1
|
Schneider AJ, Serrell EC, Grimes M, Wang S, Bushman W. Histologic inflammation and collagen content are not positively correlated in human BPH. Prostate 2023; 83:1529-1536. [PMID: 37602498 DOI: 10.1002/pros.24611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Recent clinical studies have implicated prostate inflammation and fibrosis in the development of bladder outlet obstruction and lower urinary tract symptoms (LUTS). Studies utilizing rodent models, including work in our laboratory, have shown prostate fibrosis to occur as a consequence of inflammation. However, the relationship between collagen content and inflammation in human tissue samples obtained from surgical treatment of benign prostatic hypererplasia (BPH)/LUTS has not to our knowledge been previously examined. METHODS Prostate tissue specimens from 53 patients (ages 47-88, mean 65.1) treated by open simple prostatectomy or transurethral resection of the prostate for BPH/LUTS were stained to quantitatively assess prostate inflammation and collagen content. Patients with prostate cancer present in greater than 5% of the surgical specimen were excluded. Prostate volume was determined from pelvic CT scan obtained within 2 years of surgery. RESULTS Analysis of the data showed that inflammation was inversely correlated with collagen content (r = -0.28, p = 0.04). In men with prostates less than 75 cm3 inflammation increases and collagen content decreases with prostate volume (p = 0.002 and p = 0.03, respectively) while in men with prostate volume over 75 cm3 inflammation decreases and collagen content increases with prostate volume (p = 0.30 and p = 0.005, respectively). CONCLUSIONS Our data do not support the assumed positive association of prostate inflammation with collagen content. Coordinated analysis of scatter plots of inflammation and collagen content with prostate volume revealed a subset of prostates with volumes >50 cm3 prostate characterized by intense inflammation and low collagen content and it is this subgroup that appears most responsible for the inverse correlation of inflammation and collagen.
Collapse
Affiliation(s)
- Andrew J Schneider
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emily C Serrell
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Grimes
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sijian Wang
- Department of Statistics, Rutgers University, Piscataway, New Jersey, USA
| | - Wade Bushman
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Spiegelhoff A, Wang K, Ridlon M, Lavery T, Kennedy CL, George S, Stietz KPK. Polychlorinated Biphenyls (PCBs) Impact Prostatic Collagen Density and Bladder Volume in Young Adult Mice Exposed during in Utero and Lactational Development. TOXICS 2023; 11:609. [PMID: 37505574 PMCID: PMC10384510 DOI: 10.3390/toxics11070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants linked to deleterious health outcomes, including voiding dysfunction in developmentally exposed mice. Changes in prostate volume and/or extracellular matrix composition are associated with voiding dysfunction in men and animal models. Whether PCB-induced changes in voiding function in male mice occur in part via alterations to the prostate or an alternate mechanism is unclear. Therefore, we tested whether developmental exposure to the MARBLES PCB mixture altered prostate morphology in young adult offspring. C57Bl/6J female mice were dosed daily with the MARBLES PCB mixture at 0, 0.1, 1 or 6 mg/kg/d for two weeks prior to mating and through gestation and lactation, offspring were collected at 6 weeks of age. Ventral prostate mass was decreased in the 1 mg/kg/d PCB group compared to other PCB groups. There were no PCB-induced changes in prostate smooth muscle thickness, apoptosis, proliferation, or testes mass. PCBs impacted the prostate extracellular matrix; anterior prostate collagen density was decreased in the 1 mg/kg/d PCB group compared to all other groups. Normalized bladder volume was increased in male and female offspring in the 6 mg/kg/d PCB group compared to control. No change in water consumption, bladder mass or bladder smooth muscle thickness accompanied changes in bladder volume. Urine and serum creatinine concentrations were elevated but only in male mice. Together, these results suggest that developmental exposure to PCBs can influence prostate wet weight and prostate/bladder morphology, but PCBs do not promote prostate enlargement. Whether these changes persist throughout adult life and how they contribute to voiding function in animal models and humans is of future interest.
Collapse
Affiliation(s)
- Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Monica Ridlon
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Serena George
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
The IL-4/IL-13 signaling axis promotes prostatic fibrosis. PLoS One 2022; 17:e0275064. [PMID: 36201508 PMCID: PMC9536598 DOI: 10.1371/journal.pone.0275064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
Background Lower urinary tract symptoms (LUTS) are a costly and pervasive medical problem for millions of aging men. Recent studies have showed that peri-urethral tissue fibrosis is an untreated pathobiology contributing to LUTS. Fibrosis results from excessive extracellular matrix deposition which increases transition zone and peri-urethral tissue stiffness and compromises prostatic urethral flexibility and compliance, producing urinary obstructive symptoms. Inflammatory cells, including neutrophils, macrophages, and T-lymphocytes, secrete a medley of pro-fibrotic proteins into the prostatic microenvironment, including IFNγ, TNFα, CXC-type chemokines, and interleukins, all of which have been implicated in inflammation-mediated fibrosis. Among these, IL-4 and IL-13 are of particular interest because they share a common signaling axis that, as shown here for the first time, promotes the expression and maintenance of IL-4, IL-13, their cognate receptors, and ECM components by prostate fibroblasts, even in the absence of immune cells. Based on studies presented here, we hypothesize that the IL-4/IL-13 axis promotes prostate fibroblast activation to ECM-secreting cells. Methods N1 or SFT1 immortalized prostate stromal fibroblasts were cultured and treated, short- or long-term, with pro-fibrotic proteins including IL-4, IL-13, TGF-β, TNF-α, IFNγ, with or without prior pre-treatment with antagonists or inhibitors. Protein expression was assessed by immunohistochemistry, immunofluorescence, ELISA, immunoblot, or Sircoll assays. Transcript expression levels were determined by qRT-PCR. Intact cells were counted using WST assays. Results IL-4Rα, IL-13Rα1, and collagen are concurrently up-regulated in human peri-urethral prostate tissues from men with LUTS. IL-4 and IL-13 induce their own expression as well as that of their cognate receptors, IL-4Rα and IL-13Rα1. Low concentrations of IL-4 or IL-13 act as cytokines to promote prostate fibroblast proliferation, but higher (>40ng/ml) concentrations repress cellular proliferation. Both IL-4 and IL-13 robustly and specifically promote collagen transcript and protein expression by prostate stromal fibroblasts in a JAK/STAT-dependent manner. Moreover, IL-4 and IL-13-mediated JAK/STAT signaling is coupled to activation of the IL-4Rα receptor. Conclusions Taken together, these studies show that IL-4 and IL-13 signal through the IL-4Rα receptor to activate JAK/STAT signaling, thereby promoting their own expression, that of their cognate receptors, and collagens. These finding suggest that the IL-4/IL-13 signaling axis is a powerful, but therapeutically targetable, pro-fibrotic mechanism in the lower urinary tract.
Collapse
|
4
|
Vickman RE, Aaron-Brooks L, Zhang R, Lanman NA, Lapin B, Gil V, Greenberg M, Sasaki T, Cresswell GM, Broman MM, Paez JS, Petkewicz J, Talaty P, Helfand BT, Glaser AP, Wang CH, Franco OE, Ratliff TL, Nastiuk KL, Crawford SE, Hayward SW. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease. Nat Commun 2022; 13:2133. [PMID: 35440548 PMCID: PMC9018703 DOI: 10.1038/s41467-022-29719-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Autoimmune (AI) diseases can affect many organs; however, the prostate has not been considered to be a primary target of these systemic inflammatory processes. Here, we utilize medical record data, patient samples, and in vivo models to evaluate the impact of inflammation, as seen in AI diseases, on prostate tissue. Human and mouse tissues are used to examine whether systemic targeting of inflammation limits prostatic inflammation and hyperplasia. Evaluation of 112,152 medical records indicates that benign prostatic hyperplasia (BPH) prevalence is significantly higher among patients with AI diseases. Furthermore, treating these patients with tumor necrosis factor (TNF)-antagonists significantly decreases BPH incidence. Single-cell RNA-seq and in vitro assays suggest that macrophage-derived TNF stimulates BPH-derived fibroblast proliferation. TNF blockade significantly reduces epithelial hyperplasia, NFκB activation, and macrophage-mediated inflammation within prostate tissues. Together, these studies show that patients with AI diseases have a heightened susceptibility to BPH and that reducing inflammation with a therapeutic agent can suppress BPH.
Collapse
Affiliation(s)
- Renee E Vickman
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - LaTayia Aaron-Brooks
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
- Department of Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Renyuan Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Brittany Lapin
- Biostatistics and Research Informatics, NorthShore University HealthSystem, Evanston, IL, 60201, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Victoria Gil
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Max Greenberg
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Takeshi Sasaki
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Gregory M Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA
| | - Meaghan M Broman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - J Sebastian Paez
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jacqueline Petkewicz
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Pooja Talaty
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Brian T Helfand
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Alexander P Glaser
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Chi-Hsiung Wang
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
- Biostatistics and Research Informatics, NorthShore University HealthSystem, Evanston, IL, 60201, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Kent L Nastiuk
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Susan E Crawford
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, 60201, USA.
| |
Collapse
|
5
|
Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. TOXICS 2022; 10:toxics10020089. [PMID: 35202275 PMCID: PMC8880407 DOI: 10.3390/toxics10020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.
Collapse
|
6
|
Pattabiraman G, Liu Z, Paul M, Schaeffer AJ, Thumbikat P. mMCP7, a Mouse Ortholog of δ Tryptase, Mediates Pelvic Tactile Allodynia in a Model of Chronic Pelvic Pain. FRONTIERS IN PAIN RESEARCH 2022; 2:805136. [PMID: 35295515 PMCID: PMC8915762 DOI: 10.3389/fpain.2021.805136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) is a condition that affects a large number of men and has unknown etiology. We have previously demonstrated the presence of elevated levels of mast cell tryptase in expressed prostatic secretions (EPS) of CP/CPPS patients. In a murine model of CP/CPPS, we showed tryptase and its cognate receptor PAR2 as critical to the development of pelvic pain and lower urinary tract symptoms. Here, we extend these observations to demonstrate that an isoform of tryptase called delta (δ)-tryptase, is elevated in the EPS of patients with CP/CPPS and is correlated with pelvic pain symptoms. Using an Escherichia coli (CP1) -induced murine model of CP/CPPS, we demonstrated a differential response in C57BL/6J and NOD/ShiLtJ mice, with C57BL6/J mice being resistant to an increase in pelvic tactile allodynia, despite having equivalent levels of activated mast cells in the prostate. Activated tryptase+ve mast cells were observed to be in closer apposition to PGP9.5+ve nerve fibers in the prostate stroma of NOD/ShiLtJ in comparison to C57BL/6J mice. The mouse ortholog of δ-tryptase, mouse mast cell protease 7 (mMCP7) has been reported to be unexpressed in C57BL/6J mice. We confirmed the absence of mMCP7 in the prostates of C57BL/6J and its presence in NOD/ShiLtJ mice. To evaluate a role for mMCP7 in the differential allodynia responses, we performed direct intra-urethral instillations of mMCP7 and the beta (β)-tryptase isoform ortholog, mMCP6 in the CP1-infection model. mMCP7, but not mMCP6 was able to induce an acute pelvic allodynia response in C57BL/6J mice. In-vitro studies with mMCP7 on cultured mast cells as well as dissociated primary neurons demonstrated the ability to induce differential activation of pain and inflammation associated molecules compared to mMCP6. We conclude that mMCP7, and possibility its human ortholog δ-tryptase, may play an important role in mediating the development of pelvic tactile allodynia in the mouse model of pelvic pain and in patients with CP/CPPS.
Collapse
Affiliation(s)
| | | | | | | | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Popovics P, Jain A, Skalitzky KO, Schroeder E, Ruetten H, Cadena M, Uchtmann KS, Vezina CM, Ricke WA. Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. Int J Mol Sci 2021; 22:ijms222212461. [PMID: 34830342 PMCID: PMC8617904 DOI: 10.3390/ijms222212461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrogenic and inflammatory processes in the prostate are linked to the development of lower urinary tract symptoms (LUTS) in men. Our previous studies identified that osteopontin (OPN), a pro-fibrotic cytokine, is abundant in the prostate of men with LUTS, and its secretion is stimulated by inflammatory cytokines potentially to drive fibrosis. This study investigates whether the lack of OPN ameliorates inflammation and fibrosis in the mouse prostate. We instilled uropathogenic E. coli (UTI89) or saline (control) transurethrally to C57BL/6J (WT) or Spp1tm1Blh/J (OPN-KO) mice and collected the prostates one or 8 weeks later. We found that OPN mRNA and protein expression were significantly induced by E. coli-instillation in the dorsal prostate (DP) after one week in WT mice. Deficiency in OPN expression led to decreased inflammation and fibrosis and the prevention of urinary dysfunction after 8 weeks. RNAseq analysis identified that E. coli-instilled WT mice expressed increased levels of inflammatory and fibrotic marker RNAs compared to OPN-KO mice including Col3a1, Dpt, Lum and Mmp3 which were confirmed by RNAscope. Our results indicate that OPN is induced by inflammation and prolongs the inflammatory state; genetic blockade of OPN accelerates recovery after inflammation, including a resolution of prostate fibrosis.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Asha Jain
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kegan O. Skalitzky
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elise Schroeder
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Ruetten
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Cadena
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristen S. Uchtmann
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chad M. Vezina
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
8
|
Pattabiraman G, Bell-Cohn AJ, Murphy SF, Mazur DJ, Schaeffer AJ, Thumbikat P. Mast cell function in prostate inflammation, fibrosis, and smooth muscle cell dysfunction. Am J Physiol Renal Physiol 2021; 321:F466-F479. [PMID: 34423679 DOI: 10.1152/ajprenal.00116.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intraurethral inoculation of mice with uropathogenic Escherichia coli (CP1) results in prostate inflammation, fibrosis, and urinary dysfunction, recapitulating some but not all of the pathognomonic clinical features associated with benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). In both patients with LUTS and CP1-infected mice, we observed increased numbers and activation of mast cells and elevated levels of prostate fibrosis. Therapeutic inhibition of mast cells using a combination of a mast cell stabilizer, cromolyn sodium, and the histamine 1 receptor antagonist cetirizine di-hydrochloride in the mouse model resulted in reduced mast cell activation in the prostate and significant alleviation of urinary dysfunction. Treated mice showed reduced prostate fibrosis, less infiltration of immune cells, and decreased inflammation. In addition, as opposed to symptomatic CP1-infected mice, treated mice showed reduced myosin light chain-2 phosphorylation, a marker of prostate smooth muscle contraction. These results show that mast cells play a critical role in the pathophysiology of urinary dysfunction and may be an important therapeutic target for men with BPH/LUTS.NEW & NOTEWORTHY LUTS-associated benign prostatic hyperplasia is derived from a combination of immune activation, extracellular matrix remodeling, hyperplasia, and smooth muscle cell contraction in prostates of men. Using a mouse model, we describe the importance of mast cells in regulating these multiple facets involved in the pathophysiology of LUTS. Mast cell inhibition alleviates both pathology and urinary dysfunction in this model, suggesting the potential for mast cell inhibition as a therapeutic that prevents and reverses pathology and associated symptomology.
Collapse
Affiliation(s)
- Goutham Pattabiraman
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ashlee J Bell-Cohn
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephen F Murphy
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Daniel J Mazur
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
9
|
Abler LL, O’Driscoll CA, Colopy SA, Stietz KPK, Wang P, Wang Z, Hartmann F, Crader-Smith SM, Oellete JN, Mehta V, Oakes SR, Grimes MD, Mitchell GS, Baan M, Gallagher SJ, Davis DB, Kimple ME, Bjorling DE, Watters JJ, Vezina CM. The influence of intermittent hypoxia, obesity, and diabetes on male genitourinary anatomy and voiding physiology. Am J Physiol Renal Physiol 2021; 321:F82-F92. [PMID: 34121451 PMCID: PMC8807064 DOI: 10.1152/ajprenal.00112.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We used male BTBR mice carrying the Lepob mutation, which are subject to severe and progressive obesity and diabetes beginning at 6 wk of age, to examine the influence of one specific manifestation of sleep apnea, intermittent hypoxia (IH), on male urinary voiding physiology and genitourinary anatomy. A custom device was used to deliver continuous normoxia (control) or IH to wild-type and Lepob/ob (mutant) mice for 2 wk. IH was delivered during the 12-h inactive (light) period in the form of 90 s of 6% O2 followed by 90 s of room air. Continuous room air was delivered during the 12-h active (dark) period. We then evaluated genitourinary anatomy and physiology. As expected for the type 2 diabetes phenotype, mutant mice consumed more food and water, weighed more, and voided more frequently and in larger urine volumes. They also had larger bladder volumes but smaller prostates, seminal vesicles, and urethras than wild-type mice. IH decreased food consumption and increased bladder relative weight independent of genotype and increased urine glucose concentration in mutant mice. When evaluated based on genotype (normoxia + IH), the incidence of pathogenic bacteriuria was greater in mutant mice than in wild-type mice, and among mice exposed to IH, bacteriuria incidence was greater in mutant mice than in wild-type mice. We conclude that IH exposure and type 2 diabetes can act independently and together to modify male mouse urinary function. NEW & NOTEWORTHY Metabolic syndrome and obstructive sleep apnea are common in aging men, and both have been linked to urinary voiding dysfunction. Here, we show that metabolic syndrome and intermittent hypoxia (a manifestation of sleep apnea) have individual and combined influences on voiding function and urogenital anatomy in male mice.
Collapse
Affiliation(s)
- Lisa L. Abler
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin,2University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic Research, Madison, Wisconsin
| | - Chelsea A. O’Driscoll
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin,2University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic Research, Madison, Wisconsin
| | - Sara A. Colopy
- 3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kimberly P. Keil Stietz
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Peiqing Wang
- 3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zunyi Wang
- 3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Faye Hartmann
- 4Microbiology Laboratory, UW Veterinary Care, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephanie M. Crader-Smith
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan N. Oellete
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vatsal Mehta
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Steven R. Oakes
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew D. Grimes
- 5Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gordon S. Mitchell
- 6Department of Physical Therapy and McKnight Brain Institute, grid.15276.37University of Florida, Gainesville, Florida
| | - Mieke Baan
- 7Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin,8William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Shannon J. Gallagher
- 7Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin,8William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Dawn B. Davis
- 7Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin,8William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Michelle E. Kimple
- 7Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin,8William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Dale E. Bjorling
- 2University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic Research, Madison, Wisconsin,3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jyoti J. Watters
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M. Vezina
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin,2University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic Research, Madison, Wisconsin
| |
Collapse
|
10
|
Ruetten H, Sandhu J, Mueller B, Wang P, Zhang HL, Wegner KA, Cadena M, Sandhu S, L Abler L, Zhu J, O'Driscoll CA, Chelgren B, Wang Z, Shen T, Barasch J, Bjorling DE, Vezina CM. A uropathogenic E. coli UTI89 model of prostatic inflammation and collagen accumulation for use in studying aberrant collagen production in the prostate. Am J Physiol Renal Physiol 2021; 320:F31-F46. [PMID: 33135480 PMCID: PMC7847049 DOI: 10.1152/ajprenal.00431.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bacterial infection is one known etiology of prostatic inflammation. Prostatic inflammation is associated with prostatic collagen accumulation and both are linked to progressive lower urinary tract symptoms in men. We characterized a model of prostatic inflammation using transurethral instillations of Escherichia coli UTI89 in C57BL/6J male mice with the goal of determining the optimal instillation conditions, understanding the impact of instillation conditions on urinary physiology, and identifying ideal prostatic lobes and collagen 1a1 prostatic cell types for further analysis. The smallest instillation volume tested (50 µL) distributed exclusively to the bladder, 100- and 200-µL volumes distributed to the bladder and prostate, and a 500-µL volume distributed to the bladder, prostate, and ureter. A threshold optical density of 0.4 E. coli UTI89 in the instillation fluid was necessary for significant (P < 0.05) prostate colonization. E. coli UTI89 infection resulted in a low frequency, high volume spontaneous voiding pattern. This phenotype was due to exposure to E. coli UTI89, not catheterization alone, and was minimally altered by a 50-µL increase in instillation volume and doubling of E. coli concentration. Prostate inflammation was isolated to the dorsal prostate and was accompanied by increased collagen density. This was partnered with increased density of protein tyrosine phosphatase receptor type C+, procollagen type I-α1+ copositive cells and decreased density of α2-smooth muscle actin+, procollagen type I-α1+ copositive cells. Overall, we determined that this model is effective in altering urinary phenotype and producing prostatic inflammation and collagen accumulation in mice.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Brett Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helen L Zhang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Kyle A Wegner
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark Cadena
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Simran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jonathan Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Chelsea A O'Driscoll
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Britta Chelgren
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tian Shen
- Columbia University, Department of Medicine, New York, New York
| | | | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
11
|
Lamanna OK, Hsieh MH, Forster CS. Novel catheter design enables transurethral catheterization of male mice. Am J Physiol Renal Physiol 2020; 319:F29-F32. [PMID: 32463724 DOI: 10.1152/ajprenal.00121.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The male mouse is underrepresented in research of the urinary tract due to the difficulty of transurethral catheterization. As a result, there is a lack of analysis of sex differences in urinary tract research. Here, we present a novel catheter design and technique that enables urethral catheterization of male mice for bladder inoculation. Our catheterization technique uses the resistance met at the level of the external urinary sphincter and prostate to guide the retraction, positioning, and advancement of the catheter into the urinary bladder. We have shown that this method can be used to reproducibly catheterize 12 male mice with minimal urogenital trauma but cannot be used as a cystometric technique. This method will facilitate the expansion of research into sex differences in various genitourinary conditions that require transurethral catheterization of mice.
Collapse
Affiliation(s)
| | - Michael H Hsieh
- Children's National Hospital, Washington, District of Columbia
| | | |
Collapse
|
12
|
Wegner KA, Mueller BR, Unterberger CJ, Avila EJ, Ruetten H, Turco AE, Oakes SR, Girardi NM, Halberg RB, Swanson SM, Marker PC, Vezina CM. Prostate epithelial-specific expression of activated PI3K drives stromal collagen production and accumulation. J Pathol 2019; 250:231-242. [PMID: 31674011 DOI: 10.1002/path.5363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
We genetically engineered expression of an activated form of P110 alpha, the catalytic subunit of PI3K, in mouse prostate epithelium to create a mouse model of direct PI3K activation (Pbsn-cre4Prb;PI3KGOF/+ ). We hypothesized that direct activation would cause rapid neoplasia and cancer progression. Pbsn-cre4Prb;PI3KGOF/+ mice developed widespread prostate intraepithelial hyperplasia, but stromal invasion was limited and overall progression was slower than anticipated. However, the model produced profound and progressive stromal remodeling prior to explicit epithelial neoplasia. Increased stromal cellularity and inflammatory infiltrate were evident as early as 4 months of age and progressively increased through 12 months of age, the terminal endpoint of this study. Prostatic collagen density and phosphorylated SMAD2-positive prostatic stromal cells were expansive and accumulated with age, consistent with pro-fibrotic TGF-β pathway activation. Few reported mouse models accumulate prostate-specific collagen to the degree observed in Pbsn-cre4Prb;PI3KGOF/+ . Our results indicate a signaling process beginning with prostatic epithelial PI3K and TGF-β signaling that drives prostatic stromal hypertrophy and collagen accumulation. These mice afford a unique opportunity to explore molecular mechanisms of prostatic collagen accumulation that is relevant to cancer progression, metastasis, inflammation and urinary dysfunction. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kyle A Wegner
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brett R Mueller
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher J Unterberger
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Enrique J Avila
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne E Turco
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven R Oakes
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas M Girardi
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard B Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven M Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
The anti-inflammation, anti-oxidative and anti-fibrosis properties of swertiamarin in cigarette smoke exposure-induced prostate dysfunction in rats. Aging (Albany NY) 2019; 11:10409-10421. [PMID: 31739286 PMCID: PMC6914396 DOI: 10.18632/aging.102467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Chronic cigarette smoke (CS) exposure induces prostate deficits. We previously found that swertiamarin had prostatic protective potential. This study was to investigate the possible protective effect of swertiamarin against CS-induced prostate dysfunction on human prostate epithelial cells, stromal cells and rats. Rat prostate collagen deposition and fibrosis were assessed by sirius red staining and measuring hydroxyproline content, as well as by qPCR and western blot analysis for fibrotic extracellular matrix components. Prostatic levels of oxidative stress and inflammatory-related factors were also analyzed. In order to explore its underling mechanisms, the activities of Hedgehog signaling pathway and epithelial-mesenchymal transition of human prostate cells and rat prostate tissue were estimated. It was found that swertiamarin ameliorated CS-induced prostatic collagen deposition, relieved oxidative stress and local inflammation, inhibited the activation of Hedgehog signaling pathway and attenuated epithelial-mesenchymal transition. It indicated that swertiamarin could ameliorate CS-induced prostatic fibrosis by inhibiting epithelial-mesenchymal transition and Hedgehog pathway.
Collapse
|
14
|
Liu TT, Rodgers AC, Nicholson TM, Macoska JA, Marker PC, Vezina CM, Bjorling DE, Roldan-Alzate A, Hernando D, Lloyd GL, Hacker TA, Ricke WA. Ultrasonography of the Adult Male Urinary Tract for Urinary Functional Testing. J Vis Exp 2019:10.3791/59802. [PMID: 31475976 PMCID: PMC7328372 DOI: 10.3791/59802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The incidence of clinical benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) is increasing due to the aging population, resulting in a significant economic and quality of life burden. Transgenic and other mouse models have been developed to recreate various aspects of this multifactorial disease; however, methods to accurately quantitate urinary dysfunction and the effectiveness of new therapeutic options are lacking. Here, we describe a method that can be used to measure bladder volume and detrusor wall thickness, urinary velocity, void volume and void duration, and urethral diameter. This would allow for the evaluation of disease progression and treatment efficacy over time. Mice were anesthetized with isoflurane, and the bladder was visualized by ultrasound. For non-contrast imaging, a 3D image was taken of the bladder to calculate volume and evaluate shape; the bladder wall thickness was measured from this image. For contrast-enhanced imaging, a catheter was placed through the dome of the bladder using a 27-gauge needle connected to a syringe by PE50 tubing. A bolus of 0.5 mL of contrast was infused into the bladder until a urination event occurred. Urethral diameter was determined at the point of the Doppler velocity sample window during the first voiding event. Velocity was measured for each subsequent event yielding a flow rate. In conclusion, high frequency ultrasound proved to be an effective method for assessing bladder and urethral measurements during urinary function in mice. This technique may be useful in the assessment of novel therapies for BPH/LUTS in an experimental setting.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, University of Wisconsin-Madison; K12 Kure, University of Wisconsin-Madison
| | - Allison C Rodgers
- Cardiovascular Research Center, Department of Medicine, University of Wisconsin-Madison
| | | | - Jill A Macoska
- University of Massachusetts Boston; U54 George M. O'Brien Center, University of Wisconsin-Madison
| | - Paul C Marker
- U54 George M. O'Brien Center, University of Wisconsin-Madison; College of Pharmacy, University of Wisconsin-Madison
| | - Chad M Vezina
- U54 George M. O'Brien Center, University of Wisconsin-Madison; School of Veterinary Medicine, University of Wisconsin-Madison
| | - Dale E Bjorling
- U54 George M. O'Brien Center, University of Wisconsin-Madison; School of Veterinary Medicine, University of Wisconsin-Madison
| | - Alejandro Roldan-Alzate
- K12 Kure, University of Wisconsin-Madison; Department of Mechanical Engineering, University of Wisconsin-Madison; Department of Radiology, University of Wisconsin-Madison
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison; Department of Medical Physics, University of Wisconsin-Madison
| | | | - Timothy A Hacker
- Cardiovascular Research Center, Department of Medicine, University of Wisconsin-Madison
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison; U54 George M. O'Brien Center, University of Wisconsin-Madison;
| |
Collapse
|
15
|
Ruetten H, Wegner KA, Zhang HL, Wang P, Sandhu J, Sandhu S, Mueller B, Wang Z, Macoska J, Peterson RE, Bjorling DE, Ricke WA, Marker PC, Vezina CM. Impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology: functional assessment. Am J Physiol Renal Physiol 2019; 317:F996-F1009. [PMID: 31390231 DOI: 10.1152/ajprenal.00270.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Laboratory mice are used to identify causes of urinary dysfunction including prostate-related mechanisms of lower urinary tract symptoms. Effective use of mice for this purpose requires a clear understanding of molecular, cellular, anatomic, and endocrine contributions to voiding function. Whether the prostate influences baseline voiding function has not been specifically evaluated, in part because most methods that alter prostate mass also change circulating testosterone concentrations. We performed void spot assay and cystometry to establish a multiparameter "baseline" of voiding function in intact male and female 9-wk-old (adult) C57BL/6J mice. We then compared voiding function in intact male mice to that of castrated male mice, male (and female) mice treated with the steroid 5α-reductase inhibitor finasteride, or male mice harboring alleles (Pbsn4cre/+; R26RDta/+) that significantly reduce prostate lobe mass by depleting prostatic luminal epithelial cells. We evaluated aging-related changes in male urinary voiding. We also treated intact male, castrate male, and female mice with exogenous testosterone to determine the influence of androgen on voiding function. The three methods used to reduce prostate mass (castration, finasteride, and Pbsn4cre/+; R26RDta/+) changed voiding function from baseline but in a nonuniform manner. Castration feminized some aspects of male urinary physiology (making them more like intact female mice) while exogenous testosterone masculinized some aspects of female urinary physiology (making them more like intact male mice). Our results provide evidence that circulating testosterone is responsible in part for baseline sex differences in C57BL/6J mouse voiding function while prostate lobe mass in young, healthy adult mice has a lesser influence.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Kyle A Wegner
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helen L Zhang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Simran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Brett Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
| | - Jill Macoska
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
| | - Richard E Peterson
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - William A Ricke
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
16
|
Liu TT, Thomas S, Mclean DT, Roldan-Alzate A, Hernando D, Ricke EA, Ricke WA. Prostate enlargement and altered urinary function are part of the aging process. Aging (Albany NY) 2019; 11:2653-2669. [PMID: 31085797 PMCID: PMC6535061 DOI: 10.18632/aging.101938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Prostate disease incidence, both benign and malignant, directly correlates with age. Men under 40 years of age are rarely diagnosed with benign or malignant prostate disease, while 90% of men over the age of 80 have histological evidence of benign disease (benign prostatic hyperplasia; BPH). Although rodent models have been invaluable in the study of disease progression and treatment efficacy, the effect of age is often not considered. In examining aged (24-month-old) mice, we observed changes within the lower urinary tract that is typically associated with lower urinary tract dysfunction (LUTD) similar to models of BPH. In this study, we identify LUTD using functional testing as well as various imaging technologies. We also characterize the histological differences within the lower urinary tract between young (2-month-old) and aged mice including proliferation, stromal remodeling, and collagen deposition. Additionally, we examined serum steroid hormone levels, as steroid changes drive LUTD in mice and are known to change with age. We conclude that, with age, changes in prostate function, consistent with LUTD, are a consequence. Therapeutic targeting of endocrine and prostatic factors including smooth muscle function, prostate growth and fibrosis are likely to reestablish normal urinary function.
Collapse
Affiliation(s)
- Teresa T. Liu
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- K12 Kure, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Samuel Thomas
- Molecular and Environmental Toxicology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Dalton T. Mclean
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- Cancer Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Alejandro Roldan-Alzate
- K12 Kure, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Mechanical Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Radiology, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin – Madison, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Emily A. Ricke
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - William A. Ricke
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Ricke WA, Bruskewitz RC, Liu TT. Targeting a fibrotic bottleneck may provide an opening in the treatment of LUTS. Am J Physiol Renal Physiol 2019; 316:F1091-F1093. [PMID: 30864837 DOI: 10.1152/ajprenal.00102.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- William A Ricke
- George M. O'Brien Center for Benign Urologic Research and Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Reginald C Bruskewitz
- George M. O'Brien Center for Benign Urologic Research and Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Teresa T Liu
- George M. O'Brien Center for Benign Urologic Research and Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|