1
|
Demirci M, Hinton A, Kirabo A. Dendritic cell epithelial sodium channel induced inflammation and salt-sensitive hypertension. Curr Opin Nephrol Hypertens 2024; 33:145-153. [PMID: 38180118 PMCID: PMC10842661 DOI: 10.1097/mnh.0000000000000963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. Epithelial sodium channel (ENaC) plays a critical role in renal electrolyte and volume regulation and has been implicated in the pathogenesis of SSBP. This review describes recent advances regarding the role of ENaC-dependent inflammation in the development of SSBP. RECENT FINDINGS We recently found that sodium enters dendritic cells via ENaC, a process regulated by serum/glucocorticoid-regulated kinase 1 and epoxyeicosatrienoic acid 14,15. Sodium entry activates NADPH oxidase, leading to the production of isolevuglandins (IsoLGs). IsoLGs adduct self-proteins to form neoantigens in dendritic cells that activate T cells and result in the release of cytokines promoting sodium retention, kidney damage, and endothelial dysfunction in SSBP. Additionally, we described a novel mechanistic pathway involving ENaC and IsoLG-dependent NLRP3 inflammasome activation. These findings hold promise for the development of novel diagnostic biomarkers and therapeutic options for SSBP. SUMMARY The exact mechanisms underlying SSBP remain elusive. Recent advances in understanding the extrarenal role of ENaC have opened a new perspective, and further research efforts should focus on understanding the link between ENaC, inflammation, and SSBP.
Collapse
Affiliation(s)
- Mert Demirci
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Guo Y, Luo T, Xie G, Zhang X. Bile acid receptors and renal regulation of water homeostasis. Front Physiol 2023; 14:1322288. [PMID: 38033333 PMCID: PMC10684672 DOI: 10.3389/fphys.2023.1322288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The kidney is the key organ responsible for maintaining the body's water and electrolyte homeostasis. About 99% of the primary urine filtered from the Bowman's capsule is reabsorbed along various renal tubules every day, with only 1-2 L of urine excreted. Aquaporins (AQPs) play a vital role in water reabsorption in the kidney. Currently, a variety of molecules are found to be involved in the process of urine concentration by regulating the expression or activity of AQPs, such as antidiuretic hormone, renin-angiotensin-aldosterone system (RAAS), prostaglandin, and several nuclear receptors. As the main bile acid receptors, farnesoid X receptor (FXR) and membrane G protein-coupled bile acid receptor 1 (TGR5) play important roles in bile acid, glucose, lipid, and energy metabolism. In the kidney, FXR and TGR5 exhibit broad expression across all segments of renal tubules, and their activation holds significant therapeutic potential for numerous acute and chronic kidney diseases through alleviating renal lipid accumulation, inflammation, oxidative stress, and fibrosis. Emerging evidence has demonstrated that the genetic deletion of FXR or TGR5 exhibits increased basal urine output, suggesting that bile acid receptors play a critical role in urine concentration. Here, we briefly summarize the function of bile acid receptors in renal water reabsorption and urine concentration.
Collapse
Affiliation(s)
- Yanlin Guo
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Taotao Luo
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Guixiang Xie
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Xiaoyan Zhang
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Warren AM, Grossmann M, Christ-Crain M, Russell N. Syndrome of Inappropriate Antidiuresis: From Pathophysiology to Management. Endocr Rev 2023; 44:819-861. [PMID: 36974717 PMCID: PMC10502587 DOI: 10.1210/endrev/bnad010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
Hyponatremia is the most common electrolyte disorder, affecting more than 15% of patients in the hospital. Syndrome of inappropriate antidiuresis (SIAD) is the most frequent cause of hypotonic hyponatremia, mediated by nonosmotic release of arginine vasopressin (AVP, previously known as antidiuretic hormone), which acts on the renal V2 receptors to promote water retention. There are a variety of underlying causes of SIAD, including malignancy, pulmonary pathology, and central nervous system pathology. In clinical practice, the etiology of hyponatremia is frequently multifactorial and the management approach may need to evolve during treatment of a single episode. It is therefore important to regularly reassess clinical status and biochemistry, while remaining alert to potential underlying etiological factors that may become more apparent during the course of treatment. In the absence of severe symptoms requiring urgent intervention, fluid restriction (FR) is widely endorsed as the first-line treatment for SIAD in current guidelines, but there is considerable controversy regarding second-line therapy in instances where FR is unsuccessful, which occurs in around half of cases. We review the epidemiology, pathophysiology, and differential diagnosis of SIAD, and summarize recent evidence for therapeutic options beyond FR, with a focus on tolvaptan, urea, and sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Annabelle M Warren
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| | - Mathis Grossmann
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel 4031, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Nicholas Russell
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| |
Collapse
|
4
|
Castañeda-Bueno M, Ellison DH. Blood pressure effects of sodium transport along the distal nephron. Kidney Int 2022; 102:1247-1258. [PMID: 36228680 PMCID: PMC9754644 DOI: 10.1016/j.kint.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; LeDucq Transatlantic Network of Excellence, Portland, Oregon, USA; Renal Section, VA Portland Healthcare System, Portland, Oregon, USA.
| |
Collapse
|
5
|
Stockand JD, Mironova EV, Xiang H, Soares AG, Contreras J, McCormick JA, Gurley SB, Pao AC. Chronic activation of vasopressin-2 receptors induces hypertension in Liddle mice by promoting Na + and water retention. Am J Physiol Renal Physiol 2022; 323:F468-F478. [PMID: 35900342 PMCID: PMC9485005 DOI: 10.1152/ajprenal.00384.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone and arginine vasopressin-V2 receptor-aquaporin-2 (AQP2) systems converge on the epithelial Na+ channel (ENaC) to regulate blood pressure and plasma tonicity. Although it is established that V2 receptors initiate renal water reabsorption through AQP2, whether V2 receptors can also induce renal Na+ retention through ENaC and raise blood pressure remains an open question. We hypothesized that a specific increase in V2 receptor-mediated ENaC activity can lead to high blood pressure. Our approach was to test effects of chronic activation of V2 receptors in Liddle mice, a genetic mouse model of high ENaC activity, and compare differences in ENaC activity, urine Na+ excretion, and blood pressure with control mice. We found that ENaC activity was elevated in Liddle mice and could not be stimulated further by administration of desmopressin (dDAVP), a V2 receptor-specific agonist. In contrast, Liddle mice showed higher levels of expression of AQP2 and aquaporin-3, but they could still respond to dDAVP infusion by increasing phospho-AQP2 expression. With dDAVP infusion, Liddle mice excreted smaller urine volume and less urine Na+ and developed higher blood pressure compared with control mice; this hypertension was attenuated with administration of the ENaC inhibitor benzamil. We conclude that V2 receptors contribute to hypertension in the Liddle mouse model by promoting primary Na+ and concomitant water retention.NEW & NOTEWORTHY Liddle syndrome is a classic model for hypertension from high epithelial Na+ channel (ENaC) activity. In the Liddle mouse model, vasopressin-2 receptors stimulate both ENaC and aquaporin-2, which increases Na+ and water retention to such an extent that hypertension ensues. Liddle mice will preserve plasma tonicity at the expense of a higher blood pressure; these data highlight the inherent limitation in which the kidney must use ENaC as a pathway to regulate both plasma tonicity and blood pressure.
Collapse
Affiliation(s)
- James D Stockand
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Elena V Mironova
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Hong Xiang
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Antonio G Soares
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jorge Contreras
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - James A McCormick
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | - Alan C Pao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
- Division of Nephrology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
6
|
Ertuglu LA, Kirabo A. Dendritic Cell Epithelial Sodium Channel in Inflammation, Salt-Sensitive Hypertension, and Kidney Damage. KIDNEY360 2022; 3:1620-1629. [PMID: 36245645 PMCID: PMC9528365 DOI: 10.34067/kid.0001272022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
Salt-sensitive hypertension is a major risk factor for cardiovascular morbidity and mortality. The pathophysiologic mechanisms leading to different individual BP responses to changes in dietary salt remain elusive. Research in the last two decades revealed that the immune system plays a critical role in the development of hypertension and related end organ damage. Moreover, sodium accumulates nonosmotically in human tissue, including the skin and muscle, shifting the dogma on body sodium balance and its regulation. Emerging evidence suggests that high concentrations of extracellular sodium can directly trigger an inflammatory response in antigen-presenting cells (APCs), leading to hypertension and vascular and renal injury. Importantly, sodium entry into APCs is mediated by the epithelial sodium channel (ENaC). Although the role of the ENaC in renal regulation of sodium excretion and BP is well established, these new findings imply that the ENaC may also exert BP modulatory effects in extrarenal tissue through an immune-dependent pathway. In this review, we discuss the recent advances in our understanding of the pathophysiology of salt-sensitive hypertension with a particular focus on the roles of APCs and the extrarenal ENaC.
Collapse
|
7
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
8
|
Renal water transport in health and disease. Pflugers Arch 2022; 474:841-852. [PMID: 35678906 PMCID: PMC9338902 DOI: 10.1007/s00424-022-02712-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
Saving body water by optimal reabsorption of water filtered by the kidney leading to excretion of urine with concentrations of solutes largely above that of plasma allowed vertebrate species to leave the aquatic environment to live on solid ground. Filtered water is reabsorbed for 70% and 20% by proximal tubules and thin descending limbs of Henle, respectively. These two nephron segments express the water channel aquaporin-1 located along both apical and basolateral membranes. In the proximal tubule, the paracellular pathway accounts for at least 30% of water reabsorption, and the tight-junction core protein claudin-2 plays a key role in this permeability. The ascending limb of Henle and the distal convoluted tubule are impermeant to water and are responsible for urine dilution. The water balance is adjusted along the collecting system, i.e. connecting tubule and the collecting duct, under the control of arginine-vasopressin (AVP). AVP is synthesized by the hypothalamus and released in response to an increase in extracellular osmolality or stimulation of baroreceptors by decreased blood pressure. In response to AVP, aquaporin-2 water channels stored in subapical intracellular vesicles are translocated to the apical plasma membrane and raise the water permeability of the collecting system. The basolateral step of water reabsorption is mediated by aquaporin-3 and -4, which are constitutively expressed. Drugs targeting water transport include classical diuretics, which primarily inhibit sodium transport; the new class of SGLT2 inhibitors, which promotes osmotic diuresis and the non-peptidic antagonists of the V2 receptor, which are pure aquaretic drugs. Disturbed water balance includes diabetes insipidus and hyponatremias. Diabetes insipidus is characterized by polyuria and polydipsia. It is either related to a deficit in AVP secretion called central diabetes insipidus that can be treated by AVP analogs or to a peripheral defect in AVP response called nephrogenic diabetes insipidus. Diabetes insipidus can be either of genetic origin or acquired. Hyponatremia is a common disorder most often related to free water excess relying on overstimulated or inappropriate AVP secretion. The assessment of blood volume is key for the diagnosis and treatment of hyponatremia, which can be classified as hypo-, eu-, or hypervolemic.
Collapse
|
9
|
Iron Inhibits the Translation and Activity of the Renal Epithelial Sodium Channel. BIOLOGY 2022; 11:biology11010123. [PMID: 35053120 PMCID: PMC8772986 DOI: 10.3390/biology11010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Hypertension is associated with an increased renal expression and activity of the epithelial sodium channel (ENaC) and iron deficiency. Distal tubules absorb iron, causing perturbations that may influence local responses. In this observational study, we investigated the relationship between iron content and ENaC expression and activity using two cell lines and hepcidin knockout mice (a murine model of iron overload). We found that iron did not transcriptionally regulate ENaC in hepcidin knockout mice or in vitro in collecting duct cells. However, the renal tubules of hepcidin knockout mice have a lower expression of ENaC protein. ENaC activity in cultured Xenopus 2F3 cells and mpkCCD cells was inhibited by iron, which could be reversed by iron chelation. Thus, our novel findings implicate iron as a regulator of ENaC protein and its activity.
Collapse
|
10
|
Soares AG, Contreras J, Archer CR, Mironova E, Berdeaux R, Stockand JD, Abd El-Aziz TM. Stimulation of the Epithelial Na + Channel in Renal Principal Cells by Gs-Coupled Designer Receptors Exclusively Activated by Designer Drugs. Front Physiol 2021; 12:725782. [PMID: 34512393 PMCID: PMC8425396 DOI: 10.3389/fphys.2021.725782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
The activity of the Epithelial Na+ Channel (ENaC) in renal principal cells (PC) fine-tunes sodium excretion and consequently, affects blood pressure. The Gs-adenylyl cyclase-cAMP signal transduction pathway is believed to play a central role in the normal control of ENaC activity in PCs. The current study quantifies the importance of this signaling pathway to the regulation of ENaC activity in vivo using a knock-in mouse that has conditional expression of Gs-DREADD (designer receptors exclusively activated by designer drugs; GsD) in renal PCs. The GsD mouse also contains a cAMP response element-luciferase reporter transgene for non-invasive bioluminescence monitoring of cAMP signaling. Clozapine N-oxide (CNO) was used to selectively and temporally stimulate GsD. Treatment with CNO significantly increased luciferase bioluminescence in the kidneys of PC-specific GsD but not control mice. CNO also significantly increased the activity of ENaC in principal cells in PC-specific GsD mice compared to untreated knock-in mice and CNO treated littermate controls. The cell permeable cAMP analog, 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate, significantly increased the activity and expression in the plasma membrane of recombinant ENaC expressed in CHO and COS-7 cells, respectively. Treatment of PC-specific GsD mice with CNO rapidly and significantly decreased urinary Na+ excretion compared to untreated PC-specific GsD mice and treated littermate controls. This decrease in Na+ excretion in response to CNO in PC-specific GsD mice was similar in magnitude and timing as that induced by the selective vasopressin receptor 2 agonist, desmopressin, in wild type mice. These findings demonstrate for the first time that targeted activation of Gs signaling exclusively in PCs is sufficient to increase ENaC activity and decrease dependent urinary Na+ excretion in live animals.
Collapse
Affiliation(s)
- Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jorge Contreras
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Zoology Department, Faculty of Science, Minia University, Minya, Egypt
| |
Collapse
|
11
|
Abd El-Aziz TM, Soares AG, Mironova E, Boiko N, Kaur A, Archer CR, Stockand JD, Berman JM. Mechanisms and consequences of casein kinase II and ankyrin-3 regulation of the epithelial Na + channel. Sci Rep 2021; 11:14600. [PMID: 34272444 PMCID: PMC8285517 DOI: 10.1038/s41598-021-94118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
Activity of the Epithelial Na+ Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical "anchor" ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activity and is thought to influence channel trafficking in a manner that increases activity. We test here the hypothesis that phosphorylation of ENaC by CKII within an anchor motif is necessary for ankyrin-3 (Ank-3) regulation of the channel, which is required for normal channel locale and function, and the proper regulation of renal sodium excretion. This was addressed using a fluorescence imaging strategy combining total internal reflection fluorescence (TIRF) microscopy with fluorescence recovery after photobleaching (FRAP) to quantify ENaC expression in the plasma membrane in living cells; and electrophysiology to quantify ENaC activity in split-open collecting ducts from principal cell-specific Ank-3 knockout mice. Sodium excretion studies also were performed in parallel in this knockout mouse. In addition, we substituted a key serine residue in the consensus CKII site in β-ENaC with alanine to abrogate phosphorylation and disrupt the anchor motif. Findings show that disrupting CKII signaling decreases ENaC activity by decreasing expression in the plasma membrane. In the principal cell-specific Ank-3 KO mouse, ENaC activity and sodium excretion were significantly decreased and increased, respectively. These results are consistent with CKII phosphorylation of ENaC functioning as a "switch" that favors Ank-3 binding to increase channel activity.
Collapse
Affiliation(s)
- Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
- Zoology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Nina Boiko
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Amanpreet Kaur
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Jonathan M Berman
- Department of Basic Science, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, 72401, USA
| |
Collapse
|
12
|
Cisplatin Decreases ENaC Activity Contributing to Renal Salt Wasting Syndrome. Cancers (Basel) 2020; 12:cancers12082140. [PMID: 32752278 PMCID: PMC7464492 DOI: 10.3390/cancers12082140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CDDP) is an important anticancer drug. A common side effect of CDDP is renal salt and water-wasting syndrome (RSWS). The origin of RSWS is obscure. Emerging evidence, though, suggests that broad inhibition of sodium transport proteins by CDDP may result in decreases in tubular reabsorption, causing increases in sodium and water excretion. In this sense, CDDP would be acting like a diuretic. The effect of CDDP on the epithelial Na+ channel (ENaC), which is the final arbiter fine-tuning renal Na+ excretion, is unknown. We test here whether CDDP affects ENaC to promote renal salt and water excretion. The effects of CDDP and benzamil (BZM), a blocker of ENaC, on excretion of a sodium load were quantified. Similar to BZM, CDDP facilitated renal Na+ excretion. To directly quantify the effects on ENaC, principal cells in split-open tubules were patch clamped. CDDP, at doses comparable to those used for chemotherapy (1.5 µM), significantly decreased ENaC activity in native tubules. To further elaborate on this mechanism, the dose-dependent effects of CDDP on mouse ENaC (mENaC) heterologously expressed in Chinese Hamster Ovary (CHO) cells were tested using patch clamping. As in native tubules, CDDP significantly decreased the activity of mENaC expressed in CHO cells. Dose–response curves and competition with amiloride identified CDDP as a weak inhibitor of ENaC (apparent IC50 = 1 µM) that competes with amiloride for inhibition of the channel, weakening the inhibitory actions of the latter. Such observations are consistent with CDDP being a partial modulator of ENaC, which possibly has a binding site that overlaps with that of amiloride. These findings are consistent with inhibition of ENaC by CDDP contributing to the RSWS caused by this important chemotherapy drug.
Collapse
|
13
|
Marunaka R, Marunaka Y. Interactive Actions of Aldosterone and Insulin on Epithelial Na + Channel Trafficking. Int J Mol Sci 2020; 21:ijms21103407. [PMID: 32408487 PMCID: PMC7279156 DOI: 10.3390/ijms21103407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022] Open
Abstract
Epithelial Na+ channel (ENaC) participates in renal epithelial Na+ reabsorption, controlling blood pressure. Aldosterone and insulin elevate blood pressure by increasing the ENaC-mediated Na+ reabsorption. However, little information is available on the interactive action of aldosterone and insulin on the ENaC-mediated Na+ reabsorption. In the present study, we tried to clarify if insulin would modify the aldosterone action on the ENaC-mediated Na+ reabsorption from a viewpoint of intracellular ENaC trafficking. We measured the ENaC-mediated Na+ transport as short-circuit currents using a four-state mathematical ENaC trafficking model in renal A6 epithelial cells with or without aldosterone treatment under the insulin-stimulated and -unstimulated conditions. We found that: (A) under the insulin-stimulated condition, aldosterone treatment (1 µM for 20 h) significantly elevated the ENaC insertion rate to the apical membrane (kI) 3.3-fold and the ENaC recycling rate (kR) 2.0-fold, but diminished the ENaC degradation rate (kD) 0.7-fold without any significant effect on the ENaC endocytotic rate (kE); (B) under the insulin-unstimulated condition, aldosterone treatment decreased kE 0.5-fold and increased kR 1.4-fold, without any significant effect on kI or kD. Thus, the present study indicates that: (1) insulin masks the well-known inhibitory action of aldosterone on the ENaC endocytotic rate; (2) insulin induces a stimulatory action of aldosterone on ENaC apical insertion and an inhibitory action of aldosterone on ENaC degradation; (3) insulin enhances the aldosterone action on ENaC recycling; (4) insulin has a more effective action on diminution of ENaC endocytosis than aldosterone.
Collapse
Affiliation(s)
- Rie Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan;
- Okamura Dental Clinic, Chuo-ku, Osaka 541-0041, Japan
| | - Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan;
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Correspondence: ; Tel.: +81-75-802-0135
| |
Collapse
|
14
|
Vasopressin inactivation: Role of insulin-regulated aminopeptidase. VITAMINS AND HORMONES 2019; 113:101-128. [PMID: 32138946 DOI: 10.1016/bs.vh.2019.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological importance of vasopressin inactivation has long been appreciated, but the mechanisms and potential pathophysiologic roles of this process remain active subjects of research. Human Placental Leucine Aminopeptidase (P-LAP, encoded by the LNPEP gene) is an important determinant of vasopressinase activity during pregnancy and is associated with gestational diabetes insipidus and preeclampsia. Insulin-Regulated Aminopeptidase (IRAP), the rodent homologue of P-LAP, is coregulated with the insulin-responsive glucose transporter, GLUT4, in adipose and muscle cells. Recently, the Tether containing a UBX domain for GLUT4 (TUG) protein was shown to mediate the coordinated regulation of water and glucose homeostasis. TUG sequesters IRAP and GLUT4 intracellularly in the absence of insulin. Insulin and other stimuli cause the proteolytic cleavage of TUG to mobilize these proteins to the cell surface, where IRAP acts to terminate the activity of circulating vasopressin. Intriguingly, genetic variation in LNPEP is associated with the vasopressin response and mortality during sepsis, and increased copeptin, a marker of vasopressin secretion, is associated with cardiovascular and metabolic disease. We propose that in the setting of insulin resistance in muscle, increased cell-surface IRAP and accelerated vasopressin degradation cause a compensatory increase in vasopressin secretion. The increased vasopressin concentrations present at the kidneys then contribute to hypertension in the metabolic syndrome. Further analyses of metabolism and of vasopressin and copeptin may yield novel insights into a unified pathophysiologic mechanism linking insulin resistance and hypertension, and potentially other components of the metabolic syndrome, in humans.
Collapse
|
15
|
Mose FH, Jörgensen AN, Vrist MH, Ekelöf NP, Pedersen EB, Bech JN. Effect of 3% saline and furosemide on biomarkers of kidney injury and renal tubular function and GFR in healthy subjects - a randomized controlled trial. BMC Nephrol 2019; 20:200. [PMID: 31159750 PMCID: PMC6545674 DOI: 10.1186/s12882-019-1342-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chloride is speculated to have nephrotoxic properties. In healthy subjects we tested the hypothesis that acute chloride loading with 3% saline would induce kidney injury, which could be prevented with the loop-diuretic furosemide. Methods The study was designed as a randomized, placebo-controlled, crossover study. Subjects were given 3% saline accompanied by either placebo or furosemide. Before, during and after infusion of 3% saline we measured glomerular filtration rate (GFR), fractional excretion of sodium (FENa), urinary chloride excretion (u-Cl), urinary excretions of aquaporin-2 (u-AQP2) and epithelial sodium channels (u-ENaCγ), neutrophil gelatinase-associated lipocalin (u-NGAL) and kidney injury molecule-1 (u-KIM-1) as marker of kidney injury and vasoactive hormones: renin (PRC), angiotensin II (p-AngII), aldosterone (p-Aldo) and arginine vasopressin (p-AVP). Four days prior to each of the two examinations subjects were given a standardized fluid and diet intake. Results After 3% saline infusion u-NGAL and KIM-1 excretion increased slightly (u-NGAL: 17 ± 24 during placebo vs. -7 ± 23 ng/min during furosemide, p = 0.039, u-KIM-1: 0.21 ± 0.23 vs − 0.06 ± 0.14 ng/ml, p < 0.001). The increase in u-NGAL was absent when furosemide was given simultaneously, and the responses in u-NGAL were not significantly different from placebo control. Furosemide changed responses in u-KIM-1 where a delayed increase was observed. GFR was increased by 3% saline but decreased when furosemide accompanied the infusion. U-Na, FENa, u-Cl, and u-osmolality increased in response to saline, and the increase was markedly pronounced when furosemide was added. FEK decreased slightly during 3% saline infusion, but simultaneously furosemide increased FEK. U-AQP2 increased after 3% saline and placebo, and the response was further increased by furosemide. U-ENaCγ decreased to the same extent after 3% saline infusion in the two groups. 3% saline significantly reduced PRC, p-AngII and p-Aldo, and responses were attenuated by furosemide. p-AVP was increased by 3% saline, with a larger increase during furosemide. Conclusion This study shows minor increases in markers of kidney injury after 3% saline infusion Furosemide abolished the increase in NGAL and postponed the increase in u-KIM-1. The clinical importance of these findings needs further investigation. Trial registration (EU Clinical trials register number: 2015–002585-23, registered on 5th November 2015)
Collapse
Affiliation(s)
- F H Mose
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark. .,University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark.
| | - A N Jörgensen
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark.,University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| | - M H Vrist
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark.,University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| | - N P Ekelöf
- Department of Anaesthesiology, Holstebro Hospital, Hospital Unit West, Holstebro, Denmark
| | - E B Pedersen
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark.,University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| | - J N Bech
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark.,University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Wang H, Morris RG, Knepper MA, Zhou X. Sickle cell disease up-regulates vasopressin, aquaporin 2, urea transporter A1, Na-K-Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability. Physiol Rep 2019; 7:e14066. [PMID: 31033226 PMCID: PMC6487471 DOI: 10.14814/phy2.14066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Sickle cell disease (SCD)-induced urinary concentration defect has been proposed as caused by impaired ability of the occluded vasa recta due to red blood cell sickling to serve as countercurrent exchangers and renal tubules to absorb water and solutes. However, the exact molecular mechanisms remain largely unknown. The present studies were undertaken to determine the effects of SCD on vasopressin, aquaporin2 (AQP2), urea transporter A1 (UTA1), Na-K-Cl co-transporter 2 (NKCC2), epithelial Na channels (ENaC), aquaporin1 (AQP1), nuclear factor of activated T cells 5 (NFAT5) and Src homology region-2 domain-containing phosphatase-1 (SHP-1), an important regulator of NFAT5, in the Berkeley SCD mouse kidney medulla. Under water repletion, SCD only induced a minor urinary concentration defect associated with increased urinary vasopressin level alone with the well-known effects of vasopressin: protein abundance of AQP2, UTA1 and ENaC-β and apical targeting of AQP2 as compared with non-SCD. SCD did not significantly affect AQP1 protein level. Water restriction had no further significant effect on SCD urinary vasopressin. NFAT5 is also critical to urinary concentration. Instead, water restriction-activated NFAT5 associated with inhibition of SHP-1 in the SCD mice. Yet, water restriction only elevated urinary osmolality by 28% in these mice as opposed to 104% in non-SCD mice despite similar degree increases of protein abundance of AQP2, NKCC2 and AQP2-S256-P. Water-restriction had no significant effect on protein abundance of ENaC or AQP1 in either strain. In conclusion, under water repletion SCD, only induces a minor defect in urinary concentration because of compensation from the up-regulated vasopressin system. However, under water restriction, SCD mice struggle to concentrate urine despite activating NFAT5. SCD-induced urinary concentration defect appears to be resulted from the poor blood flow in vasa recta rather than the renal tubules' ability to absorb water and solutes.
Collapse
Affiliation(s)
- Hong Wang
- Department of MedicineUniformed Services University of Health SciencesBethesdaMaryland
| | | | | | - Xiaoming Zhou
- Department of MedicineUniformed Services University of Health SciencesBethesdaMaryland
| |
Collapse
|
17
|
Mast TG, Breza JM, Contreras RJ. Thirst Increases Chorda Tympani Responses to Sodium Chloride. Chem Senses 2017; 42:675-681. [PMID: 28981824 DOI: 10.1093/chemse/bjx052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, water is present as a low-salt solution, thus we hypothesized that thirst would increase taste responses to low-salt solutions. We investigated the effect of thirst on the 2 different salt detection mechanisms present in the rat chorda tympani (CT) nerve. The first mechanism is dependent upon the epithelial sodium channel (ENaC), is blocked by benzamil, and is specific to the cation sodium. The second mechanism, while undefined, is independent of ENaC, and detects multiple cations. We expected thirst to increase benzamil-sensitive sodium responses due to mechanistically increasing the benzamil-sensitive ENaC. We recorded CT whole-nerve electrophysiological responses to lingual application of NaCl, KCl (30, 75, 150, 300, 500, and 600 mM), and imitation rainwater in both control and 24-h water-restricted male rats. NaCl solutions were presented in artificial saliva before and after lingual application of 5µM benzamil. Water restriction significantly increased the integrated CT responses to NaCl but not to KCl or imitation rainwater. Consistent with our hypothesis, only the benzamil-sensitive, and not the benzamil-insensitive, CT sodium response significantly increased. Additionally, CT responses to salt were recorded following induction of either osmotic or volemic thirst. Both thirsts significantly enhanced the integrated CT responses to NaCl and KCl, but not imitation rainwater. Interestingly, osmotic and volemic thirsts increased CT responses by increasing both the benzamil-sensitive and benzamil-insensitive CT sodium responses. We propose that thirst increases the sensitivity of the CT nerve to sodium.
Collapse
Affiliation(s)
- Thomas G Mast
- Department of Biology, Program in Neuroscience, Eastern Michigan University, Ypsilanti, MI 48197, USA.,Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA
| | - Joseph M Breza
- Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA.,Department of Psychology, Program in Neuroscience, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Robert J Contreras
- Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA
| |
Collapse
|
18
|
Affiliation(s)
- Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Mironova E, Lynch IJ, Berman JM, Gumz ML, Stockand JD, Wingo CS. ENaC activity in the cortical collecting duct of HKα 1 H +,K +-ATPase knockout mice is uncoupled from Na + intake. Am J Physiol Renal Physiol 2017; 312:F1073-F1080. [PMID: 28179253 DOI: 10.1152/ajprenal.00401.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 11/22/2022] Open
Abstract
Modulation of the epithelial Na+ channel (ENaC) activity in the collecting duct (CD) is an important mechanism for normal Na+ homeostasis. ENaC activity is inversely related to dietary Na+ intake, in part due to inhibitory paracrine purinergic regulation. Evidence suggests that H+,K+-ATPase activity in the CD also influences Na+ excretion. We hypothesized that renal H+,K+-ATPases affect Na+ reabsorption by the CD by modulating ENaC activity. ENaC activity in HKα1 H+,K+-ATPase knockout (HKα1-/-) mice was uncoupled from Na+ intake. ENaC activity on a high-Na+ diet was greater in the HKα1-/- mice than in WT mice. Moreover, dietary Na+ content did not modulate ENaC activity in the HKα1-/- mice as it did in WT mice. Purinergic regulation of ENaC was abnormal in HKα1-/- mice. In contrast to WT mice, where urinary [ATP] was proportional to dietary Na+ intake, urinary [ATP] did not increase in response to a high-Na+ diet in the HKα1-/- mice and was significantly lower than in the WT mice. HKα1-/- mice fed a high-Na+ diet had greater Na+ retention than WT mice and had an impaired dipsogenic response. These results suggest an important role for the HKα1 subunit in the regulation of purinergic signaling in the CD. They are also consistent with HKα1-containing H+,K+-ATPases as important components for the proper regulation of Na+ balance and the dipsogenic response to a high-salt diet. Such observations suggest a previously unrecognized element in Na+ regulation in the CD.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas
| | - I Jeanette Lynch
- North Florida/South Georgia Veterans Health Service, Gainesville, Florida; and.,Department of Medicine, University of Florida, Gainesville, Florida
| | - Jonathan M Berman
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas
| | - Michelle L Gumz
- North Florida/South Georgia Veterans Health Service, Gainesville, Florida; and.,Department of Medicine, University of Florida, Gainesville, Florida
| | - James D Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas
| | - Charles S Wingo
- North Florida/South Georgia Veterans Health Service, Gainesville, Florida; and .,Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
20
|
Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol 2016; 313:F135-F140. [PMID: 28003189 DOI: 10.1152/ajprenal.00427.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023] Open
Abstract
Salt-sensitive hypertension is associated with renal and vascular dysfunctions, which lead to impaired fluid excretion, increased cardiac output, and total peripheral resistance. It is commonly accepted that increased renal sodium handling and plasma volume expansion are necessary factors for the development of salt-induced hypertension. The epithelial sodium channel (ENaC) is a trimeric ion channel expressed in the distal nephron that plays a critical role in the regulation of sodium reabsorption in both normal and pathological conditions. In this mini-review, we summarize recent studies investigating the role of ENaC in the development of salt-sensitive hypertension. On the basis of experimental data obtained from the Dahl salt-sensitive rats, we and others have demonstrated that abnormal ENaC activation in response to a dietary NaCl load contributes to the development of high blood pressure in this model. The role of different humoral factors, such as the components of the renin-angiotensin-aldosterone system, members of the epidermal growth factors family, arginine vasopressin, and oxidative stress mediating the effects of dietary salt on ENaC are discussed in this review to highlight future research directions and to determine potential molecular targets for drug development.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan; and
| | | |
Collapse
|
21
|
Breum Jakobsen NF, Laugesen E, Rolighed L, Nissen PH, Poulsen PL, Pedersen EB, Mosekilde L, Rejnmark L. The cardiovascular system in familial hypocalciuric hypercalcemia: a cross-sectional study on physiological effects of inactivating variants in the calcium-sensing receptor gene. Eur J Endocrinol 2016; 175:299-309. [PMID: 27418061 DOI: 10.1530/eje-16-0369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Loss-of-function variants in the gene encoding the calcium-sensing receptor (CASR) result in familial hypocalciuric hypercalcemia (FHH), causing hypercalcemia with high normal or elevated parathyroid hormone levels. The CASR may also influence electrolyte and water homeostasis. It is unknown whether FHH affects cardiovascular health. We, therefore investigated whether FHH is associated with changes in the regulation of the cardiovascular system by measuring 24-h blood pressure (BP), arterial stiffness and vasoactive hormones. DESIGN Cross-sectional study comparing 50 patients with FHH to age- and gender-matched controls. RESULTS Studied subjects (69% women) had a mean age of 56years. A similar number of patients and controls (33%) were on treatment with antihypertensive drugs. Overall, no differences were found between groups in 24-h ambulatory BP or pulse wave velocity. However, compared with controls, diastolic BP during nighttime was lower in FHH females (60±5 vs 66±9mmHg, P<0.01) and higher in FHH males (69±6 vs 64±5mmHg, P=0.02). FHH was associated with a significantly higher plasma osmolality (P<0.01), higher plasma levels of vasopressin (P<0.01) and a higher renal excretion of epithelial sodium channels (ENaCs) (P=0.03), whereas urine aquaporin-2 and plasma sodium, aldosterone and renin did not differ between groups. FHH patients had a lower urinary volume with an increased osmolality if analyses were restricted to those not on treatments with antihypertensive drugs. CONCLUSIONS FHH does not seem to be associated with an increased risk of CVD.
Collapse
Affiliation(s)
| | - Esben Laugesen
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Aarhus, Denmark Danish Diabetes AcademyOdense University Hospital, Odense, Denmark Department of Clinical MedicineAarhus University, Aarhus, Denmark
| | | | - Peter H Nissen
- Clinical BiochemistryAarhus University Hospital, Aarhus, Denmark
| | - Per Løgstrup Poulsen
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Aarhus, Denmark
| | - Erling Bjerregaard Pedersen
- Department of Clinical MedicineAarhus University, Aarhus, Denmark University Clinic in Nephrology and HypertensionHolstebro Hospital, Hospital Jutland West, Holstebro, Denmark
| | - Leif Mosekilde
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Aarhus, Denmark
| | - Lars Rejnmark
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Aarhus, Denmark Department of Clinical MedicineAarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Affiliation(s)
- Pedro A Jose
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.).
| | - Robin A Felder
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Zhiwei Yang
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Chunyu Zeng
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Gilbert M Eisner
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| |
Collapse
|
23
|
Morla L, Edwards A, Crambert G. New insights into sodium transport regulation in the distal nephron: Role of G-protein coupled receptors. World J Biol Chem 2016; 7:44-63. [PMID: 26981195 PMCID: PMC4768124 DOI: 10.4331/wjbc.v7.i1.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
The renal handling of Na+ balance is a major determinant of the blood pressure (BP) level. The inability of the kidney to excrete the daily load of Na+ represents the primary cause of chronic hypertension. Among the different segments that constitute the nephron, those present in the distal part (i.e., the cortical thick ascending limb, the distal convoluted tubule, the connecting and collecting tubules) play a central role in the fine-tuning of renal Na+ excretion and are the target of many different regulatory processes that modulate Na+ retention more or less efficiently. G-protein coupled receptors (GPCRs) are crucially involved in this regulation and could represent efficient pharmacological targets to control BP levels. In this review, we describe both classical and novel GPCR-dependent regulatory systems that have been shown to modulate renal Na+ absorption in the distal nephron. In addition to the multiplicity of the GPCR that regulate Na+ excretion, this review also highlights the complexity of these different pathways, and the connections between them.
Collapse
|
24
|
Kortenoeven MLA, Pedersen NB, Rosenbaek LL, Fenton RA. Vasopressin regulation of sodium transport in the distal nephron and collecting duct. Am J Physiol Renal Physiol 2015; 309:F280-99. [DOI: 10.1152/ajprenal.00093.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic driving forces for water reabsorption. The antinatriuretic effects of AVP are mediated by the regulation of sodium transport throughout the distal nephron, from the thick ascending limb through to the collecting duct, which in turn partially facilitates osmotic movement of water. In this review, we will discuss the regulatory role of AVP in sodium transport and summarize the effects of AVP on various molecular targets, including the sodium-potassium-chloride cotransporter NKCC2, the thiazide-sensitive sodium-chloride cotransporter NCC, and the epithelial sodium channel ENaC.
Collapse
Affiliation(s)
- M. L. A. Kortenoeven
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| | - N. B. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; and
| | - L. L. Rosenbaek
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R. A. Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Habtemichael EN, Alcázar-Román A, Rubin BR, Grossi LR, Belman JP, Julca O, Löffler MG, Li H, Chi NW, Samuel VT, Bogan JS. Coordinated Regulation of Vasopressin Inactivation and Glucose Uptake by Action of TUG Protein in Muscle. J Biol Chem 2015; 290:14454-61. [PMID: 25944897 DOI: 10.1074/jbc.c115.639203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 01/16/2023] Open
Abstract
In adipose and muscle cells, insulin stimulates the exocytic translocation of vesicles containing GLUT4, a glucose transporter, and insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. A substrate of IRAP is vasopressin, which controls water homeostasis. The physiological importance of IRAP translocation to inactivate vasopressin remains uncertain. We previously showed that in skeletal muscle, insulin stimulates proteolytic processing of the GLUT4 retention protein, TUG, to promote GLUT4 translocation and glucose uptake. Here we show that TUG proteolysis also controls IRAP targeting and regulates vasopressin action in vivo. Transgenic mice with constitutive TUG proteolysis in muscle consumed much more water than wild-type control mice. The transgenic mice lost more body weight during water restriction, and the abundance of renal AQP2 water channels was reduced, implying that vasopressin activity is decreased. To compensate for accelerated vasopressin degradation, vasopressin secretion was increased, as assessed by the cosecreted protein copeptin. IRAP abundance was increased in T-tubule fractions of fasting transgenic mice, when compared with controls. Recombinant IRAP bound to TUG, and this interaction was mapped to a short peptide in IRAP that was previously shown to be critical for GLUT4 intracellular retention. In cultured 3T3-L1 adipocytes, IRAP was present in TUG-bound membranes and was released by insulin stimulation. Together with previous results, these data support a model in which TUG controls vesicle translocation by interacting with IRAP as well as GLUT4. Furthermore, the effect of IRAP to reduce vasopressin activity is a physiologically important consequence of vesicle translocation, which is coordinated with the stimulation of glucose uptake.
Collapse
Affiliation(s)
| | - Abel Alcázar-Román
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Bradley R Rubin
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Laura R Grossi
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Jonathan P Belman
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Omar Julca
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Michael G Löffler
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Hongjie Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Nai-Wen Chi
- the Veterans Affairs San Diego Healthcare System and Department of Medicine, University of California, San Diego, California 92093, and
| | - Varman T Samuel
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and the Veterans Affairs Medical Center, West Haven, Connecticut 06516
| | - Jonathan S Bogan
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020,
| |
Collapse
|