1
|
Mokhtar DM, Sayed RKA, Zaccone G, Alesci A, Hussein MM. The potential role of the pseudobranch of molly fish (Poecilia sphenops) in immunity and cell regeneration. Sci Rep 2023; 13:8665. [PMID: 37248336 PMCID: PMC10227048 DOI: 10.1038/s41598-023-34044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
The pseudobranch is a gill-like structure that exhibits great variations in structure and function among fish species, and therefore, it has remained a topic of investigation for a long time. This study was conducted on adult Molly fish (Poecilia sphenops) to investigate the potential functions of their pseudobranch using histological, histochemical, immunohistochemical analysis, and scanning electron microscopy. The pseudobranch of Molly fish was of embedded type. It comprised many rows of parallel lamellae that were fused completely throughout their length by a thin connective tissue. These lamellae consisted of a central blood capillary, surrounded by large secretory pseudobranch cells (PSCs). Immunohistochemical analysis revealed the expression of PSCs for CD3, CD45, iNOS-2, and NF-κB, confirming their role in immunity. Furthermore, T-lymphocytes-positive CD3, leucocytes-positive CD45, and dendritic cells-positive CD-8 and macrophage- positive APG-5 could be distinguished. Moreover, myogenin and TGF-β-positive PSCs were identified, in addition to nests of stem cells- positive SOX-9 were detected. Melanocytes, telocytes, and GFAP-positive astrocytes were also demonstrated. Scanning electron microscopy revealed that the PSCs were covered by microridges, which may increase the surface area for ionic exchange. In conclusion, pseudobranch is a highly specialized structure that may be involved in immune response, ion transport, acid-base balance, as well as cell proliferation and regeneration.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Giacomo Zaccone
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, 98168, Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
2
|
Pro-Inflammatory Serum Amyloid a Stimulates Renal Dysfunction and Enhances Atherosclerosis in Apo E-Deficient Mice. Int J Mol Sci 2021; 22:ijms222212582. [PMID: 34830462 PMCID: PMC8623330 DOI: 10.3390/ijms222212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Acute serum amyloid A (SAA) is an apolipoprotein that mediates pro-inflammatory and pro-atherogenic pathways. SAA-mediated signalling is diverse and includes canonical and acute immunoregulatory pathways in a range of cell types and organs. This study aimed to further elucidate the roles for SAA in the pathogenesis of vascular and renal dysfunction. Two groups of male ApoE-deficient mice were administered SAA (100 µL, 120 µg/mL) or vehicle control (100 µL PBS) and monitored for 4 or 16 weeks after SAA treatment; tissue was harvested for biochemical and histological analyses at each time point. Under these conditions, SAA administration induced crosstalk between NF-κB and Nrf2 transcriptional factors, leading to downstream induction of pro-inflammatory mediators and antioxidant response elements 4 weeks after SAA administration, respectively. SAA treatment stimulated an upregulation of renal IFN-γ with a concomitant increase in renal levels of p38 MAPK and matrix metalloproteinase (MMP) activities, which is linked to tissue fibrosis. In the kidney of SAA-treated mice, the immunolocalisation of inducible nitric oxide synthase (iNOS) was markedly increased, and this was localised to the parietal epithelial cells lining Bowman’s space within glomeruli, which led to progressive renal fibrosis. Assessment of aortic root lesion at the study endpoint revealed accelerated atherosclerosis formation; animals treated with SAA also showed evidence of a thinned fibrous cap as judged by diffuse collagen staining. Together, this suggests that SAA elicits early renal dysfunction through promoting the IFN-γ-iNOS-p38 MAPK axis that manifests as the fibrosis of renal tissue and enhanced cardiovascular disease.
Collapse
|
3
|
Mokhtar DM. The structural and ultrastructural organization of the cellular constituents of the trunk kidney of grass carp (Ctenopharyngodon idella). Microsc Res Tech 2020; 84:537-547. [PMID: 32986903 DOI: 10.1002/jemt.23610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The trunk kidney of grass carp mainly consisted of renal tubules with a few interstitial hematopoietic tissues. The component structure of fish nephron markedly varies between different species of fish. The nephron of grass carp consisted of morphologically distinct segments; renal corpuscles, neck segment, proximal, intermediate, distal, and collecting tubules. The glomerulus of renal corpuscles mainly composed of mesangial cells and well-developed podocytes that extended their processes to the endothelium of glomerular capillaries forming the filtration barrier. The podocytes expressed both α-SMA and the transforming growth factor gene, TGF-β. The proximal convoluted tubules (PCTs) expressed α-SMA iNOS2, and TGF-β. The cytoplasm of PCT was rich in mitochondria and rER, in addition to the presence of well-developed basolateral tubular system and apical brush borders. Collecting tubules distributed throughout the kidney and lined by principal and flask cells. The interstitial hemopoietic tissues contained iNOS2 -positive polymorphic granulocytes, CD3-positive T lymphocytes, rodlet cells, dendritic cells, macrophages, melanomacrophage centers, and telocytes. This study described for the first time the cellular components of the nephron and its associated hemopoietic tissues that can act as a basis for studying the structural changes that may occur in the kidney of grass carp during water salinitiy, environmental, or experimental conditions.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, Asyut, Egypt
| |
Collapse
|
4
|
Ishimoto Y, Tanaka T, Yoshida Y, Inagi R. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clin Exp Pharmacol Physiol 2018; 45:1097-1105. [PMID: 30051924 PMCID: PMC6221034 DOI: 10.1111/1440-1681.13018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022]
Abstract
End‐stage renal disease is a leading cause of morbidity and mortality worldwide. The prevalence of the disease and the number of patients who receive renal replacement therapy are expected to increase in the next decade. Accumulating evidence suggests that chronic hypoxia in the tubulointerstitium represents the final common pathway to end‐stage renal failure, and that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key players in kidney injury. However, ROS and RNS that exceed the physiological levels associated with the pathophysiology of most kidney diseases. The molecules that comprise ROS and RNS play an important role in regulating solute and water reabsorption in the kidney, which is vital for maintaining electrolyte homeostasis and the volume of extracellular fluid. This article reviews the physiological and pathophysiological role of ROS and RNS in normal kidney function and in various kidney diseases.
Collapse
Affiliation(s)
- Yu Ishimoto
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoko Yoshida
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Reiko Inagi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Bell T, Araujo M, Luo Z, Tomlinson J, Leiper J, Welch WJ, Wilcox CS. Regulation of fluid reabsorption in rat or mouse proximal renal tubules by asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase 1. Am J Physiol Renal Physiol 2018; 315:F74-F78. [PMID: 29513072 PMCID: PMC6087787 DOI: 10.1152/ajprenal.00560.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/15/2018] [Accepted: 03/06/2018] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide prevents hypertension yet enhances proximal tubule Na+ reabsorption. Nitric oxide synthase is inhibited by asymmetric dimethylarginine (ADMA) that is metabolized by dimethylarginine dimethylaminohydrolase (DDAH) whose type 1 isoform is expressed abundantly in the proximal tubule (PT). We hypothesize that ADMA metabolized by DDAH-1 inhibits fluid reabsorbtion (Jv) by the proximal tubule. S2 segments of the PT were microperfused between blocks in vivo to assess Jv in anesthetized rats. Compared with vehicle, microperfusion of ADMA or Nω-nitro-l-arginine methyl ester (l-NAME) in the proximal tubule reduced Jv dose dependently. At 10-4 mol/l both reduced Jv by ~40% (vehicle: 3.2 ± 0.7 vs. ADMA: 2.1 ± 0.5, P < 0.01 vs. l-NAME: 1.9 ± 0.4 nl·min-1·mm-1, P < 0.01; n = 10). Selective inhibition of DDAH-1 in rats with intravenous L-257 (60 mg/kg) given 2 h before and L-257 (10-5 mol/l) perfused in the proximal tubule for 5 min reduced Jv by 32 ± 4% (vehicle: 3.2 ± 0.5 vs. L-257: 2.2 ± 0.5 nl·min-1·mm-1; P < 0.01) and increased plasma ADMA by ≈50% (vehicle: 0.46 ± 0.03 vs. L-257: 0.67 ± 0.03 µmol/l, P < 0.0001) without changing plasma symmetric dimethylarginine. Compared with nontargeted control small-interference RNA, knock down of DDAH-1 in mice by 60% with targeted small-interference RNAs (siRNA) reduced Jv by 29 ± 5% (nontargeted siRNA: 2.8 ± 0.20 vs. DDAH-1 knockdown: 1.9 ± 0.31 nl·min-1·mm-1, P < 0.05). In conclusion, fluid reabsorption in the proximal tubule is reduced by tubular ADMA or by blocking its metabolism by DDAH-1. L-257 is a novel regulator of proximal tubule fluid reabsorption.
Collapse
Affiliation(s)
- Tracy Bell
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland
| | - Magali Araujo
- Hypertension Research Center and Division of Nephrology and Hypertension, Georgetown University , Washington, District of Columbia
| | - Zaiming Luo
- Hypertension Research Center and Division of Nephrology and Hypertension, Georgetown University , Washington, District of Columbia
| | - James Tomlinson
- Medical Research Council Clinical Research Center, Royal Postgraduate Medical School and Hammersmith Hospital , London , United Kingdom
| | - James Leiper
- Institute of Cardiovascular and Medical Sciences, University of Glasgow , United Kingdom
| | - William J Welch
- Hypertension Research Center and Division of Nephrology and Hypertension, Georgetown University , Washington, District of Columbia
| | - Christopher S Wilcox
- Hypertension Research Center and Division of Nephrology and Hypertension, Georgetown University , Washington, District of Columbia
| |
Collapse
|
6
|
Effects of Nitric Oxide on Renal Proximal Tubular Na + Transport. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6871081. [PMID: 29181400 PMCID: PMC5664255 DOI: 10.1155/2017/6871081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) has a wide variety of physiological functions in the kidney. Besides the regulatory effects in intrarenal haemodynamics and glomerular microcirculation, in vivo studies reported the diuretic and natriuretic effects of NO. However, opposite results showing the stimulatory effect of NO on Na+ reabsorption in the proximal tubule led to an intense debate on its physiological roles. Animal studies have showed the biphasic effect of angiotensin II (Ang II) and the overall inhibitory effect of NO on the activity of proximal tubular Na+ transporters, the apical Na+/H+ exchanger isoform 3, basolateral Na+/K+ ATPase, and the Na+/HCO3− cotransporter. However, whether these effects could be reproduced in humans remained unclear. Notably, our recent functional analysis of isolated proximal tubules demonstrated that Ang II dose-dependently stimulated human proximal tubular Na+ transport through the NO/guanosine 3′,5′-cyclic monophosphate (cGMP) pathway, confirming the human-specific regulation of proximal tubular transport via NO and Ang II. Of particular importance for this newly identified pathway is its possibility of being a human-specific therapeutic target for hypertension. In this review, we focus on NO-mediated regulation of proximal tubular Na+ transport, with emphasis on the interaction with individual Na+ transporters and the crosstalk with Ang II signalling.
Collapse
|
7
|
Damiano S, Puzio MV, Squillacioti C, Mirabella N, Zona E, Mancini A, Borrelli A, Astarita C, Boffo S, Giordano A, Avallone L, Florio S, Ciarcia R. Effect of rMnSOD on Sodium Reabsorption in Renal Proximal Tubule in Ochratoxin A-Treated Rats. J Cell Biochem 2017; 119:424-430. [PMID: 28590009 DOI: 10.1002/jcb.26197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that represent toxic real threat for human beings and animal health. In this study we evaluated the effect of a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) on oxidative stress and on the alterations of fluid reabsorption in renal proximal tubule (PT) as possible causes of OTA nephrotoxicity. Finally, we have measured the concentration of O2- in the kidney through dihydroethidium assay (DHE) and nitric oxide (NO) concentration through nitrites and nitrates assay. Male Sprague Dawley rats weighing 120-150 g were treated for 14 days by gavage, as follows: Control group, 12 rats received a corresponding amount of saline solution (including 10% DMSO); rMnSOD group, 12 rats treated with rMnSOD (10 µg/kg bw); OTA group, 12 rats treated with OTA (0.5 mg/kg bw) dissolved in 10% DMSO and then scaled to required volume with corn oil; rMnSOD + OTA, 12 rats treated with rMnSOD (10 µg/kg bw) plus OTA (0.5 mg/kg bw). Our results have shown that rMnSOD restores the alteration of reabsorption in PT in rats treated with OTA plus rMnSOD, probably through the response to pressure natriuresis, where nitric oxide plays a key role. Moreover, rMnSOD prevents the nephrotoxicity induced by OTA probably restoring the balance between superoxide and NO that is most probably the cause of hypertension and renal functional alterations through the inhibition of NO synthase. In conclusion these data provide important information for understanding of mechanism of toxic action of OTA. J. Cell. Biochem. 119: 424-430, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Maria V Puzio
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Caterina Squillacioti
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Enrica Zona
- Department of Cardio-Thoracic and Respiratory Sciences, Second University of Naples, Naples, Italy
| | - Aldo Mancini
- Laedhexa Biotechnologies Inc., Laedhexa Biotechnologies Inc., San Francisco, California
| | - Antonella Borrelli
- Department of Molecular Biology and Biotherapy, National Cancer Institute "G. Pascale" Naples, Naples, Italy
| | - Carlo Astarita
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Luigi Avallone
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Salvatore Florio
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| |
Collapse
|
8
|
Gonzalez-Vicente A, Garvin JL. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron. Antioxidants (Basel) 2017; 6:antiox6020023. [PMID: 28333068 PMCID: PMC5488003 DOI: 10.3390/antiox6020023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂-), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂-) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂-, ONO₂-, and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂- in the macula densa on tubuloglomerular feedback.
Collapse
Affiliation(s)
- Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Sakolish C, Mahler GJ. A novel microfluidic device to model the human proximal tubule and glomerulus. RSC Adv 2017. [DOI: 10.1039/c6ra25641d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel multi-channel microfluidic device to model human glomerular filtration and proximal tubular re-uptake.
Collapse
|
10
|
Srisawat U, Kongrat S, Muanprasat C, Chatsudthipong V. Losartan and Sodium Nitroprusside Effectively Protect against Renal Impairments after Ischemia and Reperfusion in Rats. Biol Pharm Bull 2016; 38:753-62. [PMID: 25947921 DOI: 10.1248/bpb.b14-00860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemia and subsequent reperfusion are known to impair renal function. We examined several agents that might prevent renal impairment or enhance the recovery of renal function after ischemia/reperfusion injury in rats. Different degrees of preventive effects were observed in rats treated with captopril, BQ-123 (endothelin type A receptor antagonist), sodium nitroprusside (SNP, a nitric oxide donor), and losartan (angiotensin II type 1 receptor antagonist). Only minimal changes in renal morphology were observed after treatment with losartan, SNP, captopril, and BQ-123 compared with control animals. On the other hand, lesions were prominent in the N(G)-nitro-L-arginine-methyl ester (L-NAME)- and L-arginine-treated rats. The Na(+)-K(+) ATPase activity of ischemic kidneys was, however, preserved in all treatment groups, except in those treated with L-arginine and L-NAME, which showed a marked reduction in Na(+)-K(+) ATPase activity. Our post-treatment data suggest that losartan and SNP have the greatest potential for therapeutic use to mitigate post-ischemic renal damage and functional impairment.
Collapse
Affiliation(s)
- Umarat Srisawat
- Department of Physiology, Faculty of Science, Mahidol University
| | | | | | | |
Collapse
|
11
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Stover JF, Belli A, Boret H, Bulters D, Sahuquillo J, Schmutzhard E, Zavala E, Ungerstedt U, Schinzel R, Tegtmeier F. Nitric oxide synthase inhibition with the antipterin VAS203 improves outcome in moderate and severe traumatic brain injury: a placebo-controlled randomized Phase IIa trial (NOSTRA). J Neurotrauma 2014; 31:1599-606. [PMID: 24831445 DOI: 10.1089/neu.2014.3344] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Traumatic brain injury (TBI) is an important cause of death and disability. Safety and pharmacodynamics of 4-amino-tetrahydrobiopterin (VAS203), a nitric oxide (NO)-synthase inhibitor, were assessed in TBI in an exploratory Phase IIa study (NOSynthase Inhibition in TRAumatic brain injury=NOSTRA). The study included 32 patients with TBI in six European centers. In a first open Cohort, eight patients received three 12-h intravenous infusions of VAS203 followed by a 12-h infusion-free interval over 3 days (total dose 15 mg/kg). Patients in Cohorts 2 and 3 (24) were randomized 2:1 to receive either VAS203 or placebo as an infusion for 48 or 72 h, respectively (total dose 20 and 30 mg/kg). Effects of VAS203 on intracranial pressure (ICP), cerebral perfusion pressure (CPP), brain metabolism using microdialysis, and the therapy intensity level (TIL) were end points. In addition, exploratory analysis of the extended Glasgow Outcome Score (eGOS) after 6 months was performed. Metabolites of VAS203 were detected in cerebral microdialysates. No significant differences between treatment and placebo groups were observed for ICP, CPP, and brain metabolism. TIL on day 6 was significantly decreased (p<0.04) in the VAS203 treated patients. The eGOS after 6 months was significantly higher in treated patients compared with placebo (p<0.01). VAS203 was not associated with hepatic, hematologic, or cardiac toxic effects. At the highest dose administered, four of eight patients receiving VAS203 showed transitory acute kidney injury (stage 2-3). In conclusion, the significant improvement in clinical outcome indicates VAS203-mediated neuroprotection after TBI. At the highest dose, VAS203 is associated with a risk of acute kidney injury.
Collapse
Affiliation(s)
- John F Stover
- 1 University Hospital Zuerich , Zuerich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
14
|
Moosavi SM, Bagheri Z, Gheitasi I, Roozbeh J. Pre- or post-treatment with aminoguanidine attenuates a renal distal acidification defect induced by acute ureteral obstruction in rats. Can J Physiol Pharmacol 2013; 91:920-8. [DOI: 10.1139/cjpp-2013-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute unilateral ureteral obstruction (UUO) impairs distal nephron acid secretion and stimulates expression of inducible nitric oxide synthase (iNOS) in post-obstructed kidney (POK). This study investigated the influence of pre- or post-treatment with aminoguanidine as a selective iNOS inhibitor on UUO-induced renal functional disturbances. To induce acute UUO, the left ureter in rats was ligated and released after 24 h. Then, a 3 h clearance period followed by bicarbonate loading and thereafter a 30 min clearance period were allocated. Aminoguanidine was administered either prior to the UUO induction or after release of the obstruction in the different rat groups, while untreated and sham groups received normal saline. During the first clearance period, fractional bicarbonate excretion and urinary pH increased markedly in the POK of the untreated group compared with the left kidney of sham group, and a large drop in the difference between urine and blood pCO2 (U–B pCO2) was observed after bicarbonate loading; all of these parameters were ameliorated in the pre-treated and post-treated groups. However, the UUO-induced decreases in creatinine clearance, sodium reabsorption, urine osmolality, and free-water reabsorption in the POK were attenuated only in the post-treated group. Therefore, the in vivo application of a selective iNOS inhibitor partially improved the acute UUO-induced distal nephron acidification defect, while post-treatment but not pre-treatment with aminoguanidine ameliorated decrements of glomerular filtration, sodium reabsorption, and urine-concentrating ability.
Collapse
Affiliation(s)
- S. Mostafa Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| | - Zohreh Bagheri
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| | - Izadpanah Gheitasi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| | - Jamshid Roozbeh
- Department of Medicine (Nephrology Division) & Nephro-Urology Research Center, The Medical School, Shiraz University of Medical Sciences, Shiraz 71365-1689, Iran
| |
Collapse
|
15
|
Prêtre G, Olivera N, Cédola M, Haase S, Alberdi L, Brihuega B, Gómez RM. Role of inducible nitric oxide synthase in the pathogenesis of experimental leptospirosis. Microb Pathog 2011; 51:203-8. [DOI: 10.1016/j.micpath.2011.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 01/19/2023]
|
16
|
Kommareddy M, McAllister RM, Ganjam VK, Turk JR, Laughlin MH. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition. Vet Pathol 2010; 48:1125-33. [PMID: 21160023 DOI: 10.1177/0300985810391109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.
Collapse
Affiliation(s)
- M Kommareddy
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
17
|
Panico C, Luo Z, Damiano S, Artigiano F, Gill P, Welch WJ. Renal proximal tubular reabsorption is reduced in adult spontaneously hypertensive rats: roles of superoxide and Na+/H+ exchanger 3. Hypertension 2009; 54:1291-7. [PMID: 19805644 DOI: 10.1161/hypertensionaha.109.134783] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proximal tubule reabsorption is regulated by systemic and intrinsic mechanisms, including locally produced autocoids. Superoxide, produced by NADPH oxidase enhances NaCl transport in the loop of Henle and the collecting duct, but its role in the proximal tubule is unclear. We measured proximal tubule fluid reabsorption (Jv) in WKY rats and compared that with Jv in the spontaneously hypertensive rat (SHR), a model of enhanced renal superoxide generation. Rats were treated with the NADPH oxidase inhibitor apocynin (Apo) or with small interfering RNA for p22(phox), which is the critical subunit of NADPH oxidase. Jv was lower in SHR compared with Wistar-Kyoto rats (WKY; WKY: 2.3+/-0.3 vs SHR: 1.1+/-0.2 nL/min per millimeter; n=9 to 11; P<0.001). Apo and small interfering RNA to p22(phox) normalized Jv in SHRs but had no effect in WKY rats. Jv was reduced in proximal tubules perfused with S-1611, a highly selective inhibitor of the Na(+)/H(+) exchanger 3, the major Na(+) uptake pathway in the proximal tubule, in WKY rats but not in SHRs. Pretreatment with Apo restored an effect of S-1611 to reduce Jv in the SHRs (SHR+Apo: 2.9+/-0.4 vs SHR+Apo+S-1611: 1.0+/-0.3 nL/min per millimeter; P<0.001). However, because expression of the Na(+)/H(+) exchanger 3 was similar between SHR and WKY rats, this suggests that superoxide affects Na(+)/H(+) exchanger 3 activity. Direct microperfusion of Tempol or Apo into the proximal tubule also restored Jv in SHRs. In conclusion, superoxide generated by NADPH oxidase inhibits proximal tubule fluid reabsorption in SHRs. This finding implies that proximal tubule fluid reabsorption is regulated by redox balance, which may have profound effects on ion and fluid homeostasis in the hypertensive kidney.
Collapse
Affiliation(s)
- Carolina Panico
- Department of Medicine, Georgetown University, 4000 Reservoir Rd, Building D-395, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
18
|
Doi K, Leelahavanichkul A, Yuen PST, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 2009; 119:2868-78. [PMID: 19805915 DOI: 10.1172/jci39421] [Citation(s) in RCA: 415] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sepsis is characterized by a severe inflammatory response to infection, and its complications, including acute kidney injury, can be fatal. Animal models that correctly mimic human disease are extremely valuable because they hasten the development of clinically useful therapeutics. Too often, however, animal models do not properly mimic human disease. In this Review, we outline a bedside-to-bench-to-bedside approach that has resulted in improved animal models for the study of sepsis - a complex disease for which preventive and therapeutic strategies are unfortunately lacking. We also highlight a few of the promising avenues for therapeutic advances and biomarkers for sepsis and sepsis-induced acute kidney injury. Finally, we review how the study of drug targets and biomarkers are affected by and in turn have influenced these evolving animal models.
Collapse
Affiliation(s)
- Kent Doi
- Department of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
19
|
Wilcox CS, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 2009; 60:418-69. [PMID: 19112152 DOI: 10.1124/pr.108.000240] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
20
|
Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. ACTA ACUST UNITED AC 2008; 61:223-42. [PMID: 18986801 DOI: 10.1016/j.etp.2008.09.003] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 02/07/2023]
Abstract
cis-Diamminedichloroplatinum (II) (cisplatin) is an important chemotherapeutic agent useful in the treatment of several cancers; however, it has several side effects such as nephrotoxicity. The role of the oxidative and nitrosative stress in cisplatin-induced nephrotoxicity is additionally supported by the protective effect of several free radical scavengers and antioxidants. Furthermore, in in vitro experiments, antioxidants or reactive oxygen species (ROS) scavengers have a cytoprotective effect on cells exposed to cisplatin. Recently, the participation of nitrosative stress has been more explored in cisplatin-induced renal damage. The use of a water-soluble Fe(III) porphyrin complex able to metabolize peroxynitrite (ONOO(-)) has demonstrated that this anion contributes to both in vivo and in vitro cisplatin-induced toxicity. ONOO(-) is produced when nitric oxide (NO*) reacts with superoxide anion (O(2)(*-)); currently, there are evidences suggesting alterations in NO* production after cisplatin treatment and the evidence appear to NO* has a toxic effect. This article goes through current evidence of the mechanism by more than a few compounds have beneficial effects on cisplatin-induced nephrotoxicity, contribute to understanding the role of oxidative and nitrosative stress and suggest several points as part of the mechanism of cisplatin toxicity.
Collapse
Affiliation(s)
- Yolanda I Chirino
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Tlalpan, DF, Mexico.
| | | |
Collapse
|
21
|
Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol 2008; 294:F1373-80. [DOI: 10.1152/ajprenal.00613.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bartter's syndrome represents a group of hereditary salt- and water-losing renal tubulopathies caused by loss-of-function mutations in proteins mediating or regulating salt transport in the thick ascending limb (TAL) of Henle's loop. Mutations in the ROMK channel cause type II antenatal Bartter's syndrome that presents with maternal polyhydramnios and postnatal life-threatening volume depletion. We have developed a colony of Romk null mice showing a Bartter-like phenotype and with increased survival to adulthood, suggesting the activation of compensatory mechanisms. To test the hypothesis that upregulation of Na+-transporting proteins in segments distal to the TAL contributes to compensation, we studied expression of salt-transporting proteins in ROMK-deficient ( Romk−/−) mice. Plasma aldosterone was 40% higher and urinary PGE2 excretion was 1.5-fold higher in Romk−/− compared with wild-type littermates. Semiquantitative immunoblotting of kidney homogenates revealed decreased abundances of proximal tubule Na+/H+ exchanger (NHE3) and Na+-Pi cotransporter (NaPi-IIa) and TAL-specific Na+-K+-2Cl−-cotransporter (NKCC2/BSC1) in Romk−/− mice, while the distal convoluted tubule (DCT)-specific Na+-Cl− cotransporter (NCC/TSC) was markedly increased. The abundance of the α-,β-, and γ-subunits of the epithelial Na+ channel (ENaC) was slightly increased, although only differences for γ-ENaC reached statistical significance. Morphometry revealed a fourfold increase in the fractional volume of DCT but not of connecting tubule (CNT) and collecting duct (CCD). Consistently, CNT and CD of Romk−/− mice revealed no apparent increase in the luminal abundance of the ENaC compared with those of wild-type mice. These data suggest that the loss of ROMK-dependent Na+ absorption in the TAL is compensated predominately by upregulation of Na+ transport in downstream DCT cells. These adaptive changes in Romk−/− mice may help to limit renal Na+ loss, and thereby, contribute to survival of these mice.
Collapse
|
22
|
Ma SK, Kang JS, Bae EH, Choi C, Lee J, Kim SH, Choi KC, Kim SW. EFFECTS OF VOLUME DEPLETION AND NaHCO3LOADING ON THE EXPRESSION OF Na+/H+EXCHANGER ISOFORM 3, Na+ : HCO COTRANSPORTER TYPE 1 AND NITRIC OXIDE SYNTHASE IN RAT KIDNEY. Clin Exp Pharmacol Physiol 2008; 35:262-7. [PMID: 18067590 DOI: 10.1111/j.1440-1681.2007.04837.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seong Kwon Ma
- Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kempson S, Thompson N, Pezzuto L, Glenn Bohlen H. Nitric oxide production by mouse renal tubules can be increased by a sodium-dependent mechanism. Nitric Oxide 2007; 17:33-43. [PMID: 17604190 PMCID: PMC2045156 DOI: 10.1016/j.niox.2007.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/15/2007] [Accepted: 05/20/2007] [Indexed: 11/29/2022]
Abstract
Renal tubules process large amounts of NaCl that other investigators indicate increases tubular generation of nitric oxide. We questioned whether medullary or superficial cortical tubules would have the greater increase in nitric oxide concentration, [NO], when stressed by sodium and if the sodium/calcium exchanger was involved. Sodium stress in proximal tubules is due to the large amount of sodium absorbed and medullary tubules exist in a hypertonic sodium environment. To sodium stress the tissue, mouse kidney slices were exposed to monensin to allow passive entry of sodium ions from isotonic media and in separate studies, 400 and 600 mOsm NaCl was used. [NO] was measured with microelectrodes. Monensin (10 microM) caused a sustained increase in medullary and cortical [NO] to approximately 180% of control and 400 mOsm NaCl caused a similar initial increase in [NO] that then subsided. 600 mOsm NaCl caused a more sustained increase in [NO] of >250% of control. L-NAME strongly attenuated the increased [NO] during sodium stress. The increase in [NO] during NaCl elevation was due to sodium ions because mannitol hyperosmolarity caused approximately 20% of the increase in [NO]. Entry of sodium during NaCl hyperosmolarity was through bumetanide sensitive channels because the drug suppressed increased [NO]. Blockade of the sodium/calcium ion exchanger strongly suppressed the increased [NO] during monensin, to increase sodium entry into cells, and the elevated NaCl concentration. The data support a sodium-NO linkage that increased NO signaling in proportion to sodium stress by cortical tubules and was highly dependent upon sodium-calcium exchange.
Collapse
Affiliation(s)
- Stephen Kempson
- Department of Cellular and Integrative Physiology, Indiana University Medical School, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The discovery of aquaporin-1 (AQP1) explained the long-standing biophysical question of how water specifically crosses biological membranes. These studies led to the identification of a whole new family of membrane proteins, the aquaporin water channels. At present, at least eight aquaporins are expressed at distinct sites in the kidney and four members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. In the present review, a number of inherited and acquired conditions characterized by urinary concentration defects as well as common diseases associated with severe water retention are discussed with relation to the role of aquaporins in regulation and dysregulation of renal water transport.
Collapse
Affiliation(s)
- S Nielsen
- The Water and Salt Research Center, University of Aarhus, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
25
|
Rudnicki M, Eder S, Perco P, Enrich J, Scheiber K, Koppelstätter C, Schratzberger G, Mayer B, Oberbauer R, Meyer TW, Mayer G. Gene expression profiles of human proximal tubular epithelial cells in proteinuric nephropathies. Kidney Int 2006; 71:325-35. [PMID: 17183245 DOI: 10.1038/sj.ki.5002043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In kidney disease renal proximal tubular epithelial cells (RPTEC) actively contribute to the progression of tubulointerstitial fibrosis by mediating both an inflammatory response and via epithelial-to-mesenchymal transition. Using laser capture microdissection we specifically isolated RPTEC from cryosections of the healthy parts of kidneys removed owing to renal cell carcinoma and from kidney biopsies from patients with proteinuric nephropathies. RNA was extracted and hybridized to complementary DNA microarrays after linear RNA amplification. Statistical analysis identified 168 unique genes with known gene ontology association, which separated patients from controls. Besides distinct alterations in signal-transduction pathways (e.g. Wnt signalling), functional annotation revealed a significant upregulation of genes involved in cell proliferation and cell cycle control (like insulin-like growth factor 1 or cell division cycle 34), cell differentiation (e.g. bone morphogenetic protein 7), immune response, intracellular transport and metabolism in RPTEC from patients. On the contrary we found differential expression of a number of genes responsible for cell adhesion (like BH-protocadherin) with a marked downregulation of most of these transcripts. In summary, our results obtained from RPTEC revealed a differential regulation of genes, which are likely to be involved in either pro-fibrotic or tubulo-protective mechanisms in proteinuric patients at an early stage of kidney disease.
Collapse
Affiliation(s)
- M Rudnicki
- Division of Nephrology, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tsuruoka S, Watanabe S, Purkerson JM, Fujimura A, Schwartz GJ. Endothelin and nitric oxide mediate adaptation of the cortical collecting duct to metabolic acidosis. Am J Physiol Renal Physiol 2006; 291:F866-73. [PMID: 16705153 DOI: 10.1152/ajprenal.00027.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin (ET) and nitric oxide (NO) modulate ion transport in the kidney. In this study, we defined the function of ET receptor subtypes and the NO guanylate cyclase signaling pathway in mediating the adaptation of the rabbit cortical collecting duct (CCD) to metabolic acidosis. CCDs were perfused in vitro and incubated for 3 h at pH 6.8, and bicarbonate transport or cell pH was measured before and after acid incubation. Luminal chloride was reversibly removed to isolate H(+) and HCO(3)(-) secretory fluxes and to raise the pH of beta-intercalated cells. Acid incubation caused reversal of polarity of net HCO(3)(-) transport from secretion to absorption, comprised of a 40% increase in H(+) secretion and a 75% decrease in HCO(3)(-) secretion. The ET(B) receptor antagonist BQ-788, as well as the NO synthase inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME), attenuated the adaptive decrease in HCO(3)(-) secretion by 40%, but only BQ-788 inhibited the adaptive increase in H(+) secretion. There was no effect of inactive d-NAME or the ET(A) receptor antagonist BQ-123. Both BQ-788 and l-NAME inhibited the acid-induced inactivation (endocytosis) of the apical Cl(-)/HCO(3)(-) exchanger. The guanylate cyclase inhibitor LY-83583 and cGMP-dependent protein kinase inhibitor KT-5823 affected HCO(3)(-) transport similarly to l-NAME. These data indicate that signaling via the ET(B) receptor regulates the adaptation of the CCD to metabolic acidosis and that the NO guanylate cyclase component of ET(B) receptor signaling mediates downregulation of Cl(-)/HCO(3)(-) exchange and HCO(3)(-) secretion.
Collapse
Affiliation(s)
- Shuichi Tsuruoka
- Department of Pharmacology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | |
Collapse
|
27
|
Abstract
In this review, we outline the application and contribution of transgenic technology to establishing the genetic basis of blood pressure regulation and its dysfunction. Apart from a small number of examples where high blood pressure is the result of single gene mutation, essential hypertension is the sum of interactions between multiple environmental and genetic factors. Candidate genes can be identified by a variety of means including linkage analysis, quantitative trait locus analysis, association studies, and genome-wide scans. To test the validity of candidate genes, it is valuable to model hypertension in laboratory animals. Animal models generated through selective breeding strategies are often complex, and the underlying mechanism of hypertension is not clear. A complementary strategy has been the use of transgenic technology. Here one gene can be selectively, tissue specifically, or developmentally overexpressed, knocked down, or knocked out. Although resulting phenotypes may still be complicated, the underlying genetic perturbation is a starting point for identifying interactions that lead to hypertension. We recognize that the development and maintenance of hypertension may involve many systems including the vascular, cardiac, and central nervous systems. However, given the central role of the kidney in normal and abnormal blood pressure regulation, we intend to limit our review to models with a broadly renal perspective.
Collapse
Affiliation(s)
- Linda J Mullins
- Molecular Physiology Laboratory, Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
28
|
Wang B, Yang L, Yan HL, Wang M, Xiao JG. Effect of Tetrandrine on Calcium-Dependent Tumour Necrosis Factor-alpha Production in Glia-Neurone Mixed Cultures. Basic Clin Pharmacol Toxicol 2005; 97:244-8. [PMID: 16176561 DOI: 10.1111/j.1742-7843.2005.pto_115.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumour necrosis factor-alpha is believed to have a deleterious role in the pathophysiology of brain injury. Tetrandrine has protective effect on neuronal cells, however, the mechanisms involved in its action have not been clearly established. The aim of this study was to investigate the role of tetrandrine on calcium-dependent tumour necrosis factor-alpha production in glia-neurone mixed cultures. Glia-neurone mixed cultures were treated by addition of Ca2+ regulating agents for a period of 6 hr. Tetrandrine or/and TMB-8 were added 30 min. before the stimulation. The supernatant tumour necrosis factor-alpha levels were quantified by enzyme-linked immunosorbent assay. Exposure of lipopolysaccharide 10 and 100 ng/ml caused significant increase in tumour necrosis factor-alpha production respectively, with no alteration in cultures treated with 1 ng/ml lipopolysaccharide. Glia-neurone mixed cultures exhibited a marked elevation in tumour necrosis factor-alpha production after exposure to CaCl2, KCl, thapsigargin, BHQ and norepinephrine in the presence of lipopolysaccharide at 1 ng/ml respectively. Tetrandrine 0.3, 1, and 3 microM concentration-dependently reduced tumour necrosis factor-alpha production evoked by CaCl2 or KCl. Tetrandrine preincubation had no significant effect on the response to Ca2+-ATPase inhibitor thapsigargin or BHQ. Norepinephrine-induced tumour necrosis factor-alpha production was significantly reduced by tetrandrine and almost abolished by combination of tetrandrine and intracellular Ca2+ release inhibitor TMB-8. These results suggested that tetrandrine at a concentration of 0.3, 1, or 3 microM inhibited tumour necrosis factor-alpha production induced by Ca2+ entry in glia-neurone mixed cultures.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, 210029, China.
| | | | | | | | | |
Collapse
|
29
|
Lortie MJ, Satriano J, Gabbai FB, Thareau S, Khang S, Deng A, Pizzo DP, Thomson SC, Blantz RC, Munger KA. Production of arginine by the kidney is impaired in a model of sepsis: early events following LPS. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1434-40. [PMID: 15308488 DOI: 10.1152/ajpregu.00373.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS) is used experimentally to elicit the innate physiological responses observed in human sepsis. We have previously shown that LPS causes depletion of plasma arginine before inducible nitric oxide synthase (iNOS) activity, indicating that changes in arginine uptake and/or production rather than enhanced consumption are responsible. Because the kidney is the primary source of circulating arginine and renal failure is a hallmark of septicemia, we determined the time course of changes in arginine metabolism and kidney function relative to iNOS expression. LPS given intravenously to anesthetized rats caused a decrease in mean arterial blood pressure after 120 min that coincided with increased plasma nitric oxide end products (NOx) and iNOS expression in lung and liver. Interestingly, impairment of renal function preceded iNOS activity by 30–60 min and occurred in tandem with decreased renal arginine production. The baseline rate of renal arginine production was ∼60 μmol·h−1·kg−1, corresponding to an apparent plasma half-life of ∼20 min, and decreased by one-half within 60 min of LPS. Calculations based on the systemic production and clearance show that normally only 5% of kidney arginine output is destined to become nitric oxide and that <25% of LPS-impaired renal production was converted to NOx in the first 4 h. In addition, we provide novel observations indicating that the kidney appears refractory to iNOS induction by LPS because no discernible enhancement of renal NOx production occurred within 4 h, and iNOS expression in the kidney was muted compared with that in liver or lung. These studies demonstrate that the major factor responsible for the rapid decrease in extracellular arginine content following LPS is impaired production by the kidney, a phenomenon that appears linked to reduced renal perfusion.
Collapse
Affiliation(s)
- Mark J Lortie
- Division of Nephrology and Hypertension, School of Medicine, University of California-San Diego, San Diego, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Newaz MA, Ranganna K, Oyekan AO. Relationship between PPARalpha activation and NO on proximal tubular Na+ transport in the rat. BMC Pharmacol 2004; 4:1. [PMID: 15018640 PMCID: PMC362873 DOI: 10.1186/1471-2210-4-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 02/06/2004] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) regulates renal proximal tubular (PT) Na+ handling through modulation of Na+-K+ ATPase. Peroxisome Proliferator Activated Receptor alpha (PPARalpha), a nuclear transcription factor, is expressed in PTs and has been reported to influence NO generation/activity in renal tissues. This study tested the hypothesis that PPARalpha interacts with NO and thereby affects renal tubular Na+ transport. Urinary excretion of nitrite (UNOXV) and Na+ (UNaV) and PT Na+ transport (Na+-K+ ATPase activity) were determined in rats treated with clofibrate (250 mg/kg i.p) or WY14643 (45 mg/kg; i.p.), a PPARalpha ligand, 2% NaCl (orally), clofibrate/NaCl, L-NAME, an inhibitor of NO production (100 mg/kg; orally), L-NAME/Clofibrate. RESULTS Clofibrate or WY14643 increased PPARalpha expression by 106 +/- 7% (p < 0.05) and 113 +/- 8% (p < 0.05), respectively. Similarly, clofibrate and WY14643 increased expression of MCAD, a downstream target protein of PPARalpha by 123 +/- 8% (p < 0.05) and 143 +/- 8% (p < 0.05), respectively. L-NAME attenuated clofibrate-induced increase in PPARalpha expression by 27 +/- 2% (p < 0.05) but did not affect MCAD expression. UNOXV excretion increased 3-4 fold in rats treated with clofibrate, WY14643 or NaCl from 44 +/- 7 to 170 +/- 15, 144 +/- 18 or 132 +/- 11 nmol/24 hr, respectively (p < 0.05). Similarly, clofibrate, WY14643 or NaCl elicited a 2-5 fold increase in UNaV. L-NAME significantly reduced basal UNOXV and UNaV and abolished the clofibrate-induced increase. Clofibrate, WY14643, NaCl or clofibrate + NaCl treatment reduced Na+-K+-ATPase activity in the PT by 89 +/- 23, 62 +/- 10, 43 +/- 9 and 82 +/- 15% (p < 0.05), respectively. On the contrary, L-NAME or ODQ, inhibitor of sGC, abolished the inhibition of Na+-K+-ATPase activity by clofibrate (p < 0.05). Clofibrate either alone or with NaCl elicited approximately 2-fold increase in the expression of the alpha1 subunit of Na+-K+ ATPase in the PT while L-NAME abolished clofibrate-induced increase in Na+-K+ ATPase expression. CONCLUSION These data suggest that PPARalpha activation, through increased NO generation promotes renal excretion of Na+ through reduced Na+-K+ ATPase activity in the PT probably via post translational modification of Na+-K+-ATPase.
Collapse
Affiliation(s)
- Mohammad A Newaz
- College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004. USA
| | - Kasturi Ranganna
- College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004. USA
| | - Adebayo O Oyekan
- College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004. USA
| |
Collapse
|
31
|
Mungrue IN, Bredt DS, Stewart DJ, Husain M. From molecules to mammals: what's NOS got to do with it? ACTA ACUST UNITED AC 2004; 179:123-35. [PMID: 14510775 DOI: 10.1046/j.1365-201x.2003.01182.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide synthases (NOSs) generate nitric oxide (NO) and the by-product l-citrulline, via the catalytic combination of l-arginine and molecular oxygen. In mammals, there are three NOS genes: nNOS (NOS1), iNOS (NOS2) and eNOS (NOS3). The molecular structure, enzymology and pharmacology of these enzymes have been well defined, and reveal critical roles for the NOS system in a variety of important processes. The studies of NOS enzymes using knockout and transgenic mouse models have provided an invaluable contribution, highlighting critical roles in neuronal, renal, pulmonary, gastro-intestinal, skeletal muscle, reproductive and cardiovascular biology. This review will outline the data gleaned from complementary knockout and transgenic over-expression models in mice, and focus on the interactions between NOS enzymes and pathophysiology of the vascular system. These studies are a paradigm for the near future, which will involve the translation of an enormous amount of genomic data into physiological insights that penetrate the realms of both health care and biology.
Collapse
Affiliation(s)
- I N Mungrue
- The Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
32
|
Turban S, Wang XY, Knepper MA. Regulation of NHE3, NKCC2, and NCC abundance in kidney during aldosterone escape phenomenon: role of NO. Am J Physiol Renal Physiol 2003; 285:F843-51. [PMID: 12837683 DOI: 10.1152/ajprenal.00110.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escape from aldosterone-induced renal NaCl retention is an important homeostatic mechanism in pathophysiological states in which plasma aldosterone levels are inappropriately elevated, e.g., in primary aldosteronism. Our previous studies demonstrated that the escape process occurs largely as a result of a marked suppression of the abundance of the thiazide-sensitive Na-Cl cotransporter (NCC) of the distal convoluted tubule but have also demonstrated a paradoxical increase in the protein abundance of the apical Na/H exchanger of the proximal tubule (NHE3). In the present study, we confirmed the increase in NHE3 and also showed that a similar increase in NHE3 protein abundance occurs in escape from ANG II-mediated NaCl retention. To investigate the potential role of nitric oxide (NO) in the observed upregulation of NHE3, we repeated the aldosterone escape experiment with a superimposed infusion of a NO synthase inhibitor, NG-nitro-l-arginine methyl ester (l-NAME). l-NAME infusion abolished the increase in NHE3 protein abundance. Furthermore, in a different experiment, NO synthase inhibition uncovered an associated decrease in the abundance of the Na-K-2Cl cotransporter (NKCC2) of the thick ascending limb, not seen with simple aldosterone escape. However, NO synthase inhibition did not block the decrease in NCC abundance normally seen with aldosterone escape. Furthermore, l-NAME infusion in aldosterone-treated rats markedly decreased both NHE3 and NKCC2 protein abundance, without changes in the corresponding mRNA levels. We conclude that NHE3 and NKCC2 protein abundances in kidney are positively regulated by NO and that the increase in NHE3 abundance seen in the aldosterone escape phenomenon is NO dependent.
Collapse
Affiliation(s)
- Sharon Turban
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Broderick KE, MacPherson MR, Regulski M, Tully T, Dow JAT, Davies SA. Interactions between epithelial nitric oxide signaling and phosphodiesterase activity in Drosophila. Am J Physiol Cell Physiol 2003; 285:C1207-18. [PMID: 12853288 DOI: 10.1152/ajpcell.00123.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Signaling by nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) modulates fluid transport in Drosophila melanogaster. Expression of an inducible transgene encoding Drosophila NO synthase (dNOS) increases both NOS activity in Malpighian (renal) tubules and DNOS protein in both type I (principal) and type II (stellate) cells. However, cGMP content is increased only in principal cells. DNOS overexpression results in elevated basal rates of fluid transport in the presence of the phosphodiesterase (PDE) inhibitor, Zaprinast. Direct assay of tubule cGMP-hydrolyzing phosphodiesterase (cG-PDE) activity in wild-type and dNOS transgenic lines shows that cG-PDE activity is Zaprinast sensitive and is elevated upon dNOS induction. Zaprinast treatment increases cGMP content in tubules, particularly at the apical regions of principal cells, suggesting localization of Zaprinast-sensitive cG-PDE to these areas. Potential cross talk between activated NO/cGMP and calcium signaling was assessed in vivo with a targeted aequorin transgene. Activated DNOS signaling alone does not modify either neuropeptide (CAP2b)- or cGMP-induced increases in cytosolic calcium levels. However, in the presence of Zaprinast, both CAP2b-and cGMP-stimulated calcium levels are potentiated upon DNOS overexpression. Use of the calcium channel blocker, verapamil, abolishes the Zaprinast-induced transport phenotype in dNOS-overexpressing tubules. Molecular genetic intervention in the NO/cGMP signaling pathway has uncovered a pivotal role for cell-specific cG-PDE in regulating the poise of the fluid transporting Malpighian tubule via direct effects on intracellular cGMP concentration and localization and via interactions with calcium signaling mechanisms.
Collapse
Affiliation(s)
- Kate E Broderick
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Glasgow G11 6NU, Scotland, UK
| | | | | | | | | | | |
Collapse
|
34
|
Ortiz PA, Garvin JL. Cardiovascular and renal control in NOS-deficient mouse models. Am J Physiol Regul Integr Comp Physiol 2003; 284:R628-38. [PMID: 12571071 DOI: 10.1152/ajpregu.00401.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) plays an essential role in the maintenance of cardiovascular and renal homeostasis. Endogenous NO is produced by three different NO synthase (NOS) isoforms: endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS). To investigate which NOS is responsible for NO production in different tissues, NOS knockout (-/-) mice have been generated for the three isoforms. This review focuses on the regulation of cardiovascular and renal function in relation to blood pressure homeostasis in the different NOS-/- mice. Although regulation of vascular tone and cardiac function in eNOS-/- has been extensively studied, far less is known about renal function in these mice. eNOS-/- mice are hypertensive, but the mechanism responsible for their high blood pressure is still not clear. Less is known about cardiovascular and renal control in nNOS-/- mice, probably because their blood pressure is normal. Recent data suggest that nNOS plays important roles in cardiac function, renal homeostasis, and regulation of vascular tone under certain conditions, but these are only now beginning to be studied. Inasmuch as iNOS is absent from the cardiovascular system under physiological conditions, it may become important to blood pressure regulation only during pathological conditions related to inflammatory processes. However, iNOS is constitutively expressed in the kidney, where its function is largely unknown. Overall, the study of NOS knockout mice has been very useful and produced many answers, but it has also raised new questions. The appearance of compensatory mechanisms suggests the importance of the different isoforms to specific processes, but it also complicates interpretation of the data. In addition, deletion of a single gene may have physiologically significant effects in addition to those being studied. Thus the presence or absence of a specific phenotype may not reflect the most important physiological function of the absent gene.
Collapse
Affiliation(s)
- Pablo A Ortiz
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | |
Collapse
|