized with kAE1 at the cell surface. We propose that, in the kidney of heterozygous SAO patients, dimers of kAE1 and heterodimers of kAE1 SAO and kAE1 traffic to the BLM of a-intercalated cells, while homodimers of kAE1 SAO are retained in the endoplasmic reticulum and are rapidly degraded. This results in sufficient cell-surface expression of kAE1 to maintain adequate bicarbonate reabsorption and proton secretion without dRTA.
Collapse
Affiliation(s)
- Joanne C. Cheung
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Emmanuelle Cordat
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Reinhart A. F. Reithmeier
- Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Wongthida P, Akkarapatumwong V, Limjindaporn T, Kittanakom S, Keskanokwong T, Eurwilaichitr L, Yenchitsomanus PT. Analysis of the interaction between human kidney anion exchanger 1 and kanadaptin using yeast two-hybrid systems. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Yenchitsomanus PT, Kittanakom S, Rungroj N, Cordat E, Reithmeier RAF. Molecular mechanisms of autosomal dominant and recessive distal renal tubular acidosis caused by SLC4A1 (AE1) mutations. J Mol Genet Med 2005; 1:49-62. [PMID: 19565014 PMCID: PMC2702069 DOI: 10.4172/1747-0862.1000013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 09/06/2005] [Accepted: 09/13/2005] [Indexed: 12/22/2022] Open
Abstract
Mutations of SLC4A1 (AE1) encoding the kidney anion (Cl−/HCO3−) exchanger 1 (kAE1 or band 3) can result in either autosomal dominant (AD) or autosomal recessive (AR) distal renal tubular acidosis (dRTA). The molecular mechanisms associated with SLC4A1 mutations resulting in these different modes of inheritance are now being unveiled using transfected cell systems. The dominant mutants kAE1 R589H, R901X and S613F, which have normal or insignificant changes in anion transport function, exhibit intracellular retention with endoplasmic reticulum (ER) localization in cultured non-polarized and polarized cells, while the dominant mutants kAE1 R901X and G609R are mis-targeted to apical membrane in addition to the basolateral membrane in cultured polarized cells. A dominant-negative effect is likely responsible for the dominant disease because heterodimers of kAE1 mutants and the wild-type protein are intracellularly retained. The recessive mutants kAE1 G701D and S773P however exhibit distinct trafficking defects. The kAE1 G701D mutant is retained in the Golgi apparatus, while the misfolded kAE1 S773P, which is impaired in ER exit and is degraded by proteosome, can only partially be delivered to the basolateral membrane of the polarized cells. In contrast to the dominant mutant kAE1, heterodimers of the recessive mutant kAE1 and wild-type kAE1 are able to traffic to the plasma membrane. The wild-type kAE1 thus exhibits a ‘dominant-positive effect’ relative to the recessive mutant kAE1 because it can rescue the mutant proteins from intracellular retention to be expressed at the cell surface. Consequently, homozygous or compound heterozygous recessive mutations are required for presentation of the disease phenotype. Future work using animal models of dRTA will provide additional insight into the pathophysiology of this disease.
Collapse
Affiliation(s)
- Pa-Thai Yenchitsomanus
- Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | |
Collapse
|
48
|
Laing CM, Toye AM, Capasso G, Unwin RJ. Renal tubular acidosis: developments in our understanding of the molecular basis. Int J Biochem Cell Biol 2005; 37:1151-61. [PMID: 15778079 DOI: 10.1016/j.biocel.2005.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/31/2004] [Accepted: 01/07/2005] [Indexed: 11/17/2022]
Abstract
Renal tubular acidosis is a metabolic acidosis due to impaired acid excretion by the kidney. Hyperchloraemic acidosis with a normal anion gap and normal (or near normal) glomerular filtration rate, and in the absence of diarrhoea, defines this disorder. However, systemic acidosis is not always evident and renal tubular acidosis can present with hypokalaemia, medullary nephrocalcinosis and recurrent calcium phosphate stone disease, as well as growth retardation and rickets in children, or short stature and osteomalacia in adults. Renal dysfunction in renal tubular acidosis is not always confined to acid excretion and can be part of a more generalised renal tubule defect, as in the renal Fanconi syndrome. Isolated renal tubular acidosis is more usually acquired, due to drugs, autoimmune disease, post-obstructive uropathy or any cause of medullary nephrocalcinosis. Less commonly, it is inherited and may be associated with deafness, osteopetrosis or ocular abnormalities. The clinical classification of renal tubular acidosis has been correlated with our current physiological model of how the nephron excretes acid, and this has facilitated genetic studies that have identified mutations in several genes encoding acid and base ion transporters. In vitro functional studies of these mutant proteins in cell expression systems have helped to elucidate the molecular mechanisms underlying renal tubular acidosis, which ultimately may lead to new therapeutic options in what is still treatment only by giving an oral alkali.
Collapse
Affiliation(s)
- Christopher M Laing
- Centre for Nephrology, Royal Free and University College Medical School, London NW3, UK
| | | | | | | |
Collapse
|
49
|
Li HC, Szigligeti P, Worrell RT, Matthews JB, Conforti L, Soleimani M. Missense mutations in Na+:HCO3- cotransporter NBC1 show abnormal trafficking in polarized kidney cells: a basis of proximal renal tubular acidosis. Am J Physiol Renal Physiol 2005; 289:F61-71. [PMID: 15713912 DOI: 10.1152/ajprenal.00032.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney Na(+):HCO(3)(-) cotransporter NBC1 is located exclusively on the basolateral membrane of kidney proximal tubule cells and is responsible for the reabsorption of majority of filtered bicarbonate. Two well-described missense mutations in NBC1, R510H and S427L, are associated with renal tubular acidosis (RTA). However, the exact relationship between these mutations and NBC1 dysregulation remains largely unknown. To address this question, cDNAs for wild-type kidney NBC1 and its mutants R510H and S427L were generated, fused in frame with NH(2) terminally tagged GFP, and transiently expressed in Madin-Darby canine kidney cells. In parallel studies, oocytes were injected with the wild-type and mutant NBC1 cRNAs and studied for membrane expression and activity. In monolayer cells grown to polarity, the wild-type GFP-NBC1 was exclusively localized on the basolateral membrane domain. However, GFP-NBC1 mutant R510H was detected predominantly in the cytoplasm. GFP-NBC1 mutant S427L, on the other hand, was detected predominantly on the apical membrane with residual cytoplasmic retention and basolateral membrane labeling. In oocytes injected with the wild-type or mutant GFP-NBC1 cRNAs, Western blot analysis showed that wild-type NBC1 is predominantly localized in the membrane fraction, whereas NBC1-R510H mutant was predominantly expressed in the cytoplasm. NBC1-S427L mutant was mostly expressed in the membrane fraction. Functional analysis of NBC1 activity in oocytes by membrane potential recording demonstrated that compared with wild-type GFP-NBC1, the GFP-NBC1 mutants H510R and S427L exhibited significant reduction in activity. These findings suggest that the permanent isolated proximal RTA in patients with H510R or S427L mutation resulted from a combination of inactivation and mistargeting of kidney NBC1, with H510R mutant predominantly retained in the cytoplasm, whereas S427L mutant is mistargeted to the apical membrane.
Collapse
Affiliation(s)
- Hong C Li
- Dept. of Medicine, University of Cincinnati, Cincinnati, OH 45267-0585, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Medical genetics so far has identified approximately 16,000 missense mutations leading to single amino acid changes in protein sequences that are linked to human disease. A majority of these mutations affect folding or trafficking, rather than specifically affecting protein function. Many disease-linked mutations occur in integral membrane proteins, a class of proteins about whose folding we know very little. We examine the phenomenon of disease-linked misassembly of membrane proteins and describe model systems currently being used to study the delicate balance between proper folding and misassembly. We review a mechanism by which cells recognize membrane proteins with a high potential to misfold before they actually do, and which targets these culprits for degradation. Serious disease phenotypes can result from loss of protein function and from misfolded proteins that the cells cannot degrade, leading to accumulation of toxic aggregates. Misassembly may be averted by small-molecule drugs that bind and stabilize the native state.
Collapse
Affiliation(s)
- Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8725, USA.
| | | |
Collapse
|