1
|
Abedini A, Sánchez-Navaro A, Wu J, Klötzer KA, Ma Z, Poudel B, Doke T, Balzer MS, Frederick J, Cernecka H, Liu H, Liang X, Vitale S, Kolkhof P, Susztak K. Single-cell transcriptomics and chromatin accessibility profiling elucidate the kidney-protective mechanism of mineralocorticoid receptor antagonists. J Clin Invest 2024; 134:e157165. [PMID: 37906287 PMCID: PMC10760974 DOI: 10.1172/jci157165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Mineralocorticoid excess commonly leads to hypertension (HTN) and kidney disease. In our study, we used single-cell expression and chromatin accessibility tools to characterize the mineralocorticoid target genes and cell types. We demonstrated that mineralocorticoid effects were established through open chromatin and target gene expression, primarily in principal and connecting tubule cells and, to a lesser extent, in segments of the distal convoluted tubule cells. We examined the kidney-protective effects of steroidal and nonsteroidal mineralocorticoid antagonists (MRAs), as well as of amiloride, an epithelial sodium channel inhibitor, in a rat model of deoxycorticosterone acetate, unilateral nephrectomy, and high-salt consumption-induced HTN and cardiorenal damage. All antihypertensive therapies protected against cardiorenal damage. However, finerenone was particularly effective in reducing albuminuria and improving gene expression changes in podocytes and proximal tubule cells, even with an equivalent reduction in blood pressure. We noted a strong correlation between the accumulation of injured/profibrotic tubule cells expressing secreted posphoprotein 1 (Spp1), Il34, and platelet-derived growth factor subunit b (Pdgfb) and the degree of fibrosis in rat kidneys. This gene signature also showed a potential for classifying human kidney samples. Our multiomics approach provides fresh insights into the possible mechanisms underlying HTN-associated kidney disease, the target cell types, the protective effects of steroidal and nonsteroidal MRAs, and amiloride.
Collapse
Affiliation(s)
- Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Sánchez-Navaro
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konstantin A. Klötzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bibek Poudel
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael S. Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Julia Frederick
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hana Cernecka
- Bayer AG, Pharmaceuticals, Research and Development, Cardiovascular Research, Wuppertal, Germany
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiujie Liang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Steven Vitale
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter Kolkhof
- Bayer AG, Pharmaceuticals, Research and Development, Cardiovascular Research, Wuppertal, Germany
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Bingham MA, Neijman K, Yang CR, Aponte A, Mak A, Kikuchi H, Jung HJ, Poll BG, Raghuram V, Park E, Chou CL, Chen L, Leipziger J, Knepper MA, Dona M. Circadian gene expression in mouse renal proximal tubule. Am J Physiol Renal Physiol 2023; 324:F301-F314. [PMID: 36727945 PMCID: PMC9988533 DOI: 10.1152/ajprenal.00231.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Circadian variability in kidney function is well recognized but is often ignored as a potential confounding variable in physiological experiments. Here, we have created a data resource consisting of expression levels for mRNA transcripts in microdissected proximal tubule segments from mice as a function of the time of day. Small-sample RNA sequencing was applied to microdissected S1 proximal convoluted tubules and S2 proximal straight tubules. After stringent filtering, the data were analyzed using JTK-Cycle to detect periodicity. The data set is provided as a user-friendly webpage at https://esbl.nhlbi.nih.gov/Databases/Circadian-Prox2/. In proximal convoluted tubules, 234 transcripts varied in a circadian manner (4.0% of the total). In proximal straight tubules, 334 transcripts varied in a circadian manner (5.3%). Transcripts previously known to be associated with corticosteroid action and with increased flow were found to be overrepresented among circadian transcripts peaking during the "dark" portion of the day [zeitgeber time (ZT)14-22], corresponding to peak levels of corticosterone and glomerular filtration rate in mice. To ask whether there is a time-of-day dependence of protein abundances in the kidney, we carried out LC-MS/MS-based proteomics in whole mouse kidneys at ZT12 and ZT0. The full data set (n = 6,546 proteins) is available at https://esbl.nhlbi.nih.gov/Databases/Circadian-Proteome/. Overall, 293 proteins were differentially expressed between ZT12 and ZT0 (197 proteins greater at ZT12 and 96 proteins greater at ZT0). Among the regulated proteins, only nine proteins were found to be periodic in the RNA-sequencing analysis, suggesting a high level of posttranscriptional regulation of protein abundances.NEW & NOTEWORTHY Circadian variation in gene expression can be an important determinant in the regulation of kidney function. The authors used RNA-sequencing transcriptomics and LC-MS/MS-based proteomics to identify gene products expressed in a periodic manner. The data were used to construct user-friendly web resources.
Collapse
Affiliation(s)
- Molly A Bingham
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kim Neijman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chin-Rang Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angel Aponte
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angela Mak
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hiroaki Kikuchi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Brian G Poll
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Euijung Park
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lihe Chen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mark A Knepper
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Margo Dona
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Mills NJ, Sharma K, Huang K, Teruyama R. Effect of dietary salt intake on epithelial Na + channels (ENaCs) in the hypothalamus of Dahl salt-sensitive rats. Physiol Rep 2018; 6:e13838. [PMID: 30156045 PMCID: PMC6113134 DOI: 10.14814/phy2.13838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 01/02/2023] Open
Abstract
All three epithelial Na+ channel (ENaC) subunits (α, β, and γ) and the mineralocorticoid receptor (MR), a known regulator of ENaC, are located in vasopressin (VP) synthesizing magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. Our previous study showed that ENaC mediates a Na+ leak current that affects the steady-state membrane potential of VP neurons. This study was conducted in Dahl salt-sensitive (Dahl-SS) rats to determine if any abnormal responses in the expression of ENaC subunits and MR occur in the hypothalamus and kidney in response to a high dietary salt intake. After 21 days of high salt consumption, Dahl-SS rat resulted in a significant increase in γENaC expression and exhibited proteolytic cleavage of this subunit compared to Sprague-Dawley (SD) rats. Additionally, Dahl-SS rats had dense somato-dendritic γENaC immunoreactivity in VP neurons, which was absent in SD rats. In contrast, SD rats fed a high salt diet had significantly decreased αENaC subunit expression in the kidney and MR expression in the hypothalamus. Plasma osmolality measured daily for 22 days demonstrated that Dahl-SS rats fed a high salt diet had a steady increase in plasma osmolality, whereas SD rats had an initial increase that decreased to baseline levels. Findings from this study demonstrate that Dahl-SS rats lack a compensatory mechanism to down regulate ENaC during high dietary salt consumption, which may contribute to the development of hypertension.
Collapse
Affiliation(s)
- Natalie J. Mills
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Kaustubh Sharma
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Katie Huang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Ryoichi Teruyama
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
4
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
5
|
Ernandez T, Udwan K, Chassot A, Martin PY, Feraille E. Uninephrectomy and apical fluid shear stress decrease ENaC abundance in collecting duct principal cells. Am J Physiol Renal Physiol 2017; 314:F763-F772. [PMID: 28877879 DOI: 10.1152/ajprenal.00200.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute nephron reduction such as after living kidney donation may increase the risk of hypertension. Uninephrectomy induces major hemodynamic changes in the remaining kidney, resulting in rapid increase of single-nephron glomerular filtration rate (GFR) and fluid delivery in the distal nephron. Decreased sodium (Na) fractional reabsorption after the distal tubule has been reported after uninephrectomy in animals preserving volume homeostasis. In the present study, we thought to specifically explore the effect of unilateral nephrectomy on epithelial Na channel (ENaC) subunit expression in mice. We show that γ-ENaC subunit surface expression was specifically downregulated after uninephrectomy, whereas the expression of the aldosterone-sensitive α-ENaC and α1-Na-K-ATPase subunits as well as of kidney-specific Na-K-Cl cotransporter isoform and Na-Cl cotransporter were not significantly altered. Because acute nephron reduction induces a rapid increase of single-nephron GFR, resulting in a higher tubular fluid flow, we speculated that local mechanical factors such as fluid shear stress (FSS) were involved in Na reabsorption regulation after uninephrectomy. We further explore such hypothesis in an in vitro model of FSS applied on highly differentiated collecting duct principal cells. We found that FSS specifically downregulates β-ENaC and γ-ENaC subunits at the transcriptional level through an unidentified heat-insensitive paracrine basolateral factor. The primary cilium as a potential mechanosensor was not required. In contrast, protein kinase A and calcium-sensitive cytosolic phospholipase A2 were involved, but we could not demonstrate a role for cyclooxygenase or epoxygenase metabolites.
Collapse
Affiliation(s)
- T Ernandez
- Service of Nephrology, University Hospital of Geneva , Geneva , Switzerland.,Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - K Udwan
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - A Chassot
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - P-Y Martin
- Service of Nephrology, University Hospital of Geneva , Geneva , Switzerland
| | - E Feraille
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| |
Collapse
|
6
|
Sharma K, Haque M, Guidry R, Ueta Y, Teruyama R. Effect of dietary salt intake on epithelial Na + channels (ENaC) in vasopressin magnocellular neurosecretory neurons in the rat supraoptic nucleus. J Physiol 2017; 595:5857-5874. [PMID: 28714095 PMCID: PMC5577521 DOI: 10.1113/jp274856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS A growing body of evidence suggests that epithelial Na+ channels (ENaCs) in the brain play a significant role in the regulation of blood pressure; however, the brain structures that mediate the effect are not well understood. Because vasopressin (VP) neurons play a pivotal role in coordinating neuroendocrine and autonomic responses to maintain cardiovascular homeostasis, a basic understanding of the regulation and activity of ENaC in VP neurons is of great interest. We show that high dietary salt intake caused an increase in the expression and activity of ENaC which resulted in the steady state depolarization of VP neurons. The results help us understand one of the mechanisms underlying how dietary salt intake affects the activity of VP neurons via ENaC activity. ABSTRACT All three epithelial Na+ channel (ENaC) subunits (α, β and γ) are located in vasopressin (VP) magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular nuclei. Our previous study demonstrated that ENaC mediates a Na+ leak current that affects the steady state membrane potential in VP neurons. In the present study, we evaluated the effect of dietary salt intake on ENaC regulation and activity in VP neurons. High dietary salt intake for 7 days caused an increase in expression of β- and γENaC subunits in the SON and the translocation of αENaC immunoreactivity towards the plasma membrane. Patch clamp experiments on hypothalamic slices showed that the mean amplitude of the putative ENaC currents was significantly greater in VP neurons from animals that were fed a high salt diet compared with controls. The enhanced ENaC current contributed to the more depolarized basal membrane potential observed in VP neurons in the high salt diet group. These findings indicate that high dietary NaCl intake enhances the expression and activity of ENaCs, which augments synaptic drive by depolarizing the basal membrane potential close to the action potential threshold during hormonal demand. However, ENaCs appear to have only a minor role in the regulation of the firing activity of VP neurons in the absence of synaptic inputs as neither the mean intraburst frequency, burst duration, nor interspike interval variability of phasic bursting activity was affected. Moreover, ENaC activity did not affect the initiation, sustention, or termination of the phasic bursting generated in an intrinsic manner without synaptic inputs.
Collapse
Affiliation(s)
- Kaustubh Sharma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Masudul Haque
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Richard Guidry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Yoichi Ueta
- Department of Physiology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
7
|
Feraille E, Dizin E. Coordinated Control of ENaC and Na+,K+-ATPase in Renal Collecting Duct. J Am Soc Nephrol 2016; 27:2554-63. [PMID: 27188842 DOI: 10.1681/asn.2016020124] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tubular reabsorption of filtered sodium is tightly controlled to maintain body volume homeostasis. The rate of sodium transport by collecting duct (CD) cells varies widely in response to dietary sodium intake, GFR, circulating hormones, neural signals, and local regulatory factors. Reabsorption of filtered sodium by CD cells occurs via a two-step process. First, luminal sodium crosses the apical plasma membrane along its electrochemical gradient through epithelial sodium channels (ENaC). Intracellular sodium is then actively extruded into the interstitial space by the Na(+),K(+)-ATPase located along the basolateral membrane. Mismatch between sodium entry and exit induces variations in sodium intracellular concentration and cell volume that must be maintained within narrow ranges for control of vital cell functions. Therefore, renal epithelial cells display highly coordinated apical and basolateral sodium transport rates. We review evidence from experiments conducted in vivo and in cultured cells that indicates aldosterone and vasopressin, the two major hormones regulating sodium reabsorption by CD, generate a coordinated stimulation of apical ENaC and basolateral Na(+),K(+)-ATPase. Moreover, we discuss evidence suggesting that variations in sodium entry per se induce a coordinated change in Na(+),K(+)-ATPase activity through the signaling of protein kinases such as protein kinase A and p38 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Eric Feraille
- Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Eva Dizin
- Department of Cell Biology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Wang YB, Leroy V, Maunsbach AB, Doucet A, Hasler U, Dizin E, Ernandez T, de Seigneux S, Martin PY, Féraille E. Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells. J Am Soc Nephrol 2013; 25:250-9. [PMID: 24179170 DOI: 10.1681/asn.2013040429] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In relation to dietary Na(+) intake and aldosterone levels, collecting duct principal cells are exposed to large variations in Na(+) transport. In these cells, Na(+) crosses the apical membrane via epithelial Na(+) channels (ENaC) and is extruded into the interstitium by Na,K-ATPase. The activity of ENaC and Na,K-ATPase must be highly coordinated to accommodate variations in Na(+) transport and minimize fluctuations in intracellular Na(+) concentration. We hypothesized that, independent of hormonal stimulus, cross-talk between ENaC and Na,K-ATPase coordinates Na(+) transport across apical and basolateral membranes. By varying Na(+) intake in aldosterone-clamped rats and overexpressing γ-ENaC or modulating apical Na(+) availability in cultured mouse collecting duct cells, enhanced apical Na(+) entry invariably led to increased basolateral Na,K-ATPase expression and activity. In cultured collecting duct cells, enhanced apical Na(+) entry increased the basolateral cell surface expression of Na,K-ATPase by inhibiting p38 kinase-mediated endocytosis of Na,K-ATPase. Our results reveal a new role for p38 kinase in mediating cross-talk between apical Na(+) entry via ENaC and its basolateral exit via Na,K-ATPase, which may allow principal cells to maintain intracellular Na(+) concentrations within narrow limits.
Collapse
Affiliation(s)
- Yu-Bao Wang
- Service of Nephrology, Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen JC, Cai HY, Wang Y, Ma YY, Song LN, Yin LJ, Cao DM, Diao F, Li YD, Lu J. Up-regulation of stomatin expression by hypoxia and glucocorticoid stabilizes membrane-associated actin in alveolar epithelial cells. J Cell Mol Med 2013; 17:863-72. [PMID: 23672602 PMCID: PMC3822891 DOI: 10.1111/jcmm.12069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 03/24/2013] [Indexed: 11/27/2022] Open
Abstract
Stomatin is an important lipid raft-associated protein which interacts with membrane proteins and plays a role in the membrane organization. However, it is unknown whether it is involved in the response to hypoxia and glucocorticoid (GC) in alveolar epithelial cells (AEC). In this study we found that hypoxia and dexamethasone (dex), a synthetic GC not only up-regulated the expression of stomatin alone, but also imposed additive effect on the expression of stomatin in A549 cells, primary AEC and lung of rats. Then we investigated whether hypoxia and dex transcriptionally up-regulated the expression of stomatin by reporter gene assay, and found that dex, but not hypoxia could increase the activity of a stomatin promoter-driven reporter gene. Further deletion and mutational studies demonstrated that a GC response element (GRE) within the promoter region mainly contributed to the induction of stomatin by dex. Moreover, we found that hypoxia exposure did not affect membrane-associated actin, but decreased actin in cytoplasm in A549 cells. Inhibiting stomatin expression by stomatin siRNA significantly decreased dense of peripheral actin ring in hypoxia or dex treated A549 cells. Taken all together, these data indicated that dex and/or hypoxia significantly up-regulated the expression of stomatin in vivo and in vitro, which could stabilize membrane-associated actin in AEC. We suppose that the up-regulation of stomatin by hypoxia and dex may enhance the barrier function of alveolar epithelia and mediate the adaptive role of GC to hypoxia.
Collapse
Affiliation(s)
- Ji-Cheng Chen
- Department of Pathophysiology, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Therapeutic effects of inhaling aerosolized surfactant alone or with dexamethasone generated by a novel noninvasive apparatus on acute lung injury in rats. J Trauma Acute Care Surg 2013; 73:1114-20. [PMID: 22976417 DOI: 10.1097/ta.0b013e318265cbe9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pulmonary surfactant (PS) administration has been attempted for the treatment of adults with acute lung injury (ALI)/adult respiratory distress syndrome. Aerosolized surfactants inhaled by spontaneous breathing may be an effective method of surfactant-based therapies. Using a noninvasive apparatus, we evaluated the therapeutic effects of aerosolized PS alone or together with dexamethasone (Dex) on a rat model of ALI. METHODS Severe ALI was induced by intravenous injection of 20% oleic acid (0.2 mL/kg) into adult Sprague-Dawley rats. Animals were divided into eight groups: sham (n = 10); model (injury only, n = 10); normal saline (NS) aerosol driven by compressed air (air-NS, n = 13); PS aerosol driven by compressed air (air-PS, n = 13); NS aerosol driven by O2 (O2-NS, n = 13); PS aerosol driven by O2 (O2-PS, n = 13); Dex aerosol driven by O2 (O2-Dex, n = 13); and PS and Dex aerosol driven by O2 (O2-PS-Dex, n = 13). Blood gases, breathing rate, lung index, total protein, and proinflammatory cytokines (tumor necrosis factor-α, interleukin 1β, interleukin 6) in the bronchoalveolar lavage fluid (BALF), and lung histology were examined. RESULTS Animals treated with air-PS for 20 minutes had significantly improved lung function, reduced pulmonary edema, decreased concentration of total protein and proinflammatory cytokines in BALF, ameliorated lung injury, and improved animal survival. In the O2-PS group, the breathing rates and lung injury scores were significantly lower than that of the air-PS group. In the O2-PS-Dex group, lung edema, total protein, and inflammatory cytokines in BALF were significantly reduced in comparison with the O2-PS group. CONCLUSION Inhalation of aerosolized PS generated by the noninvasive apparatus could significantly reduce lung injury, while using oxygen line available in the clinical wards to generate PS aerosol is more convenient and adds further benefits. This method can also be used to deliver Dex and other therapeutic agents to ameliorate lung injury.
Collapse
|
11
|
Prota LFM, Cebotaru L, Cheng J, Wright J, Vij N, Morales MM, Guggino WB. Dexamethasone regulates CFTR expression in Calu-3 cells with the involvement of chaperones HSP70 and HSP90. PLoS One 2012; 7:e47405. [PMID: 23272037 PMCID: PMC3521767 DOI: 10.1371/journal.pone.0047405] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/12/2012] [Indexed: 12/03/2022] Open
Abstract
Background Dexamethasone is widely used for pulmonary exacerbation in patients with cystic fibrosis, however, not much is known about the effects of glucocorticoids on the wild-type cystic fibrosis channel transmembrane regulator (CFTR). Our aim was to determine the effects of dexamethasone treatment on wild-type CFTR expression. Methods and Results Dose–response (1 nM to 10 µM) and time course (3 to 48 h) curves were generated for dexamethasone for mRNA expression in Calu-3 cells using a real-time PCR. Within 24 h, dexamethasone (10 nM) showed a 0.3-fold decrease in CFTR mRNA expression, and a 3.2-fold increase in αENaC mRNA expression compared with control groups. Dexamethasone (10 nM) induced a 1.97-fold increase in the total protein of wild-type CFTR, confirmed by inhibition by mifepristone. To access surface protein expression, biotinylation followed by Western blotting showed that dexamethasone treatment led to a 2.35-fold increase in the amount of CFTR in the cell surface compared with the untreated control groups. Once protein translation was inhibited with cycloheximide, dexamethasone could not increase the amount of CFTR protein. Protein stability was assessed by inhibition of protein synthesis with cycloheximide (50 µg/ml) at different times in cells treated with dexamethasone and in untreated cells. Dexamethasone did not alter the degradation of wild-type CFTR. Assessment of the B band of CFTR within 15 min of metabolic pulse labeling showed a 1.5-fold increase in CFTR protein after treatment with dexamethasone for 24 h. Chaperone 90 (HSP90) binding to CFTR increased 1.55-fold after treatment with dexamethasone for 24 h, whereas chaperone 70 (HSP70) binding decreased 0.30 fold in an immunoprecipitation assay. Conclusion Mature wild-type CFTR protein is regulated by dexamethasone post transcription, involving cotranslational mechanisms with HSP90 and HSP70, which enhances maturation and expression of wild-type CFTR.
Collapse
Affiliation(s)
- Luiz Felipe M. Prota
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liudmila Cebotaru
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jie Cheng
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jerry Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Neeraj Vij
- Department of Pediatrics and Institute of Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - William B. Guggino
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Unimpaired postnatal respiratory adaptation in a preterm human infant with a homozygous ENaC-α unit loss-of-function mutation. J Perinatol 2011; 31:802-3. [PMID: 22124517 DOI: 10.1038/jp.2011.46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amiloride-sensitive epithelial sodium channel, ENaC, is thought to have a major role in clearing fluid from the alveoli immediately after birth. ENaC-α knockout mice die soon after birth from failure to clear their lungs of liquid. We report on a male infant born after 33 weeks of gestation with uneventful postnatal adaptation (Apgar 9/9/9 at 1, 5 and 10 min after birth) who did not require any respiratory support during his first days of life. At nine days of life, he became lethargic and hyperthermic, displaying low Na(+) (126 mmol l(-1)), high K(+) (8.9 mmol l(-1)), high aldosterone (3000 ng l(-1))and high renin (1000 ng l(-1)) plasma concentrations, commensurate with pseudohypoaldosteronism type I. He was found to be homozygous for the c.1678G>A mutation in the SCNN1A gene that codes for the ENaC-α unit. We conclude that clearance of alveolar fluid after birth in humans does not critically depend on ENaC.
Collapse
|
13
|
Palmer LG, Patel A, Frindt G. Regulation and dysregulation of epithelial Na+ channels. Clin Exp Nephrol 2011; 16:35-43. [PMID: 22038262 DOI: 10.1007/s10157-011-0496-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/25/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
14
|
Frindt G, Palmer LG. Regulation of epithelial Na+ channels by adrenal steroids: mineralocorticoid and glucocorticoid effects. Am J Physiol Renal Physiol 2011; 302:F20-6. [PMID: 22012806 DOI: 10.1152/ajprenal.00480.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na+ channels (ENaC) can be regulated by both mineralocorticoid and glucocorticoid hormones. In the mammalian kidney, effects of mineralocorticoids have been extensively studied, but those of glucocorticoids are complicated by metabolism of the hormones and cross-occupancy of mineralocorticoid receptors. Here, we report effects of dexamethasone, a synthetic glucocorticoid, on ENaC in the rat kidney. Infusion of dexamethasone (24 μg/day) for 1 wk increased the abundance of αENaC 2.26 ± 0.04-fold. This was not accompanied by an induction of Na+ currents (I(Na)) measured in isolated split-open collecting ducts. In addition, hormone treatment did not increase the abundance of the cleaved forms of either αENaC or γENaC or the expression of βENaC or γENaC protein at the cell surface. The absence of hypokalemia also indicated the lack of ENaC activation in vivo. Dexamethasone increased the abundance of the Na+ transporters Na+/H+ exchanger 3 (NHE3; 1.36 ± 0.07-fold), Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2; 1.49 ± 0.07-fold), and Na-Cl cotransporter (NCC; 1.72 ± 0.08-fold). Surface expression of NHE3 and NCC also increased with dexamethasone treatment. To examine whether glucocorticoids could either augment or inhibit the effects of mineralocorticoids, we infused dexamethasone (60 μg/day) together with aldosterone (12 μg/day). Dexamethasone further increased the abundance of αENaC in the presence of aldosterone, suggesting independent effects of the two hormones on this subunit. However, I(Na) was similar in animals treated with dexamethasone+aldosterone and with aldosterone alone. We conclude that dexamethasone can occupy glucocorticoid receptors in cortical collecting duct and induce the synthesis of αENaC. However, this induction is not sufficient to produce an increase in functional Na+ channels in the apical membrane, implying that the abundance of αENaC is not rate limiting for channel formation in the kidney.
Collapse
Affiliation(s)
- Gustavo Frindt
- Dept. of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10065, USA
| | | |
Collapse
|
15
|
Dodrill MW, Beezhold DH, Meighan T, Kashon ML, Fedan JS. Lipopolysaccharide increases Na+,K+-pump, but not ENaC, expression in guinea-pig airway epithelium. Eur J Pharmacol 2011; 651:176-86. [DOI: 10.1016/j.ejphar.2010.10.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
|
16
|
Husted RF, Lu H, Sigmund RD, Stokes JB. Oxygen regulation of the epithelial Na channel in the collecting duct. Am J Physiol Renal Physiol 2010; 300:F412-24. [PMID: 21123494 DOI: 10.1152/ajprenal.00245.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The PO(2) within the kidney changes dramatically from cortex to medulla. The present experiments examined the effect of changing PO(2) on epithelial Na channel (ENaC)-mediated Na transport in the collecting duct using the mpkCCD-c14 cell line. Decreasing ambient O(2) concentration from 20 to 8% decreased ENaC activity by 40%; increasing O(2) content to 40% increased ENaC activity by 50%. The O(2) effect required several hours to develop and was not mimicked by the acid pH that developed in monolayers incubated in low-O(2) medium. Corticosteroids increased ENaC activity at each O(2) concentration; there was no interaction. The pathways for O(2) and steroid regulation of ENaC are different since O(2) did not substantially affect Sgk1, α-ENaC, Gilz, or Usp2-45 mRNA levels, genes involved in steroid-mediated ENaC regulation. The regulation of ENaC activity by these levels of O(2) appears not to be mediated by changes in hypoxia-inducible factor-1α or -2α activity or a change in AMP kinase activity. Changes in O(2) concentration had minimal effect on α- or γ-ENaC mRNA and protein levels; there were moderate effects on β-ENaC levels. However, 40% O(2) induced substantially greater total β- and γ-ENaC on the apical surface compared with 8% O(2); both subunits demonstrated a greater increase in the mature forms. The α-ENaC subunit was difficult to detect on the apical surface, perhaps because our antibodies do not recognize the major mature form. These results identify a mechanism of ENaC regulation that may be important in different regions of the kidney and in responses to changes in dietary NaCl.
Collapse
Affiliation(s)
- Russell F Husted
- Fraternal Order of Eagles Diabetes Research Center, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
17
|
Walder RY, Yang B, Stokes JB, Kirby PA, Cao X, Shi P, Searby CC, Husted RF, Sheffield VC. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum Mol Genet 2009; 18:4367-75. [PMID: 19692351 DOI: 10.1093/hmg/ddp392] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The syndrome of hypomagnesemia with secondary hypocalcemia is caused by defective TRPM6. This protein is an ion channel that also contains a kinase in its C-terminus. It is usually diagnosed in childhood and, without treatment with supplemental Mg, affected children suffer from mental retardation, seizures and retarded development. We developed a mouse lacking Trpm6 in order to understand in greater detail the function of this protein. In contrast to our expectations, Trpm6(-/-) mice almost never survived to weaning. Many mice died by embryonic day 12.5. Most that survived to term had neural tube defects consisting of both exencephaly and spina bifida occulta, an unusual combination. Feeding dams a high Mg diet marginally improved offspring survival to weaning. The few Trpm6(-/-) mice that survived were fertile but matings between Trpm6(-/-) mice produced no viable pregnancies. Trpm6(+/-) mice had normal electrolytes except for modestly low plasma [Mg]. In addition, some Trpm6(+/-) mice died prematurely. Absence of Trpm6 produces an apparently different phenotype in mice than in humans. The presence of neural tube defects identifies a previously unsuspected role of Trpm6 in effecting neural tube closure. This genetic defect produces one of very few mouse models of spina bifida occulta. These results point to a critical role of Trpm6 in development and suggest an important role in neural tube closure.
Collapse
Affiliation(s)
- Roxanne Y Walder
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang D, Li S, Cruz P, Kone BC. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct. J Biol Chem 2009; 284:20917-26. [PMID: 19491102 DOI: 10.1074/jbc.m109.020073] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldosterone increases renal tubular Na+ absorption in large part by increasing transcription of the epithelial Na(+) channel alpha-subunit (alpha-ENaC) expressed in the apical membrane of collecting duct principal cells. We recently reported that a complex containing the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) associates with and represses the alpha-ENaC promoter in mouse inner medullary collecting duct mIMCD3 cells, and that aldosterone acts to disrupt this complex and its inhibitory effects (Zhang, W., Xia, X., Reisenauer, M. R., Rieg, T., Lang, F., Kuhl, D., Vallon, V., and Kone, B. C. (2007) J. Clin. Invest. 117, 773-783). Here we demonstrate that the NAD(+)-dependent deacetylase sirtuin 1 (Sirt1) functionally and physically interacts with Dot1 to enhance the distributive activity of Dot1 on H3K79 methylation and thereby represses alpha-ENaC transcription in mIMCD3 cells. Sirt1 overexpression inhibited basal alpha-ENaC mRNA expression and alpha-ENaC promoter activity, surprisingly in a deacetylase-independent manner. The ability of Sirt1 to inhibit alpha-ENaC transcription was retained in a truncated Sirt1 construct expressing only its N-terminal domain. Conversely, Sirt1 knockdown enhanced alpha-ENaC mRNA levels and alpha-ENaC promoter activity, and inhibited global H3K79 methylation, particularly H3K79 trimethylation, in chromatin associated with the alpha-ENaC promoter. Sirt1 and Dot1 co-immunoprecipitated from mIMCD3 cells and colocalized in the nucleus. Sirt1 immunoprecipitated from chromatin associated with regions of the alpha-ENaC promoter known to associate with Dot1. Aldosterone inhibited Sirt1 association at two of these regions, as well as Sirt1 mRNA expression, in a coordinate manner with induction of alpha-ENaC transcription. Overexpressed Sirt1 inhibited aldosterone induction of alpha-ENaC transcription independent of effects on mineralocorticoid receptor trans-activation. These data identify Sirt1 as a novel modulator of alpha-ENaC, Dot1, and the aldosterone signaling pathway.
Collapse
Affiliation(s)
- Dongyu Zhang
- Departments of Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
19
|
Butterworth MB, Weisz OA, Johnson JP. Some assembly required: putting the epithelial sodium channel together. J Biol Chem 2008; 283:35305-9. [PMID: 18713729 DOI: 10.1074/jbc.r800044200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
20
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|