1
|
Role of the renin-angiotensin system in kidney development and programming of adult blood pressure. Clin Sci (Lond) 2020; 134:641-656. [PMID: 32219345 DOI: 10.1042/cs20190765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Adverse events during fetal life such as insufficient protein intake or elevated transfer of glucocorticoid to the fetus may impact cardiovascular and metabolic health later in adult life and are associated with increased incidence of type 2 diabetes, ischemic heart disease and hypertension. Several adverse factors converge and suppress the fetal renin-angiotensin-aldosterone system (RAAS). The aim of this review is to summarize data on the significance of RAAS for kidney development and adult hypertension. Genetic inactivation of RAAS in rodents at any step from angiotensinogen to angiotensin II (ANGII) type 1 receptor (AT1) receptors or pharmacologic inhibition leads to complex developmental injury to the kidneys that has also been observed in human case reports. Deletion of the 'protective' arm of RAAS, angiotensin converting enzyme (ACE) 2 (ACE-2) and G-protein coupled receptor for Angiotensin 1-7 (Mas) receptor does not reproduce the AT1 phenotype. The changes comprise fewer glomeruli, thinner cortex, dilated tubules, thicker arterioles and arteries, lack of vascular bundles, papillary atrophy, shorter capillary length and volume in cortex and medulla. Altered activity of systemic and local regulators of fetal-perinatal RAAS such as vitamin D and cyclooxygenase (COX)/prostaglandins are associated with similar injuries. ANGII-AT1 interaction drives podocyte and epithelial cell formation of vascular growth factors, notably vascular endothelial growth factor (VEGF) and angiopoietins (Angpts), which support late stages of glomerular and cortical capillary growth and medullary vascular bundle formation and patterning. RAAS-induced injury is associated with lower glomerular filtration rate (GFR), lower renal plasma flow, kidney fibrosis, up-regulation of sodium transporters, impaired sodium excretion and salt-sensitive hypertension. The renal component and salt sensitivity of programmed hypertension may impact dietary counseling and choice of pharmacological intervention to treat hypertension.
Collapse
|
2
|
Geng X, Zhang S, He J, Ma A, Li Y, Li M, Zhou H, Chen G, Yang B. The urea transporter UT-A1 plays a predominant role in a urea-dependent urine-concentrating mechanism. J Biol Chem 2020; 295:9893-9900. [PMID: 32461256 PMCID: PMC7380188 DOI: 10.1074/jbc.ra120.013628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Urea transporters are a family of urea-selective channel proteins expressed in multiple tissues that play an important role in the urine-concentrating mechanism of the mammalian kidney. Previous studies have shown that knockout of urea transporter (UT)-B, UT-A1/A3, or all UTs leads to urea-selective diuresis, indicating that urea transporters have important roles in urine concentration. Here, we sought to determine the role of UT-A1 in the urine-concentrating mechanism in a newly developed UT-A1-knockout mouse model. Phenotypically, daily urine output in UT-A1-knockout mice was nearly 3-fold that of WT mice and 82% of all-UT-knockout mice, and the UT-A1-knockout mice had significantly lower urine osmolality than WT mice. After 24-h water restriction, acute urea loading, or high-protein (40%) intake, UT-A1-knockout mice were unable to increase urine-concentrating ability. Compared with all-UT-knockout mice, the UT-A1-knockout mice exhibited similarly elevated daily urine output and decreased urine osmolality, indicating impaired urea-selective urine concentration. Our experimental findings reveal that UT-A1 has a predominant role in urea-dependent urine-concentrating mechanisms, suggesting that UT-A1 represents a promising diuretic target.
Collapse
Affiliation(s)
- Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guangping Chen
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Expression and functional activity of bitter taste receptors in primary renal tubular epithelial cells and M-1 cells. Mol Cell Biochem 2017; 428:193-202. [DOI: 10.1007/s11010-016-2929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
4
|
Kim WY, Lee HW, Han KH, Nam SA, Choi A, Kim YK, Kim J. Descending thin limb of the intermediate loop expresses both aquaporin 1 and urea transporter A2 in the mouse kidney. Histochem Cell Biol 2016; 146:1-12. [PMID: 27091563 DOI: 10.1007/s00418-016-1434-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
A new intermediate type of Henle's loop has been reported that it extends into the inner medulla and turns within the first millimeter beyond the outer medulla. This study aimed to identify the descending thin limb (DTL) of the intermediate loop in the adult C57Bl/6 mouse kidney using aquaporin 1 (AQP1) and urea transporter A2 (UT-A2) antibodies. In the upper part of the inner stripe of the outer medulla (ISOM), AQP1 was expressed strongly in the DTL with type II epithelium of the long loop, but not in type I epithelium of the short loop. The DTL of the intermediate loop exhibited weak AQP1 immunoreactivity. UT-A2 immunoreactivity was not observed in the upper part of any DTL type. AQP1 expression was similar in the upper and middle parts of the ISOM. UT-A2 expression was variable, being expressed strongly in the DTL with type I epithelium of the short loop, but not in type II epithelium of the long loop. In the innermost part of the ISOM, AQP1 was expressed only in type III epithelium of the long loop. UT-A2-positive and UT-A2-negative cells were intermingled in type I epithelium of the intermediate loop, but were not observed in type III epithelium of the long loop. UT-A2-positive DTLs of the intermediate loop extended into the UT-A2/AQP1-negative type I epithelium in the initial part of the inner medulla. These results demonstrate that the DTL of the intermediate loop is composed of type I epithelium and expresses both AQP1 and UT-A2. The functional role of the DTL of the intermediate loop may be distinct from the short or long loops.
Collapse
Affiliation(s)
- Wan-Young Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 505, Banpo-Dong, Seocho-Ku, Seoul, 137-701, Korea
| | - Hyun-Wook Lee
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 505, Banpo-Dong, Seocho-Ku, Seoul, 137-701, Korea
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| | - Sun-Ah Nam
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 505, Banpo-Dong, Seocho-Ku, Seoul, 137-701, Korea
| | - Arum Choi
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 505, Banpo-Dong, Seocho-Ku, Seoul, 137-701, Korea
| | - Yong-Kyun Kim
- Department of Internal Medicine and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 505, Banpo-Dong, Seocho-Ku, Seoul, 137-701, Korea.
| |
Collapse
|
5
|
Wu J, Li J, Zhang J, Hu X, Yao D, Ma L, Ouyang L, Pan X, Huang J, Lin R, Wang J. In silico identification and experimental validation of diuresis compounds from Euphorbia lathyris for potential UT-B inhibitors. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Nawata CM, Dantzler WH, Pannabecker TL. Alternative channels for urea in the inner medulla of the rat kidney. Am J Physiol Renal Physiol 2015; 309:F916-24. [PMID: 26423860 PMCID: PMC4669356 DOI: 10.1152/ajprenal.00392.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/24/2015] [Indexed: 11/22/2022] Open
Abstract
The ascending thin limbs (ATLs) and lower descending thin limbs (DTLs) of Henle's loop in the inner medulla of the rat are highly permeable to urea, and yet no urea transporters have been identified in these sections. We hypothesized that novel, yet-unidentified transporters in these tubule segments could explain the high urea permeability. cDNAs encoding for Na(+)-glucose transporter 1a (SGLT1a), Na(+)-glucose transporter 1 (NaGLT1), urea transporter (UT)-A2c, and UT-A2d were isolated and cloned from the Munich-Wistar rat inner medulla. SGLT1a is a novel NH2-terminal truncated variant of SGLT1. NaGLT1 is a Na(+)-dependent glucose transporter primarily located in the proximal tubules and not previously described in the thin limbs. UT-A2c and UT-A2d are novel variants of UT-A2. UT-A2c is truncated at the COOH terminus, and UT-A2d has one exon skipped. When rats underwent water restriction for 72 h, mRNA levels of SGLT1a increased in ATLs, NaGLT1 levels increased in both ATLs and DTLs, and UT-A2c increased in ATLs. [(14)C]urea uptake assays performed on Xenopus oocytes heterologously expressing these proteins revealed that despite having structural differences from their full-length versions, SGLT1a, UT-A2c, and UT-A2d enhanced urea uptake. NaGLT1 also facilitated urea uptake. Uptakes were Na(+) independent and inhibitable by phloretin and/or phloridzin. Our data indicate that there are several alternative channels for urea in the rat inner medulla that could potentially contribute to the high urea permeabilities in thin limb segments.
Collapse
Affiliation(s)
- C Michele Nawata
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona
| | - William H Dantzler
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona
| | - Thomas L Pannabecker
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona
| |
Collapse
|
7
|
Kim YM, Kim WY, Nam SA, Choi AR, Kim H, Kim YK, Kim HS, Kim J. Role of Prox1 in the Transforming Ascending Thin Limb of Henle's Loop during Mouse Kidney Development. PLoS One 2015; 10:e0127429. [PMID: 25993027 PMCID: PMC4438060 DOI: 10.1371/journal.pone.0127429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/15/2015] [Indexed: 02/04/2023] Open
Abstract
The homeobox transcription factor Prox1 is critical to the development of many embryonic organs and tissues, although current understanding of its expression in the developing renal medulla is limited. We examined the functional role of Prox1 during mouse kidney development with particular emphasis on the developing loop of Henle. Our data show that Prox1 is expressed in the transdifferentiating region from the NKCC2-positive thick ascending limb, into the CLC-K1-positive ascending thin limb of Henle’s loop beginning at embryonic day 18. From 1 to 14 days of age, Prox1-positive cells gradually disappeared from the papillary tip, and remained in the initial part of inner medulla after 21 days. In this transforming area, no Prox1 was observed in cells undergoing apoptosis but was expressed strongly in the remaining cells, which differentiated into ascending thin limb epithelial cells. In vitro and in vivo approaches showed that Prox1 expression increases where the osmolality is near optimal range, but decreases at below- or above-optimal ranges. Renal hypoosmolality induced by furosemide (NKCC2 inhibitor) inhibited Prox1 expression and delayed maturation of the ascending limb of Henle’s loop. Together, these studies suggest that Prox1 appears to be a critical stage specific regulator of specifying ascending thin limb cell fate and that its expression is regulated by osmolality.
Collapse
Affiliation(s)
- Yu-mi Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Wan-Young Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Ah Nam
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - A-Rum Choi
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyang Kim
- Division of Nephrology, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Yong-Kyun Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hak-Soo Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
8
|
Lindström NO, Chang CH, Valerius MT, Hohenstein P, Davies JA. Node retraction during patterning of the urinary collecting duct system. J Anat 2014; 226:13-21. [PMID: 25292187 PMCID: PMC4299504 DOI: 10.1111/joa.12239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2014] [Indexed: 11/28/2022] Open
Abstract
This report presents a novel mechanism for remodelling a branched epithelial tree. The mouse renal collecting duct develops by growth and repeated branching of an initially unbranched ureteric bud: this mechanism initially produces an almost fractal form with young branches connected to the centre of the kidney via a sequence of nodes (branch points) distributed widely throughout the developing organ. The collecting ducts of a mature kidney have a different form: from the nephrons in the renal cortex, long, straight lengths of collecting duct run almost parallel to one another through the renal medulla, and open together to the renal pelvis. Here we present time-lapse studies of E11.5 kidneys growing in culture: after about 5 days, the collecting duct trees show evidence of ‘node retraction’, in which the node of a ‘Y’-shaped branch moves downwards, shortening the stalk of the ‘Y’, lengthening its arms and narrowing their divergence angle so that the ‘Y’ becomes a ‘V’. Computer simulation suggests that node retraction can transform a spread tree, like that of an early kidney, into one with long, almost-parallel medullary rays similar to those seen in a mature real kidney.
Collapse
|
9
|
Pannabecker TL, Layton AT. Targeted delivery of solutes and oxygen in the renal medulla: role of microvessel architecture. Am J Physiol Renal Physiol 2014; 307:F649-55. [PMID: 25056344 DOI: 10.1152/ajprenal.00276.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Renal medullary function is characterized by corticopapillary concentration gradients of various molecules. One example is the generally decreasing axial gradient in oxygen tension (Po2). Another example, found in animals in the antidiuretic state, is a generally increasing axial solute gradient, consisting mostly of NaCl and urea. This osmolality gradient, which plays a principal role in the urine concentrating mechanism, is generally considered to involve countercurrent multiplication and countercurrent exchange, although the underlying mechanism is not fully understood. Radial oxygen and solute gradients in the transverse dimension of the medullary parenchyma have been hypothesized to occur, although strong experimental evidence in support of these gradients remains lacking. This review considers anatomic features of the renal medulla that may impact the formation and maintenance of oxygen and solute gradients. A better understanding of medullary architecture is essential for more clearly defining the compartment-to-compartment flows taken by fluid and molecules that are important in producing axial and radial gradients. Preferential interactions between nephron and vascular segments provide clues as to how tubular and interstitial oxygen flows contribute to safeguarding active transport pathways in renal function in health and disease.
Collapse
Affiliation(s)
- Thomas L Pannabecker
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| |
Collapse
|
10
|
Abstract
A urea transporter protein in the kidney was first proposed in 1987. The first urea transporter cDNA was cloned in 1993. The SLC14a urea transporter family contains two major subgroups: SLC14a1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14a2, the UT-A group originally isolated from kidney inner medulla. Slc14a1, the human UT-B gene, arises from a single locus located on chromosome 18q12.1-q21.1, which is located close to Slc14a2. Slc14a1 includes 11 exons, with the coding region extending from exon 4 to exon 11, and is approximately 30 kb in length. The Slc14a2 gene is a very large gene with 24 exons, is approximately 300 kb in length, and encodes 6 different isoforms. Slc14a2 contains two promoter elements: promoter I is located in the typical position, upstream of exon 1, and drives the transcription of UT-A1, UT-A1b, UT-A3, UT-A3b, and UT-A4; while promoter II is located within intron 12 and drives the transcription of UT-A2 and UT-A2b. UT-A1 and UT-A3 are located in the inner medullary collecting duct, UT-A2 in the thin descending limb and liver, UT-A5 in testis, UT-A6 in colon, UT-B1 primarily in descending vasa recta and erythrocytes, and UT-B2 in rumen.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 338, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
11
|
Abstract
UT-A and UT-B families of urea transporters consist of multiple isoforms that are subject to regulation of both acutely and by long-term measures. This chapter provides a brief overview of the expression of the urea transporter forms and their locations in the kidney. Rapid regulation of UT-A1 results from the combination of phosphorylation and membrane accumulation. Phosphorylation of UT-A1 has been linked to vasopressin and hyperosmolality, although through different kinases. Other acute influences on urea transporter activity are ubiquitination and glycosylation, both of which influence the membrane association of the urea transporter, again through different mechanisms. Long-term regulation of urea transport is most closely associated with the environment that the kidney experiences. Low-protein diets may influence the amount of urea transporter available. Conditions of osmotic diuresis, where urea concentrations are low, will prompt an increase in urea transporter abundance. Although adrenal steroids affect urea transporter abundance, conflicting reports make conclusions tenuous. Urea transporters are upregulated when P2Y2 purinergic receptors are decreased, suggesting a role for these receptors in UT regulation. Hypercalcemia and hypokalemia both cause urine concentration deficiencies. Urea transporter abundances are reduced in aging animals and animals with angiotensin-converting enzyme deficiencies. This chapter will provide information about both rapid and long-term regulation of urea transporters and provide an introduction into the literature.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 3319B, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| |
Collapse
|
12
|
Abstract
The thin limbs of the loop of Henle, which comprise the intermediate segment, connect the proximal tubule to the distal tubule and lie entirely within the renal medulla. The descending thin limb consists of at least two or three morphologically and functionally distinct subsegments and participates in transepithelial transport of NaCl, urea, and water. Only one functionally distinct segment is recognized for the ascending thin limb, which carries out transepithelial transport of NaCl and urea in the reabsorptive and/or secretory directions. Membrane transporters involved with passive transcellular Cl, urea, and water fluxes have been characterized for thin limbs; however, these pathways do not account for all transepithelial fluid and solute fluxes that have been measured in vivo. The paracellular pathway has been proposed to play an important role in transepithelial Na and urea fluxes in defined thin-limb subsegments. As the transport pathways become clearer, the overall function of the thin limbs is becoming better understood. Primary and secondary signaling pathways and protein-protein interactions are increasingly recognized as important modulators of thin-limb cell function and cell metabolism. These functions must be investigated under diverse extracellular conditions, particularly for those cells of the deep inner medulla that function in an environment of wide variation in hyperosmolality. Transgenic mouse models of several key water and solute transport proteins have provided significant insights into thin-limb function. An understanding of the overall architecture of the medulla, including juxtapositions of thin limbs with collecting ducts, thick ascending limbs, and vasa recta, is essential for understanding the role of the kidney in maintaining Na and water homeostasis, and for understanding the urine concentrating mechanism.
Collapse
Affiliation(s)
- Thomas L Pannabecker
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona, USA.
| |
Collapse
|
13
|
Nawata CM, Evans KK, Dantzler WH, Pannabecker TL. Transepithelial water and urea permeabilities of isolated perfused Munich-Wistar rat inner medullary thin limbs of Henle's loop. Am J Physiol Renal Physiol 2013; 306:F123-9. [PMID: 24197065 DOI: 10.1152/ajprenal.00491.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To better understand the role that water and urea fluxes play in the urine concentrating mechanism, we determined transepithelial osmotic water permeability (Pf) and urea permeability (Purea) in isolated perfused Munich-Wistar rat long-loop descending thin limbs (DTLs) and ascending thin limbs (ATLs). Thin limbs were isolated either from 0.5 to 2.5 mm below the outer medulla (upper inner medulla) or from the terminal 2.5 mm of the inner medulla. Segment types were characterized on the basis of structural features and gene expression levels of the water channel aquaporin 1, which was high in the upper DTL (DTLupper), absent in the lower DTL (DTLlower), and absent in ATLs, and the Cl-(1) channel ClCK1, which was absent in DTLs and high in ATLs. DTLupper Pf was high (3,204.5 ± 450.3 μm/s), whereas DTLlower showed very little or no osmotic Pf (207.8 ± 241.3 μm/s). Munich-Wistar rat ATLs have previously been shown to exhibit no Pf. DTLupper Purea was 40.0 ± 7.3 × 10(-5) cm/s and much higher in DTLlower (203.8 ± 30.3 × 10(-5) cm/s), upper ATL (203.8 ± 35.7 × 10(-5) cm/s), and lower ATL (265.1 ± 49.8 × 10(-5) cm/s). Phloretin (0.25 mM) did not reduce DTLupper Purea, suggesting that Purea is not due to urea transporter UT-A2, which is expressed in short-loop DTLs and short portions of some inner medullary DTLs close to the outer medulla. In summary, Purea is similar in all segments having no osmotic Pf but is significantly lower in DTLupper, a segment having high osmotic Pf. These data are inconsistent with the passive mechanism as originally proposed.
Collapse
Affiliation(s)
- C Michele Nawata
- Dept. of Physiology, Univ. of Arizona Health Sciences Center, AHSC 4128, 1501 N. Campbell Ave., Tucson, AZ 85724-5051.
| | | | | | | |
Collapse
|
14
|
Madsen K, Tinning AR, Marcussen N, Jensen BL. Postnatal development of the renal medulla; role of the renin-angiotensin system. Acta Physiol (Oxf) 2013; 208:41-9. [PMID: 23432903 DOI: 10.1111/apha.12088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/15/2012] [Accepted: 02/13/2013] [Indexed: 01/04/2023]
Abstract
Adverse events during foetal development can predispose the individual for cardiovascular disease later in life, a correlation known as foetal programming of adult hypertension. The 'programming' events have been associated with the kidneys due to the significant role in extracellular volume control and long-term blood pressure regulation. Previously, nephron endowment and functional consequences of a low nephron number have been extensively investigated without achieving a full explanation of the underlying pathophysiological mechanisms. In this review, we will focus on mechanisms of postnatal development in the renal medulla with regard to the programming effects. The renin-angiotensin system is critically involved in mammalian kidney development and impaired signalling gives rise to developmental renal lesions that have been associated with hypertension later in life. A consistent finding in both experimental animal models and in human case reports is atrophy of the renal medulla with developmental lesions to both medullary nephron segments and vascular development with concomitant functional disturbances reaching into adulthood. A review of current knowledge of the role of the renin-angiotensin system for renal medullary development will be given.
Collapse
Affiliation(s)
| | - A. R. Tinning
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - N. Marcussen
- Department of Pathology; Odense University Hospital; Odense; Denmark
| | - B. L. Jensen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| |
Collapse
|
15
|
Shayakul C, Clémençon B, Hediger MA. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med 2013; 34:313-22. [PMID: 23506873 DOI: 10.1016/j.mam.2012.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 12/12/2012] [Indexed: 11/27/2022]
Abstract
Urea transporters (UTs) belonging to the solute carrier 14 (SLC14) family comprise two genes with a total of eight isoforms in mammals, UT-A1 to -A6 encoded by SLC14A2 and UT-B1 to -B2 encoded by SLC14A1. Recent efforts have been directed toward understanding the molecular and cellular mechanisms involved in the regulation of UTs using transgenic mouse models and heterologous expression systems, leading to important new insights. Urea uptake by UT-A1 and UT-A3 in the kidney inner medullary collecting duct and by UT-B1 in the descending vasa recta for the countercurrent exchange system are chiefly responsible for medullary urea accumulation in the urinary concentration process. Vasopressin, an antidiuretic hormone, regulates UT-A isoforms via the phosphorylation and trafficking of the glycosylated transporters to the plasma membrane that occurs to maintain equilibrium with the exocytosis and ubiquitin-proteasome degradation pathways. UT-B isoforms are also important in several cellular functions, including urea nitrogen salvaging in the colon, nitric oxide pathway modulation in the hippocampus, and the normal cardiac conduction system. In addition, genomic linkage studies have revealed potential additional roles for SLC14A1 and SLC14A2 in hypertension and bladder carcinogenesis. The precise role of UT-A2 and presence of the urea recycling pathway in normal kidney are issues to be further explored. This review provides an update of these advances and their implications for our current understanding of the SLC14 UTs.
Collapse
Affiliation(s)
- Chairat Shayakul
- Renal Unit, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | |
Collapse
|
16
|
Pannabecker TL. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. Am J Physiol Regul Integr Comp Physiol 2013; 304:R488-503. [PMID: 23364530 PMCID: PMC3627947 DOI: 10.1152/ajpregu.00456.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/25/2013] [Indexed: 01/07/2023]
Abstract
Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.(1)
Collapse
Affiliation(s)
- Thomas L Pannabecker
- Department of Physiology, AHSC 4128, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724-5051, USA.
| |
Collapse
|
17
|
Li X, Chen G, Yang B. Urea transporter physiology studied in knockout mice. Front Physiol 2012; 3:217. [PMID: 22745630 PMCID: PMC3383189 DOI: 10.3389/fphys.2012.00217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
In mammals, there are two types of urea transporters; urea transporter (UT)-A and UT-B. The UT-A transporters are mainly expressed in kidney epithelial cells while UT-B demonstrates a broader distribution in kidney, heart, brain, testis, urinary tract, and other tissues. Over the past few years, multiple urea transporter knockout mouse models have been generated enabling us to explore the physiological roles of the different urea transporters. In the kidney, deletion of UT-A1/UT-A3 results in polyuria and a severe urine concentrating defect, indicating that intrarenal recycling of urea plays a crucial role in the overall capacity to concentrate urine. Since UT-B has a wide tissue distribution, multiple phenotypic abnormalities have been found in UT-B null mice, such as defective urine concentration, exacerbated heart blockage with aging, depression-like behavior, and earlier male sexual maturation. This review summarizes the new insights of urea transporter functions in different organs, gleaned from studies of urea transporter knockout mice, and explores some of the potential pharmacological prospects of urea transporters.
Collapse
Affiliation(s)
- Xuechen Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education Beijing, China
| | | | | |
Collapse
|
18
|
Layton AT, Dantzler WH, Pannabecker TL. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter. Am J Physiol Renal Physiol 2011; 302:F591-605. [PMID: 22088433 DOI: 10.1152/ajprenal.00263.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na(+) or urea-Cl(-) cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na(+) or urea- Cl(-) cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.
Collapse
Affiliation(s)
- Anita T Layton
- Dept. of Mathematics, Duke Univ., Durham, NC 27708-0320, USA.
| | | | | |
Collapse
|
19
|
Dantzler WH, Pannabecker TL, Layton AT, Layton HE. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture. Acta Physiol (Oxf) 2011; 202:361-78. [PMID: 21054810 DOI: 10.1111/j.1748-1716.2010.02214.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The urine concentrating mechanism in the mammalian renal inner medulla (IM) is not understood, although it is generally considered to involve countercurrent flows in tubules and blood vessels. A possible role for the three-dimensional relationships of these tubules and vessels in the concentrating process is suggested by recent reconstructions from serial sections labelled with antibodies to tubular and vascular proteins and mathematical models based on these studies. The reconstructions revealed that the lower 60% of each descending thin limb (DTL) of Henle's loops lacks water channels (aquaporin-1) and osmotic water permeability and ascending thin limbs (ATLs) begin with a prebend segment of constant length. In the outer zone of the IM (i) clusters of coalescing collecting ducts (CDs) form organizing motif for loops of Henle and vasa recta; (ii) DTLs and descending vasa recta (DVR) are arrayed outside CD clusters, whereas ATLs and ascending vasa recta (AVR) are uniformly distributed inside and outside clusters; (iii) within CD clusters, interstitial nodal spaces are formed by a CD on one side, AVR on two sides, and an ATL on the fourth side. These spaces may function as mixing chambers for urea from CDs and NaCl from ATLs. In the inner zone of the IM, cluster organization disappears and half of Henle's loops have broad lateral bends wrapped around terminal CDs. Mathematical models based on these findings and involving solute mixing in the interstitial spaces can produce urine slightly more concentrated than that of a moderately antidiuretic rat but no higher.
Collapse
Affiliation(s)
- W H Dantzler
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85724-5051, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
21
|
Yuan J, Pannabecker TL. Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange. Am J Physiol Renal Physiol 2010; 299:F265-72. [PMID: 20392798 DOI: 10.1152/ajprenal.00071.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathways and densities of descending vasa recta (DVR) and ascending vasa recta (AVR) in the outer zone of the inner medulla (IM) were evaluated to better understand medullary countercurrent exchange. Nearly all urea transporter B (UT-B)-positive DVR, those vessels exhibiting a continuous endothelium, descend with little or no branching exclusively through the intercluster region. All DVR have a terminal fenestrated (PV-1-positive) segment that partially overlaps with the UT-B-positive segment. This fenestrated segment descends a distance equal to approximately 15% of the length of the connecting UT-B-positive segment before formation of the first branch. The onset of branching is indicative of vessel entry into the intracluster region. The number density of UT-B-positive DVR at 3,000 mum below the OM-IM boundary is approximately 60% lower than the density at 400 mum below the OM-IM boundary, a result of DVR joining to fenestrated interconnecting vessels and an overall decline in UT-B expression. AVR that lie in the intercluster region (designated AVR(2)) lie distant from CDs and ascend to the OM-IM boundary with little or no branching. AVR(2a) represent a subcategory of AVR(2) that abut DVR. The mean DVR length (combined UT-B- and PV-1-positive segments) nearly equals the mean AVR(2a) length, implying a degree of overall equivalence in fluid and solute countercurrent exchange may exist. The AVR(2)/DVR ratio is approximately 2:1, and the AVR(2a)/DVR ratio is approximately 1:1; however, the AVR/DVR ratio determined for the full complement of fenestrated vessels is approximately 4:1. The excess fenestrated vessels include vessels of the intracluster region (designated AVR(1)). Countercurrent exchange between vasa recta occurs predominantly in the intercluster region. This architecture supports previous functional estimates of capillary fluid uptake in the renal IM.
Collapse
Affiliation(s)
- Justin Yuan
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724-5051, USA
| | | |
Collapse
|
22
|
Kim J, Pannabecker TL. Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow. Am J Physiol Renal Physiol 2010; 299:F273-9. [PMID: 20392799 DOI: 10.1152/ajprenal.00072.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The outer zone of the renal inner medulla (IM) is spatially partitioned into two distinct interstitial compartments in the transverse dimension. In one compartment (the intercluster region), collecting ducts (CDs) are absent and vascular bundles are present. Ascending vasa recta (AVR) that lie within and ascend through the intercluster region (intercluster AVR are designated AVR(2)) participate with descending vasa recta (DVR) in classic countercurrent exchange. Direct evidence from former studies suggests that vasopressin binds to V1 receptors on smooth muscle-like pericytes that regulate vessel diameter and blood flow rate in DVR in this compartment. In a second transverse compartment (the intracluster region), DVR are absent and CDs and AVR are present. Many AVR of the intracluster compartment exhibit multiple branching, with formation of many short interconnecting segments (intracluster AVR are designated AVR(1)). AVR(1) are linked together and connect intercluster DVR to AVR(2) by way of sparse networks. Vasopressin V2 receptors regulate multiple fluid and solute transport pathways in CDs in the intracluster compartment. Reabsorbate from IMCDs, ascending thin limbs, and prebend segments passes into AVR(1) and is conveyed either upward toward DVR and AVR(2) of the intercluster region, or is retained within the intracluster region and is conveyed toward higher levels of the intracluster region. Thus variable rates of fluid reabsorption by CDs potentially lead to variable blood flow rates in either compartment. Net flow between the two transverse compartments would be dependent on the degree of structural and functional coupling between intracluster vessels and intercluster vessels. In the outermost IM, AVR(1) pass directly from the IM to the outer medulla, bypassing vascular bundles, the primary blood outflow route. Therefore, two defined vascular pathways exist for fluid outflow from the IM. Compartmental partitioning of V1 and V2 receptors may underlie vasopressin-regulated functional compartmentation of IM blood flow.
Collapse
Affiliation(s)
- Julie Kim
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724-5051, USA
| | | |
Collapse
|
23
|
Abstract
The renal medulla produces concentrated urine through the generation of an osmotic gradient extending from the cortico-medullary boundary to the inner medullary tip. This gradient is generated in the outer medulla by the countercurrent multiplication of a comparatively small transepithelial difference in osmotic pressure. This small difference, called a single effect, arises from active NaCl reabsorption from thick ascending limbs, which dilutes ascending limb flow relative to flow in vessels and other tubules. In the inner medulla, the gradient may also be generated by the countercurrent multiplication of a single effect, but the single effect has not been definitively identified. There have been important recent advances in our understanding of key components of the urine concentrating mechanism. In particular, the identification and localization of key transport proteins for water, urea, and sodium, the elucidation of the role and regulation of osmoprotective osmolytes, better resolution of the anatomical relationships in the medulla, and improvements in mathematic modeling of the urine concentrating mechanism. Continued experimental investigation of transepithelial transport and its regulation, both in normal animals and in knock-out mice, and incorporation of the resulting information into mathematic simulations, may help to more fully elucidate the inner medullary urine concentrating mechanism.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
24
|
Wu B, Yan S, Lin Z, Wang Q, Yang Y, Yang G, Shen Z, Zhang W. Metabonomic study on ageing: NMR-based investigation into rat urinary metabolites and the effect of the total flavone of Epimedium. MOLECULAR BIOSYSTEMS 2008; 4:855-61. [PMID: 18633487 DOI: 10.1039/b800923f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work was to investigate the effects of ageing on rat urinary metabolites and to evaluate the anti-ageing effects of the total flavone of Epimedium (TFE). Proton nuclear magnetic resonance based metabonomic analyses was performed on urine from rats aged 4, 10, 18 and 24 months, and rats administered with TFE. By multivariate analysis, 26 characteristic resonances were found to be highly related with the age of rats, and ten of them were structurally postulated as creatinine, lactate, alanine, acetate, acetone, succinate, allantoin, methylamine, dimethylamine and trimethylamine-N-oxide; these metabolites involve creatinine metabolites, aliphatic amines metabolites and some important intermediates or end products of energy metabolism. Principal components analysis revealed that the metabolic profiles of 24-month-old rats treated with TFE closely resembled those of rats aged 18 months. In addition, most of these characteristic resonances were reset to younger levels by TFE intervention. The result suggests that TFE administration can markedly influence the ageing process and shows anti-ageing effects, which might due to the melioration of pyruyate metabolism and oxidative phosphorylation.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Integrative Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Valerius MT, McMahon AP. Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation. Gene Expr Patterns 2008; 8:297-306. [DOI: 10.1016/j.gep.2008.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/30/2008] [Accepted: 02/02/2008] [Indexed: 01/26/2023]
|
26
|
Blount MA, Klein JD, Martin CF, Tchapyjnikov D, Sands JM. Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. Am J Physiol Renal Physiol 2007; 293:F1308-13. [PMID: 17686955 DOI: 10.1152/ajprenal.00197.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UT-A1 is regulated by vasopressin and is localized to the apical membrane and intracellular compartment of inner medullary collecting duct (IMCD) cells. UT-A3 is also expressed in the IMCD and is regulated by forskolin in heterologous systems. The goal of the present study is to investigate mechanisms by which vasopressin regulates UT-A3 in rat IMCD. In fresh suspensions of rat IMCD, forskolin increases the phosphorylation of UT-A3, similar to UT-A1. Biotinylation studies indicate that UT-A3 is located in the plasma membrane. Forskolin treatment increases the abundance of UT-A3 in the plasma membrane similar to UT-A1. However, these two transporters do not form a complex through a protein-protein interaction, suggesting that transporter function is unique to each protein. While immunohistochemistry localized UT-A3 to the basal and lateral membranes, a majority of the staining was cytosolic. Immunohistochemistry of vasopressin-treated rat kidney sections also localized UT-A3 primarily to the cytosol with basal and lateral membrane staining but also showed some apical membrane staining in some IMCD cells. This suggests that under normal conditions, UT-A3 functions as the basolateral transporter but in a high cAMP environment, the transporter may move from the cytosol to all plasma membranes to increase urea flux in the IMCD. In summary, this study confirms that UT-A3 is located in the inner medullary tip where it is expressed in the basolateral membrane, shows that UT-A3 is a phosphoprotein in rat IMCD that can be trafficked to the plasma membrane independent of UT-A1, and suggests that vasopressin may induce UT-A3 expression in the apical plasma membrane of IMCD.
Collapse
Affiliation(s)
- Mitsi A Blount
- Renal Division, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
27
|
Pannabecker TL, Dantzler WH. Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla. Am J Physiol Renal Physiol 2007; 293:F696-704. [PMID: 17609288 DOI: 10.1152/ajprenal.00231.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three-dimensional architecture of vasculature and nephrons in rat renal papilla was assessed by digital reconstruction. Descending vasa recta (DVR), ascending vasa recta (AVR), descending thin limbs (DTLs), ascending thin limbs (ATLs), and collecting ducts (CDs) were identified with antibodies against segment-specific proteins. DTLs are distributed nonuniformly in transverse sections of papilla, but lateral compartmentation between DTLs and CD clusters that occurs in outer IM makes no contribution to concentrating mechanism in papilla. ATLs are distributed nearly uniformly throughout IM. Vasa recta within approximately 2 mm of the papilla tip are primarily fenestrated vessels; therefore, AVR and DVR can only be determined by blood flow direction. CDs within approximately 500 microm of the papilla tip have nearly 100% greater circumference than CDs within first 1-2 mm below the IM base. Return of water to general circulation from deep papillary CDs appears to be facilitated by a 150% increase in the number of AVR closely abutting these CDs. Consequently, average fractional CD surface area abutting AVR is 0.61, about the same as that (0.54) for smaller CDs that lie near the IM base. Interstitial nodal compartments, bounded by CDs, ATLs, and AVR, surround CDs along the axis of the IM. Fewer ATLs exist in the final 1 mm, as there are fewer loops and the number of these nodal arrangements is therefore reduced. However, tips of many of those loops reaching this area have bends with 50-100% greater transverse lengths than bends of loops near the IM base. This may be significant for solute movement out of loop bends.
Collapse
Affiliation(s)
- Thomas L Pannabecker
- University of Arizona Health Sciences Center, Department of Physiology, AHSC 4130, 1501 N. Campbell Ave., Tucson, AZ 85724-5051, USA.
| | | |
Collapse
|
28
|
Jung JY, Kwon HM, Kim J. Regulation of Urea Transporters by Tonicity-responsive Enhancer Binding Protein. Electrolyte Blood Press 2007; 5:28-33. [PMID: 24459497 PMCID: PMC3894503 DOI: 10.5049/ebp.2007.5.1.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/29/2007] [Indexed: 11/29/2022] Open
Abstract
Urea accumulation in the renal inner medulla plays a key role in the maintenance of maximal urinary concentrating ability. Urea transport in the kidney is mediated by transporter proteins that include renal urea transporter (UT-A) and erythrocyte urea transporter (UT-B). UT-A1 and UT-A2 are produced from the same gene. There is an active tonicity-responsive enhancer (TonE) in the promoter of UT-A1, and the UT-A1 promoter is stimulated by hypertonicity via tonicity-responsive enhancer binding protein (TonEBP). The downregulation of UT-A2 raises the possibility that TonEBP also regulates its promoter. There is some evidence that TonEBP regulates expression of UT-A in vivo; (1) during the renal development of the urinary concentrating ability, expression of TonEBP precedes that of UT-A1; (2) in transgenic mice expressing a dominant negative form of TonEBP, expression of UT-A1 and UT-A2 is severely impaired; (3) in treatment with cyclosporine A, TonEBP was significantly downregulated after 28 days. This downregulation involves mRNA levels of UT-A2; (4) in hypokalemic animals, downregulation of TonEBP contributed to the down regulation of UT-A in the inner medulla. These data support that TonEBP directly contributes to the urinary concentration and renal urea recycling by the regulation of urea transporters.
Collapse
Affiliation(s)
- Ju-Young Jung
- Department of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - H Moo Kwon
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jim Kim
- Department of Anatomy, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Abstract
During the past decade significant progress has been made in our understanding of the role played by urea transporters in the production of concentrated urine by the kidney. Urea transporters have been cloned and characterized in a wide range of species. The genomic organization of the two major families of mammalian urea transporters, UT-A and UT-B, has been defined, providing new insight into the mechanisms that regulate their expression and function in physiological and pathological conditions. Beside the kidney, the presence of urea transporters has been documented in a variety of tissues, where their role is not fully known. Recently, mice with targeted deletion of the major urea transporters have been generated, which have shown variable impairment of urine concentrating ability, and have helped to clarify the physiological contribution of individual transporters to this process. This review focuses on the erythrocyte urea transporter UT-B.
Collapse
Affiliation(s)
- Serena M Bagnasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 20187, USA.
| |
Collapse
|
30
|
Lee HW, Kim WY, Song HK, Yang CW, Han KH, Kwon HM, Kim J. Sequential expression of NKCC2, TonEBP, aldose reductase, and urea transporter-A in developing mouse kidney. Am J Physiol Renal Physiol 2007; 292:F269-77. [PMID: 16926446 DOI: 10.1152/ajprenal.00145.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to test the hypothesis that, during renal development, the Na-K-2Cl cotransporter type 2 (NKCC2) activates the tonicity-responsive enhancer binding protein (TonEBP) transcription factor by creating medullary hypertonicity. TonEBP, in turn, drives the expression of aldose reductase (AR) and urea transporter-A (UT-A). Kidneys from 13- to19-day-old fetuses (F13-F19), 1- to 21-day-old pups (P1-P21), and adult mice were examined by immunohistochemistry. NKCC2 was first detected on F14 in differentiating macula densa and thick ascending limb (TAL). TonEBP was first detected on F15 in the medullary collecting duct (MCD) and surrounding endothelial cells. AR was detected in the MCD cells of the renal medulla from F15. UT-A first appeared in the descending thin limb (DTL) on F16 and in the MCD on F18. After birth, NKCC2-positive TALs disappeared gradually from the tip of the renal papilla, becoming completely undetectable in the inner medulla on P21. TonEBP shifted from the cytoplasm to the nucleus in both vascular endothelial cells and MCD cells on P1, and its abundance increased gradually afterward. Immunoreactivity for AR and UT-A in the renal medulla increased markedly after birth. Treatment of neonatal animals with furosemide dramatically reduced expression of TonEBP, AR, and UT-A1. Furosemide also prevented the disappearance of NKCC2-expressing TALs in the papilla. The sequential expression of NKCC2, TonEBP, and its targets AR and UT-A and the reduced expression TonEBP and its targets in response to furosemide treatment support the hypothesis that local hypertonicity produced by the activity of NKCC2 activates TonEBP during development.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul
| | | | | | | | | | | | | |
Collapse
|
31
|
Klein JD, Fröhlich O, Blount MA, Martin CF, Smith TD, Sands JM. Vasopressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts. J Am Soc Nephrol 2006; 17:2680-6. [PMID: 16959825 DOI: 10.1681/asn.2006030246] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Urea transport, mediated by the urea transporter A1 (UT-A1) and/or UT-A3, is important for the production of concentrated urine. Vasopressin rapidly increases urea transport in rat terminal inner medullary collecting ducts (IMCD). A previous study showed that one mechanism for rapid regulation of urea transport is a vasopressin-induced increase in UT-A1 phosphorylation. This study tests whether vasopressin or directly activating adenylyl cyclase with forskolin also increases UT-A1 accumulation in the plasma membrane of rat IMCD. Inner medullas were harvested from rats 45 min after injection with vasopressin or vehicle. UT-A1 abundance in the plasma membrane was significantly increased in the membrane fraction after differential centrifugation and in the biotinylated protein population. Vasopressin and forskolin each increased the amount of biotinylated UT-A1 in rat IMCD suspensions that were treated ex vivo. The observed changes in the plasma membrane are specific, as the amount of biotinylated UT-A1 but not the calcium-sensing receptor was increased by forskolin. Next, whether forskolin or the V(2)-selective agonist dDAVP would increase apical membrane expression of UT-A1 in MDCK cells that were stably transfected with UT-A1 (UT-A1-MDCK cells) was tested. Forskolin and dDAVP significantly increased UT-A1 abundance in the apical membrane in UT-A1-MDCK cells. It is concluded that vasopressin and forskolin increase UT-A1 accumulation in the plasma membrane in rat IMCD and in the apical plasma membrane of UT-A1-MDCK cells. These findings suggest that vasopressin regulates urea transport by increasing UT-A1 accumulation in the plasma membrane and/or UT-A1 phosphorylation.
Collapse
Affiliation(s)
- Janet D Klein
- Emory University School of Medicine, Renal Division, WMB Room 3319B, 1639 Pierce Drive NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Stubbe J, Madsen K, Nielsen FT, Skøtt O, Jensen BL. Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development. Am J Physiol Renal Physiol 2006; 291:F812-22. [PMID: 16638911 DOI: 10.1152/ajprenal.00477.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rat, urinary concentrating ability develops progressively during the third postnatal (P) week and nearly reaches adult level at weaning ( P21) governed by a rise in circulating glucocorticoid. Elevated extracellular osmolality can lead to growth arrest of epithelial cells. We tested the hypothesis that supranormal exposure of rat pups to glucocorticoid before the endogenous surge enhances urinary concentrating ability but inhibits renomedullary cell proliferation. Proliferating-cell nuclear antigen (PCNA)-positive cells shifted from the nephrogenic zone in the first postnatal week to Tamm-Horsfall-positive thick ascending limb (TAL) cells at the corticomedullary junction at P10– 14. Renal PCNA protein abundance was stable in the suckling period and decreased 10-fold after weaning. Renal PCNA protein abundance decreased in response to dexamethasone (DEXA; 100 μg·kg−1·day−1, P8–12). Prolonged administration of DEXA ( P1-P11) reduced selectively the area and thickness of the outer medulla and the number of PCNA-positive cells. DEXA ( P8– 12) increased urinary and papillary osmolality in normohydrated and water-deprived pups and led to osmotic equilibrium between interstitium and urine, whereas apoptotic and GADD153-positive cells increased in the inner medulla. TAL-associated NaCl transporters Na-K-2Cl cotransporter, Na-K-ATPase-α1, Na/H exchanger type 3, and ROMK increased significantly at weaning and in response to DEXA. We conclude that a low level of circulating glucocorticoid is permissive for proliferation of Henle's loop and the outer medulla before weaning. A reduced papillary tonicity is a crucial factor for the reduced capacity to concentrate urine during postnatal kidney development. We speculate that supranormal exposure to glucocorticoid in the suckling period can alter kidney medullary structure and function permanently.
Collapse
Affiliation(s)
- Jane Stubbe
- Department of Physiology and Pharmacology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|
33
|
Suda S, Rai T, Sohara E, Sasaki S, Uchida S. Postnatal expression of KLF12 in the inner medullary collecting ducts of kidney and its trans-activation of UT-A1 urea transporter promoter. Biochem Biophys Res Commun 2006; 344:246-52. [PMID: 16615998 DOI: 10.1016/j.bbrc.2006.03.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 03/20/2006] [Indexed: 11/29/2022]
Abstract
Maturation of the inner medulla of the kidney occurs after birth and is vital for mammals to acquire maximal urinary concentrating ability. During this process, expression of several kidney transporters and channels involved in urine concentrating mechanisms is known to be regulated. We previously isolated KLF15 as a transcription factor that regulates the expression of the ClC-K1 chloride channel. We have now found that another KLF transcription factor, KLF12, is expressed in the kidney from around 15 days after birth. To gain insight into its involvement in the maturation process of the inner medulla, we first determined the expression site of KLF12 within the kidney by in situ hybridization. By comparing the AQP2 immunolocalization in sequential sections, KLF12 was found to be expressed in the collecting ducts. Because expression of the urea transporter UT-A1 and amiloride-sensitive epithelial sodium channels ENaC is known to be tightly regulated in the collecting ducts after birth, we tested whether KLF12 has a regulatory role in the promoter activities of these genes. KLF12 is able to increase UT-A1 but not ENaC promoter activity through the binding to CACCC motif. These results suggest that KLF12 is involved in the maturation processes of collecting ducts after birth, and that UT-A1 is a target gene of KLF12.
Collapse
Affiliation(s)
- Shin Suda
- Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Lim SW, Han KH, Jung JY, Kim WY, Yang CW, Sands JM, Knepper MA, Madsen KM, Kim J. Ultrastructural localization of UT-A and UT-B in rat kidneys with different hydration status. Am J Physiol Regul Integr Comp Physiol 2006; 290:R479-92. [PMID: 16179486 DOI: 10.1152/ajpregu.00512.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urea transport in the kidney is mediated by a family of transporter proteins, including renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). We aimed to determine whether hydration status affects the subcellular distribution of urea transporters. Male Sprague-Dawley rats were divided into three groups: dehydrated rats (WD) given minimum water, hydrated rats (WL) given 3% sucrose in water for 3 days before death, and control rats given free access to water. We labeled kidney sections with antibodies against UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B using preembedding immunoperoxidase and immunogold methods. In control animals, UT-A1 and UT-A3 immunoreactivities were observed throughout the cytoplasm in inner medullary collecting duct (IMCD) cells, and weak labeling was observed on the basolateral plasma membrane. UT-A2 immunoreactivity in the descending thin limbs (DTL) was observed mainly on the apical and basolateral membranes of type I epithelium, and very faint labeling was observed in the long-loop DTL at the border between the outer and inner medulla. UT-A1 immunoreactivity intensity was markedly lower, and UT-A3 immunoreactivity was higher in IMCD of WD vs. controls. UT-A2 immunoreactivity intensities in the plasma membrane and cytoplasm of type I, II, and III epithelia of DTL were greater in WD vs. controls. In contrast, UT-A1 expression was greater and UT-A2 and UT-A3 expressions were lower in WL vs. controls. The subcellular distribution of UT-A in DTL or IMCD did not differ between control and experimental animals. UT-B was expressed in the plasma membrane of the descending vasa recta of both control and experimental animals. UT-B intensity was higher in WD and lower in WL vs. controls. These data indicate that changes in hydration status over 3 days affected urea transporter protein expression without changing its subcellular distribution.
Collapse
Affiliation(s)
- Sun-Woo Lim
- Department of Anatomy, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. Am J Physiol Renal Physiol 2005; 289:F1367-81. [PMID: 15914775 DOI: 10.1152/ajprenal.00347.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a companion study (Layton AT and Layton HE. Am J Physiol Renal Physiol 289: F1346-F1366, 2005), a region-based mathematical model was formulated for the urine concentrating mechanism (UCM) in the outer medulla (OM) of the rat kidney. In the present study, we quantified the sensitivity of that model to several structural assumptions, including the degree of regionalization and the degree of inclusion of short descending limbs (SDLs) in the vascular bundles of the inner stripe (IS). Also, we quantified model sensitivity to several parameters that have not been well characterized in the experimental literature, including boundary conditions, short vasa recta distribution, and ascending vasa recta (AVR) solute permeabilities. These studies indicate that regionalization elevates the osmolality of the fluid delivered into the inner medulla via the collecting ducts; that model predictions are not significantly sensitive to boundary conditions; and that short vasa recta distribution and AVR permeabilities significantly impact concentrating capability. Moreover, we investigated, in the context of the UCM, the functional significance of several aspects of tubular segmentation and heterogeneity: SDL segments in the IS that are likely to be impermeable to water but highly permeable to urea; a prebend segment of SDLs that may be functionally like thick ascending limb (TAL); differing IS and outer stripe Na(+) active transport rates in TAL; and potential active urea secretion into the proximal straight tubules. Model calculations predict that these aspects of tubular of segmentation and heterogeneity generally enhance solute cycling or promote effective UCM function.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, NC 27708-0320, USA.
| | | |
Collapse
|
37
|
Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. Am J Physiol Renal Physiol 2005; 289:F1346-66. [PMID: 15914776 DOI: 10.1152/ajprenal.00346.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a highly detailed mathematical model for the urine concentrating mechanism (UCM) of the rat kidney outer medulla (OM). The model simulates preferential interactions among tubules and vessels by representing four concentric regions that are centered on a vascular bundle; tubules and vessels, or fractions thereof, are assigned to anatomically appropriate regions. Model parameters, which are based on the experimental literature, include transepithelial transport properties of short descending limbs inferred from immunohistochemical localization studies. The model equations, which are based on conservation of solutes and water and on standard expressions for transmural transport, were solved to steady state. Model simulations predict significantly differing interstitial NaCl and urea concentrations in adjoining regions. Active NaCl transport from thick ascending limbs (TALs), at rates inferred from the physiological literature, resulted in model osmolality profiles along the OM that are consistent with tissue slice experiments. TAL luminal NaCl concentrations at the corticomedullary boundary are consistent with tubuloglomerular feedback function. The model exhibited solute exchange, cycling, and sequestration patterns (in tubules, vessels, and regions) that are generally consistent with predictions in the physiological literature, including significant urea addition from long ascending vasa recta to inner-stripe short descending limbs. In a companion study (Layton AT and Layton HE. Am J Physiol Renal Physiol 289: F1367-F1381, 2005), the impact of model assumptions, medullary anatomy, and tubular segmentation on the UCM was investigated by means of extensive parameter studies.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, NC 27708-0320, USA.
| | | |
Collapse
|
38
|
Bonilla-Felix M. Development of water transport in the collecting duct. Am J Physiol Renal Physiol 2005; 287:F1093-101. [PMID: 15522987 DOI: 10.1152/ajprenal.00119.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of the immature kidney to concentrate urine is lower than in adults. This can lead to severe water and electrolyte disorders, especially in premature babies. Resistance to AVP and lower tonicity of the medullary interstitium seem to be the major factors limiting urine concentration in newborns. AVP-stimulated cAMP generation is impaired. This is the result of inhibition of the production by PGE(2) acting through EP3 receptors and increased degradation by phosphodiesterase IV. The expression of aquaporin-2 (AQP2) in the immature kidney is low; however, under conditions of water deprivation and after stimulation with DDAVP, it rises to adult levels. The expression of AQP3 and AQP4 is intact at birth and does not seem to contribute to the hyporesponsiveness to AVP. Low sodium transport by thick ascending loops of Henle, immaturity of the medullary architecture, and adaptations in the transport of urea contribute to the lower tonicity of the medullary interstitium. This paper reviews the alterations in the AVP signal transduction pathway in the immature kidney.
Collapse
Affiliation(s)
- Melvin Bonilla-Felix
- Department of Pediatrics, Univerity of Puerto Rico-Medical Sciences, Campus, San Juan, PR 00936-5067.
| |
Collapse
|
39
|
Williams RE, Lenz EM, Lowden JS, Rantalainen M, Wilson ID. The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC-TOF MS. MOLECULAR BIOSYSTEMS 2005; 1:166-75. [PMID: 16880980 DOI: 10.1039/b500852b] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of aging and development in male Wistar-derived rats on the profile of endogenous metabolites excreted in the urine was investigated using both (1)H NMR spectroscopy and HPLC-TOF MS using electrospray ionisation (ESI). The endogenous metabolites were profiled in samples collected from male rats every two weeks from just after weaning at 4 weeks up to 20 weeks of age. Multivariate data analysis enabled clusters to be visualised within the data according to age, with urine collected at 4 and 6 weeks showing the greatest differences by both analytical techniques. Markers detected by (1)H NMR spectroscopy included creatinine, taurine, hippurate and resonances associated with amino acids/fatty acids, which increased with age, whilst citrate and resonances resulting from glucose/myoinositol declined. A number of ions were detected by HPLC-MS that were only present in urine samples at 4 weeks of age in both positive and negative ESI, with a range of ions, including e.g. carnitine, increasing with age. Age predictions by PLS-regression modelling demonstrated an age-related trend within these data, between 4 and 12 weeks for HPLC-MS and 4-16 weeks for NMR. The possible utility of these techniques for metabonomic investigations of age-related changes in the rat is discussed and the importance of employing suitable control animals in pharmacological and toxicological studies is highlighted.
Collapse
Affiliation(s)
- R E Williams
- Department of Drug Metabolism and Pharmacokinetics, AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, UKSK10 4TG
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Kültz D. Hypertonicity and TonEBP promote development of the renal concentrating system. Am J Physiol Renal Physiol 2004; 287:F876-7. [PMID: 15475542 DOI: 10.1152/ajprenal.00272.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Dept. of Animal Science, University of California-Davis, Meyer Hall, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Urea is transported across the kidney inner medullary collecting duct by urea-transporter proteins. Two urea-transporter genes have been cloned from humans and rodents: the UT-A (Slc14A2) gene encodes five protein and eight cDNA isoforms; the UT-B (Slc14A1) gene encodes a single isoform. In the past year, significant progress has been made in understanding the regulation of urea-transporter protein abundance in kidney, studies of genetically engineered mice that lack a urea transporter, identification of urea transporters outside of the kidney, cloning of urea transporters in nonmammalian species, and active urea transport in microorganisms. RECENT FINDINGS UT-A1 protein abundance is increased by 12 days of vasopressin, but not by 5 days. Analysis of the UT-A1 promoter suggests that vasopressin increases UT-A1 indirectly following a direct effect to increase the transcription of other genes, such as the Na(+)-K(+)-2Cl- cotransporter NKCC2/BSC1 and the aquaporin (AQP) 2 water channel, that begin to increase inner medullary osmolality. UT-A1 protein abundance is also increased by adrenalectomy, and is decreased by glucocorticoids or mineralocorticoids. However, each hormone works through its own receptor. Knockout mice that lack UT-A1 and UT-A3, or lack UT-B, have a urine-concentrating defect and a decrease in inner medullary interstitial urea content. SUMMARY Urea transporters play a critical role in the urine-concentrating mechanism. Their abundance is regulated by vasopressin, glucocorticoids, and mineralocorticoids. These regulatory mechanisms may be important in disease states such as diabetes because changes in urea-transporter abundance in diabetic rats require glucocorticoids and vasopressin.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
Han KH, Woo SK, Kim WY, Park SH, Cha JH, Kim J, Kwon HM. Maturation of TonEBP expression in developing rat kidney. Am J Physiol Renal Physiol 2004; 287:F878-85. [PMID: 15226152 DOI: 10.1152/ajprenal.00047.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tonicity-responsive enhancer binding protein (TonEBP) is a transcriptional activator of the Rel family. In the renal medulla, TonEBP stimulates genes encoding proteins involved in cellular accumulation of organic osmolytes, the vasopressin-regulated urea transporters (UT-A), and heat shock protein 70. To understand the role of TonEBP in the development of urinary concentrating ability, TonEBP expression during rat kidney development was investigated. In embryonic kidneys, TonEBP immunoreactivity was detected 16 days postcoitus in the cytoplasm of the endothelial cells surrounding the medullary collecting ducts (MCD). By 20 days, TonEBP was detected in most tubular profiles in the medulla, including the loop of Henle and MCD, and interstitial cells. The intensity of TonEBP immunoreactivity was much higher in the vasa recta than the tubules. In addition, immunoreactivity was localized predominantly to the cytoplasm. On postnatal day 1, two major changes were observed. TonEBP immunoreactivity shifted to the nucleus, and the intensity of TonEBP immunoreactivity of the tubules increased dramatically. These changes were associated with an increase in TonEBP and sodium-myo-inositol cotransporter mRNA abundance. Thereafter, TonEBP expression in tubular profiles increased moderately. The adult pattern of TonEBP expression was established at postnatal day 21 coincident with full maturation of the renal medulla. Thus expression of TonEBP in developing kidneys occurred predominantly in the medulla and preceded expression of its target genes, including UT-A. These data suggest that TonEBP contributes to the development of urine-concentrating ability.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Departmrnt of Anatomy and Cell Death Disease Research Center, Catholic University Medical College, Seoul 137-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Shayakul C, Hediger MA. The SLC14 gene family of urea transporters. Pflugers Arch 2004; 447:603-9. [PMID: 12856182 DOI: 10.1007/s00424-003-1124-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 06/01/2003] [Indexed: 02/02/2023]
Abstract
Carrier-mediated urea transport allows rapid urea movement across the cell membrane, which is particularly important in the process of urinary concentration and for rapid urea equilibrium in non-renal tissues. Urea transporters mediate passive urea uptake that is inhibited by phloretin and urea analogues. Facilitated urea transporters are divided into two classes: (1) the renal tubular/testicular type of urea transporter, UT-A1 to -A5, encoded by alternative splicing of the SLC14A2 gene, and (2) the erythrocyte urea transporter UT-B1 encoded by the SLC14A1 gene. The primary structure of urea transporters is unique, consisting of two extended, hydrophobic, membrane-spanning domains and an extracellular glycosylated-connecting loop. UT-A1 is the result of a gene duplication of this two-halves-structure, and the duplicated portions are linked together by a large intracellular hydrophilic loop, carrying several putative protein kinase A (PKA) and -C (PKC) phosphorylation sites. UT-A1 is located in the apical membrane of the kidney inner medullary collecting duct cells, where it is stimulated acutely by cAMP-mediated phosphorylation in response to the antidiuretic hormone vasopressin. Vasopressin also up-regulates UT-A2 mRNA/protein expression in the descending thin limb of the loops of Henle. UT-A1 and UT-A2 are regulated independently and respond differently to changes in dietary protein content. UT-A3 and UT-A4 are located in the rat kidney medulla and UT-A5 in the mouse testis. The widely expressed UT-B participates in urea recycling in the descending vasa recta, as demonstrated by a relatively mild "urea-selective" urinary concentrating defect in transgenic UT-B null mice and individuals with the Jk(null) blood group.
Collapse
Affiliation(s)
- Chairat Shayakul
- Renal Unit, Department of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Rd, Bangkoknoi, Bangkok 10700, Thailand.
| | | |
Collapse
|
45
|
|
46
|
Jung JY, Madsen KM, Han KH, Yang CW, Knepper MA, Sands JM, Kim J. Expression of urea transporters in potassium-depleted mouse kidney. Am J Physiol Renal Physiol 2003; 285:F1210-24. [PMID: 12952854 DOI: 10.1152/ajprenal.00111.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urea transport in the kidney is mediated by a family of transporter proteins that include the renal urea transporter (UT-A) and the erythrocyte urea transporter (UT-B). The purpose of this study was to determine the location of the urea transporter isoforms in the mouse kidney and to examine the effects of prolonged potassium depletion on the expression and distribution of these transporters by ultrastructural immunocytochemistry. C57BL6 mice were fed a low-potassium diet for 2 wk, and control animals received normal chow. After 2 wk on a low-potassium diet, urinary volume increased and urinary osmolality decreased (833 +/- 30 vs. 1,919 +/- 174 mosmol/kgH2O), as previously demonstrated. Kidneys were processed for immunocytochemistry with antibodies against UT-A1 (L446), UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B. In normal mice, UT-A1 and UT-A3 were expressed mainly in the cytoplasm of the terminal inner medullary collecting duct (IMCD). UT-A2 immunoreactivity was observed mainly on the basolateral membrane of the type 1 epithelium of the descending thin limb (DTL) of short-looped nephrons. The intensity of UT-A1 and UT-A3 immunoreactivity in the IMCD was markedly reduced in potassium-depleted mice. In contrast, there was a significant increase in UT-A2 immunoreactivity in the DTL. The intensity of UT-B immunoreactivity in the descending vasa recta (DVR) was reduced in potassium-depleted animals compared with controls. In control animals, UT-B immunoreactivity was predominantly observed in the plasma membrane, whereas in potassium-depleted mice, it was mainly observed in cytoplasmic granules in endothelial cells of the DVR. In summary, potassium depletion is associated with reduced expression of UT-A1, UT-A3, and UT-B but increased expression of UT-A2. We conclude that reduced expression of urea transporters may play a role in the impaired urine-concentrating ability associated with potassium deprivation.
Collapse
Affiliation(s)
- Ju-Young Jung
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Socho-Gu, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Schumacher K, Strehl R, Minuth WW. Urea Restrains Aldosterone-Induced Development of Peanut Agglutinin–Binding on Embryonic Renal Collecting Duct Epithelia. J Am Soc Nephrol 2003; 14:2758-66. [PMID: 14569085 DOI: 10.1097/01.asn.0000090744.88722.ff] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT. Peanut agglutinin (PNA) represents a commonly used marker for β-type intercalated (IC) cells and their distribution in the corticomedullary course of the collecting duct (CD) in the mature rabbit kidney. It has been shown that aldosterone is able to generate >90% of PNA-binding cells in an embryonic CD epithelium in vitro. In adult kidney, a maximum of only 25% PNA-positive cells is found in the cortical segment of the CD, and PNA-binding completely disappears in the inner-medullary CD. Molecules that regulate the gradual development of CD-specific cells during organ growth are unknown. In the present experiments, it was found that addition of physiologic concentrations of urea to the culture medium is able to restrain the action of aldosterone in embryonic CD epithelia. Urea antagonizes in a concentration-dependent manner the action of aldosterone finally leading to only 10% of PNA-binding cells. The data point to a urea-specific effect, because osmolytes such as NaCl and mannitol did not affect PNA binding. In addition, urea did not influence expression of principal-cell typical markers such as AQP2 and 3. The findings may explain that a higher number of PNA-positive cells is found in the cortical region of the kidney correlated with a low concentration of urea as compared with only few PNA-binding cells in the medullary CD, where a high concentration of urea occurs. Thus, an increasing concentration of urea may trigger the number of PNA-positive cells in the cortical-medullary course of the CD during organ development. E-mail: karl.schumacher@vkl.uni-regensburg.de
Collapse
Affiliation(s)
- Karl Schumacher
- Department of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany.
| | | | | |
Collapse
|
48
|
Pallone TL, Turner MR, Edwards A, Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1153-75. [PMID: 12676741 DOI: 10.1152/ajpregu.00657.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microcirculation of the renal medulla traps NaCl and urea deposited to the interstitium by the loops of Henle and collecting ducts. Theories have predicted that countercurrent exchanger efficiency is favored by high permeability to solute. In contrast to the conceptualization of vasa recta as simple "U-tube" diffusive exchangers, many findings have revealed surprising complexity. Tubular-vascular relationships in the outer and inner medulla differ markedly. The wall structure and transport properties of descending vasa recta (DVR) and ascending vasa recta (AVR) are very different. The recent discoveries of aquaporin-1 (AQP1) water channels and the facilitated urea carrier UTB in DVR endothelia show that transcellular as well as paracellular pathways are involved in equilibration of DVR plasma with the interstitium. Efflux of water across AQP1 excludes NaCl and urea, leading to the conclusion that both water abstraction and diffusion contribute to transmural equilibration. Recent theory predicts that loss of water from DVR to the interstitium favors optimization of urinary concentration by shunting water to AVR, secondarily lowering blood flow to the inner medulla. Finally, DVR are vasoactive, arteriolar microvessels that are anatomically positioned to regulate total and regional blood flow to the outer and inner medulla. In this review, we provide historical perspective, describe the current state of knowledge, and suggest areas that are in need of further exploration.
Collapse
Affiliation(s)
- Thomas L Pallone
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
49
|
Pallone TL, Zhang Z, Rhinehart K. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol 2003; 284:F253-66. [PMID: 12529271 DOI: 10.1152/ajprenal.00304.2002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perfusion of the renal medulla plays an important role in salt and water balance. Pericytes are smooth muscle-like cells that impart contractile function to descending vasa recta (DVR), the arteriolar segments that supply the medulla with blood flow. DVR contraction by ANG II is mediated by depolarization resulting from an increase in plasma membrane Cl(-) conductance that secondarily gates voltage-activated Ca(2+) entry. In this respect, DVR may differ from other parts of the efferent microcirculation of the kidney. Elevation of extracellular K(+) constricts DVR to a lesser degree than ANG II or endothelin-1, implying that other events, in addition to membrane depolarization, are needed to maximize vasoconstriction. DVR endothelial cytoplasmic Ca(2+) is increased by bradykinin, a response that is inhibited by ANG II. ANG II inhibition of endothelial Ca(2+) signaling might serve to regulate the site of origin of vasodilatory paracrine agents generated in the vicinity of outer medullary vascular bundles. In the hydropenic kidney, DVR plasma equilibrates with the interstitium both by diffusion and through water efflux across aquaporin-1. That process is predicted to optimize urinary concentration by lowering blood flow to the inner medulla. To optimize urea trapping, DVR endothelia express the UT-B facilitated urea transporter. These and other features show that vasa recta have physiological mechanisms specific to their role in the renal medulla.
Collapse
Affiliation(s)
- Thomas L Pallone
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | | | |
Collapse
|
50
|
Boulat O, Gradwohl M, Matos V, Guignard JP, Bachmann C. Organic Acids in the Second Morning Urine in a Healthy Swiss Paediatric Population. Clin Chem Lab Med 2003; 41:1642-58. [PMID: 14708889 DOI: 10.1515/cclm.2003.248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Organic acid analysis is used for the early detection/ exclusion and for the follow-up of inherited disorders of amino acid and organic acid metabolism. Urinary organic acid concentrations in 417 healthy Caucasian children (1 day to 17 years of age) were determined after liquid solid extraction, as their trimethylsilyl derivatives, by gas chromatography and mass spectrometry. Concentrations of most of the organic acids adjusted for creatinine tend to decrease with age. No differences were found between gender except for the Krebs cycle intermediates in the older age groups. In neonates, the immaturity of the neonatal kidney led to a much larger variation of organic acid levels when related to creatinine. The low number of subjects (n = 36-52) per age class resulted in large 95% confidence intervals of the percentiles used for decision. This must be taken into account when using the data for exclusion or diagnosis of disorders.
Collapse
Affiliation(s)
- Olivier Boulat
- Central Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|