1
|
Deng M, Tan X, Peng X, Zheng W, Fu R, Tao S. HDAC6 promotes inflammation in lupus nephritis mice by regulating transcription factors MAFF and KLF5 in renal fibrosis. Ren Fail 2024; 46:2415517. [PMID: 39412062 PMCID: PMC11485742 DOI: 10.1080/0886022x.2024.2415517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
AIM This study explored the effect and mechanism of MAFF and HDAC6 on renal fibrosis and inflammation in lupus nephritis (LN). METHODS IL-33 treated renal epithelial cells and MRL/lpr mice were respectively used for in vitro and in vivo experiments. The expressions of HDAC6, MAFF, and KLF5 were measured in cells and renal tissues. Before and after cell transfection, the morphological changes in renal tissues were observed using Hematoxylin and eosin (H&E) and Masson staining. The proteinuria, serum creatinine (SCr), blood urea nitrogen (BUN), and double-stranded DNA (dsDNA) levels were detected by biochemical analysis. The expressions of fibrosis and inflammation related proteins (including α-SMA, Vimentin, IL-1β, IL-6, and TNF-α), p65, and iNOS were also detected. The relationship among MAFF, HDAC6, and KLF5 was determined by chromatin immunoprecipitation and dual luciferase reporter gene assay. RESULTS Renal tissues and cell models had elevated expressions of HDAC6 and KLF5, and decreased MAFF expression. HDAC6 suppression or MAFF overexpression led to suppression of proteinuria, SCr, BUN, and dsDNA levels, as well as attenuation of inflammatory infiltration and collagen deposition. HDAC6 can suppress MAFF expression via deacetylation to abolish its suppression of KLF5 expression, thus increasing KLF5 expression. In vivo and in vitro experiments showed the suppressive effect of HDAC6 suppression on renal fibrosis and inflammation can be abolished by KLF5 overexpression. CONCLUSION HDAC6 suppresses MAFF expression via deacetylation to elevate KLF5 expression, which consequently enhances fibrosis and inflammatory response in LN.
Collapse
Affiliation(s)
- Meihui Deng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Xiao Tan
- Department of Hematology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Xiaojie Peng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Weimin Zheng
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Rui Fu
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| | - Shanshan Tao
- Department of Nephrology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
2
|
Kundu S, Gairola S, Verma S, Mugale MN, Sahu BD. Chronic kidney disease activates the HDAC6-inflammatory axis in the heart and contributes to myocardial remodeling in mice: inhibition of HDAC6 alleviates chronic kidney disease-induced myocardial remodeling. Basic Res Cardiol 2024; 119:831-852. [PMID: 38771318 DOI: 10.1007/s00395-024-01056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Chronic kidney disease (CKD) adversely affects the heart. The underlying mechanism and the interplay between the kidney and the heart are still obscure. We examined the cardiac effect using the unilateral ureteral obstruction (UUO)-induced CKD pre-clinical model in mice. Echocardiography, histopathology of the heart, myocardial mRNA expression of ANP and BNP, the extent of fibrotic (TGF-β, α-SMA, and collagen I) and epigenetic (histone deacetylases, namely HDAC3, HDAC4, and HDAC6) proteins, and myocardial inflammatory response were assessed. Six weeks of post-UUO surgery, we observed a compromised left-ventricular wall thickness and signs of cardiac hypertrophy, accumulation of fibrosis associated, and inflammatory proteins in the heart. In addition, we observed a perturbation of epigenetic proteins, especially HDAC3, HDAC4, and HDAC6, in the heart. Pharmacological inhibition of HDAC6 using ricolinostat (RIC) lessened cardiac damage and improved left-ventricular wall thickness. The RIC treatment substantially restored the serum cardiac injury markers, namely creatine kinase-MB and lactate dehydrogenase (LDH) activities, ANP and BNP mRNA expression, and heart histological changes. The extent of myocardial fibrotic proteins, phospho-NF-κB (p65), and pro-inflammatory cytokines (TNF-α, IL-18, and IL-1β) were significantly decreased in the RIC treatment group. Further findings revealed the CKD-induced infiltration of CD3, CD8a, CD11c, and F4/80 positive inflammatory cells in the heart. Treatment with RIC substantially reduced the myocardial infiltration of these inflammatory cells. From these findings, we believe that CKD-induced myocardial HDAC6 perturbation has a deteriorative effect on the heart, and inhibition of HDAC6 can be a promising approach to alleviate CKD-induced myocardial remodeling.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India
| | - Shobhit Gairola
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India
| | - Smriti Verma
- Department of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Madhav Nilakanth Mugale
- Department of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Assam, 781101, India.
| |
Collapse
|
3
|
Fang J, Shu S, Dong H, Yue X, Piao J, Li S, Hong L, Cheng XW. Histone deacetylase 6 controls cardiac fibrosis and remodelling through the modulation of TGF-β1/Smad2/3 signalling in post-infarction mice. J Cell Mol Med 2024; 28:e70063. [PMID: 39232846 PMCID: PMC11374528 DOI: 10.1111/jcmm.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) belongs to the class IIb group of the histone deacetylase family, which participates in remodelling of various tissues. Herein, we sought to examine the potential regulation of HDAC6 in cardiac remodelling post-infarction. Experimental myocardial infarction (MI) was created in HDAC6-deficient (HDAC6-/-) mice and wild-type (HADC6+/+) by left coronary artery ligation. At days 0 and 14 post-MI, we evaluated cardiac function, morphology and molecular endpoints of repair and remodelling. At day 14 after surgery, the ischemic myocardium had increased levels of HADC6 gene and protein of post-MI mice compared to the non-ischemic myocardium of control mice. As compared with HDAC6-/--MI mice, HADC6 deletion markedly improved infarct size and cardiac fibrosis as well as impaired left ventricular ejection fraction and left ventricular fraction shortening. At the molecular levels, HDAC6-/- resulted in a significant reduction in the levels of the transforming growth factor-beta 1 (TGF-β1), phosphor-Smad-2/3, collagen I and collagen III proteins and/or in the ischemic cardiac tissues. All of these beneficial effects were reproduced by a pharmacological inhibition of HADC6 in vivo. In vitro, hypoxic stress increased the expressions of HADC6 and collagen I and III gene; these alterations were significantly prevented by the HADC6 silencing and TubA loading. These findings indicated that HADC6 deficiency resists ischemic injury by a reduction of TGF-β1/Smad2/3 signalling activation, leading to decreased extracellular matrix production, which reduces cardiac fibrosis and dysfunction, providing a potential molecular target in the treatment of patients with MI.
Collapse
Affiliation(s)
- Junqiao Fang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinChina
- Department of Cardiology, The Wuxi Fifth People's HospitalThe Fifth Affiliated Hospital of Jiangnan UniversityWuxiJiangshuChina
| | - Shangzhi Shu
- Department of CardiologyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Hui Dong
- Department of Physiology and Pathophysiology, College of MedicineYanbian UniversityYanjinJilinChina
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinChina
| | - Jinshun Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinChina
- Department of Cardiology, The Wuxi Fifth People's HospitalThe Fifth Affiliated Hospital of Jiangnan UniversityWuxiJiangshuChina
| | - Shuyan Li
- Department of CardiologyThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Lan Hong
- Department of Physiology and Pathophysiology, College of MedicineYanbian UniversityYanjinJilinChina
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular DiseaseYanbian University HospitalYanjiJilinChina
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of EducationYanbian UniversityYanjiJilinChina
| |
Collapse
|
4
|
Kan S, Hou Q, Yang R, Yang F, Zhang M, Liu Z, Jiang S. Inhibition of HDAC6 with CAY10603 alleviates acute and chronic kidney injury by suppressing the ATF6 branch of UPR. Arch Biochem Biophys 2024; 756:110009. [PMID: 38642631 DOI: 10.1016/j.abb.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Histone deacetylase 6 (HDAC6) inhibitor CAY10603 has been identified as a potential therapeutic agent for the treatment of diabetic kidney disease (DKD). The objective of this study was to investigate the therapeutic effects of CAY10603 in mice with acute kidney injury (AKI) and chronic kidney diseases (CKD). METHODS Renal immunohistology was performed to assess the expression levels of HDAC6 in both human and mouse kidney samples. C57BL/6J mice were intraperitoneal injected with lipopolysaccharide (LPS) to induce AKI; CD-1 mice were fed with adenine diet to induce adenine-nephropathy as CKD model. Serum creatinine, blood urea nitrogen and uric acid were measured to reflect renal function; renal histology was applied to assess kidney damage. Western blot and immunohistology were used to analyze the unfolded protein response (UPR) level. RESULTS HDAC6 was significantly upregulated in renal tubular epithelial cells (RTECs) of both AKI and CKD patients as well as mice. In the murine models of AKI induced by LPS and adenine-induced nephropathy, CAY10603 exhibited notable protective effects, including improvement in biochemical indices and pathological changes. In vivo and in vitro studies revealed that CAY10603 effectively suppressed the activation of activating transcription factor 6 (ATF6) branch of UPR triggered by thapsigargin (Tg), a commonly employed endoplasmic reticulum (ER) stressor. Consistent with these findings, CAY10603 also displayed substantial inhibition of ATF6 activation in RTECs from both murine models of LPS-induced AKI and adenine-induced nephropathy. CONCLUSIONS Collectively, these results suggest that CAY10603 holds promise as a potential therapeutic agent for both acute and chronic kidney injury.
Collapse
Affiliation(s)
- Shuyan Kan
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Hou
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruixiang Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fan Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Song Jiang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Pan S, Yuan T, Xia Y, Yu W, Zhou X, Cheng F. Role of Histone Modifications in Kidney Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:888. [PMID: 38929505 PMCID: PMC11205584 DOI: 10.3390/medicina60060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) is characterized by persistent kidney dysfunction, ultimately resulting in end-stage renal disease (ESRD). Renal fibrosis is a crucial pathological feature of CKD and ESRD. However, there is no effective treatment for this condition. Despite the complex molecular mechanisms involved in renal fibrosis, increasing evidence highlights the crucial role of histone modification in its regulation. The reversibility of histone modifications offers promising avenues for therapeutic strategies to block or reverse renal fibrosis. Therefore, a comprehensive understanding of the regulatory implications of histone modifications in fibrosis may provide novel insights into more effective and safer therapeutic approaches. This review highlights the regulatory mechanisms and recent advances in histone modifications in renal fibrosis, particularly histone methylation and histone acetylation. The aim is to explore the potential of histone modifications as targets for treating renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| |
Collapse
|
6
|
Jin J, Yang YR, Gong Q, Wang JN, Ni WJ, Wen JG, Meng XM. Role of epigenetically regulated inflammation in renal diseases. Semin Cell Dev Biol 2024; 154:295-304. [PMID: 36328897 DOI: 10.1016/j.semcdb.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, renal disease research has witnessed remarkable advances. Experimental evidence in this field has highlighted the role of inflammation in kidney disease. Epigenetic dynamics and immunometabolic reprogramming underlie the alterations in cellular responses to intrinsic and extrinsic stimuli; these factors determine cell identity and cell fate decisions and represent current research hotspots. This review focuses on recent findings and emerging concepts in epigenetics and inflammatory regulation and their effect on renal diseases. This review aims to summarize the role and mechanisms of different epigenetic modifications in renal inflammation and injury and provide new avenues for future research on inflammation-related renal disease and drug development.
Collapse
Affiliation(s)
- Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
7
|
Zhang Q, Yan L, Lu Y, Liu X, Yin Y, Wang Q, Gu X, Zhou X. HDAC6-selective inhibitor CAY10603 ameliorates cigarette smoke-induced small airway remodeling by regulating epithelial barrier dysfunction and reversing. Respir Res 2024; 25:66. [PMID: 38317159 PMCID: PMC10840206 DOI: 10.1186/s12931-024-02688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity for HDAC6 in COPD. METHODS Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, immunohistochemical staining, and western blot. The human lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of CAY10603. RESULTS HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. CAY10603 significantly attenuated the release of TGF-β1 induced by CSE. CAY10603 significantly increased the E-cadherin levels in TGF-β1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-β1 induced cell migration. CONCLUSIONS These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating epithelial barrier dysfunction and reversing EMT via the TGF-β1/Smad2/3 signalling pathway.
Collapse
Affiliation(s)
- Qin Zhang
- National Center for Respiratory Medicine, Shenyang, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Shenyang, China
- National Clinical Research Center for Respiratory Diseases, Shenyang, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Shenyang, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liming Yan
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Ye Lu
- Department of Respiratory and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Liu
- Department of Respiratory and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Yu H, Liu S, Wang S, Gu X. A narrative review of the role of HDAC6 in idiopathic pulmonary fibrosis. J Thorac Dis 2024; 16:688-695. [PMID: 38410580 PMCID: PMC10894383 DOI: 10.21037/jtd-23-1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/17/2023] [Indexed: 02/28/2024]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible condition characterized by the deposition of extracellular matrix resulting from repetitive damage to the alveolar epithelium. These injuries, along with dysregulated wound repair and fibroblast dysfunction, lead to continuous tissue remodeling and fibrosis, eventually resulting in end-stage pulmonary fibrosis. Currently, there is no specific pharmacological treatment available for IPF. The role of inflammation in the development of IPF is still a topic of debate, and it is sometimes considered incidental to fibrosis. Over the past decade, macrophages have emerged as significant contributors to the pathogenesis of fibrosis. M1 macrophages are responsible for wound healing following alveolar epithelial injury, while M2 macrophages are involved in resolving wound repair and terminating the inflammatory response in the lungs. Various studies provide evidence that M2-like macrophages contribute to the abnormal fibrogenesis. In recent years, there has been growing interest in understanding macrophage polarization and its role in the development of pulmonary fibrosis. Histone deacetylase 6 (HDAC6), a member of the HDAC family with two functional deacetylase structural domains and a ubiquitin-binding zinc finger structural domain (ZnF-BUZ), plays a crucial role in pulmonary fibrosis. This article explores the role of HDAC6 in pulmonary fibrosis and evaluates its potential as a treatment approach for IPF. Methods PubMed, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, China Biomedical Literature Service System (CBMdisc) and Web of Science were searched to obtain researches, published in English and Chinese, until July 2023. The search was performed using specific keywords such as Histone deacetylase 6, HDAC6, Idiopathic pulmonary fibrosis, IPF, fibrosis. Key Content and Findings HDAC6 has diverse effects on physiological processes, including the NLRP3 inflammasome, epithelial-mesenchymal transition, the TGFβ-PI3K-AKT pathway, macrophage polarization and TGF-β-Smad signaling pathway, due to its unique structure. HDAC6 has been found to enhance the inflammatory response and fibrosis of lung tissues, contributing to the development of IPF. Conclusions In the future, HDAC6 inhibitors are expected to play a crucial role in the treatment of fibrotic disorders and should be studied further deserves to pursue in future research.
Collapse
Affiliation(s)
- Hanming Yu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Liu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 PMCID: PMC11550885 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
10
|
Yu WC, Yeh TY, Ye CH, Chong PCT, Ho YH, So DK, Yap KY, Peng GR, Shao CH, Jagtap AD, Chern JW, Lin CS, Lin SP, Lin SL, Yu SH, Yu CW. Discovery of HDAC6, HDAC8, and 6/8 Inhibitors and Development of Cell-Based Drug Screening Models for the Treatment of TGF-β-Induced Idiopathic Pulmonary Fibrosis. J Med Chem 2023; 66:10528-10557. [PMID: 37463500 DOI: 10.1021/acs.jmedchem.3c00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Idiopathic pulmonary fibrosis is incurable, and its progression is difficult to control and thus can lead to pulmonary deterioration. Pan-histone deacetylase inhibitors such as SAHA have shown potential for modulating pulmonary fibrosis yet with off-target effects. Therefore, selective HDAC inhibitors would be beneficial for reducing side effects. Toward this goal, we designed and synthesized 24 novel HDAC6, HDAC8, or dual HDAC6/8 inhibitors and established a two-stage screening platform to rapidly screen for HDAC inhibitors that effectively mitigate TGF-β-induced pulmonary fibrosis. The first stage consisted of a mouse NIH-3T3 fibroblast prescreen and yielded five hits. In the second stage, human pulmonary fibroblasts (HPFs) were used, and four out of the five hits were tested for caco-2 permeability and liver microsome stability to give two potential leads: J27644 (15) and 20. This novel two-stage screen platform will accelerate the discovery and reduce the cost of developing HDAC inhibitors to mitigate TGF-β-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Yeh
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | | | - Yi-Hsun Ho
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Dorothy Kazuno So
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Hsuan Shao
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Ajit Dhananjay Jagtap
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Ji-Wang Chern
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Center of Systems Biology, National Taiwan University, Taipei 106, Taiwan
- The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Chao-Wu Yu
- National Taiwan University, School of Pharmacy, College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
11
|
Wang K, Liao Q, Chen X. Research progress on the mechanism of renal interstitial fibrosis in obstructive nephropathy. Heliyon 2023; 9:e18723. [PMID: 37593609 PMCID: PMC10428074 DOI: 10.1016/j.heliyon.2023.e18723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Renal fibrosis is a common result for various chronic kidney diseases developing to the end stage. It is a pathological process characterized by the destruction of normal kidney structure and the subsequent replacement with fibrous tissue, which primarily involves fibroblast proliferation and extracellular matrix deposition. Obstruction is a common cause of renal fibrosis, and obstructive renal fibrosis is a common disease in urology. Obstructive renal fibrosis, characterized by its insidious onset, is the result of a complex interplay of multiple factors. These factors encompass renal tubular epithelial cell injury, the presence of a hypoxic microenvironment in affected kidney tissue, inflammatory cell infiltration, release of inflammatory mediators, and the release of renal fibrosis growth factors, among others. This paper reviews the research progress on the mechanism and treatment of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Kangning Wang
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410008, China
| | - Qiuling Liao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410011, China
| | - Xiang Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
12
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
13
|
Zhang Y, Qin X, Yang Y, Li J, Li X, Zou X, Huang Z, Huang S. Ginkgo biloba extract attenuates cisplatin-induced renal interstitial fibrosis by inhibiting the activation of renal fibroblasts through down-regulating the HIF-1α/STAT3/IL-6 pathway in renal tubular epithelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154809. [PMID: 37087791 DOI: 10.1016/j.phymed.2023.154809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Activation of renal fibroblasts into myofibroblasts plays an important role in promoting renal interstitial fibrosis (RIF). Ginkgo biloba extract (EGb) can alleviate RIF induced by cisplatin (CDDP). PURPOSE To elucidate the effect of EGb treatment on cisplatin-induced RIF and reveal its potential mechanism. METHODS The two main active components in EGb were determined by high-performance liquid chromatography (HPLC) analysis. Rats were induced by CDDP and then treated with EGb, 2ME2 (HIF-1α inhibitor) or amifostine. After HK-2 cells and HIF-1α siRNA HK-2 cells were treated with CDDP, EGb or amifostine, the conditioned medium from each group was cultured with NRK-49F cells. The renal function of rats was detected. The renal damage and fibrosis were evaluated by H&E and Masson trichrome staining. The IL-6 content in the cell medium was detected by ELISA. The expression levels of indicators related to renal fibrosis and signaling pathway were examined by western blotting and qRT-PCR. RESULTS HPLC analysis showed that the contents of quercetin and kaempferol in EGb were 36.0 μg/ml and 45.7 μg/ml, respectively. In vivo, EGb and 2ME2 alleviated renal damage and fibrosis, as well as significantly decreased the levels of α-SMA, HIF-1α, STAT3 and IL-6 in rat tissues induced by CDDP. In vitro, the levels of HIF-1α, STAT3 and IL-6 were significantly increased in HK-2 cells and HIF-1α siRNA HK-2 cells induced by CDDP. Notably, HIF-1α siRNA significantly decreased the levels of HIF-1α, STAT3 and IL-6 in HK-2 cells, as well as the IL-6 level in medium from HK-2 cells. Additionally, the α-SMA level in NRK-49F cells was significantly increased after being cultured with conditioned medium from HK-2 cells or HIF-1α siRNA HK-2 cells exposed to CDDP. Furthermore, exogenous IL-6 increased the α-SMA level in NRK-49F cells. Importantly, the expression levels of the above-mentioned indicators were significantly decreased after the HK-2 cells and HIF-1α siRNA HK-2 cells were treated with EGb. CONCLUSION This study revealed that EGb improves CDDP-induced RIF, and the mechanism may be related to its inhibition of the renal fibroblast activation by down-regulating the HIF-1α/STAT3/IL-6 pathway in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiping Qin
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yufang Yang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Jinxiu Li
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaolian Li
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoqin Zou
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhenguang Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Songqing Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
14
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
HDAC Inhibitors Alleviate Uric Acid-Induced Vascular Endothelial Cell Injury by Way of the HDAC6/FGF21/PI3K/AKT Pathway. J Cardiovasc Pharmacol 2023; 81:150-164. [PMID: 36607630 PMCID: PMC9901848 DOI: 10.1097/fjc.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Uric acid (UA) accumulation triggers endothelial dysfunction, oxidative stress, and inflammation. Histone deacetylase (HDAC) plays a vital role in regulating the pathological processes of various diseases. However, the influence of HDAC inhibitor on UA-induced vascular endothelial cell injury (VECI) remains undefined. Hence, this study aimed to investigate the effect of HDACs inhibition on UA-induced vascular endothelial cell dysfunction and its detailed mechanism. UA was used to induce human umbilical vein endothelial cell (HUVEC) injury. Meanwhile, potassium oxonate-induced and hypoxanthine-induced hyperuricemia mouse models were also constructed. A broad-spectrum HDAC inhibitor trichostatin A (TSA) or selective HDAC6 inhibitor TubastatinA (TubA) was given to HUVECs or mice to determine whether HDACs can affect UA-induced VECI. The results showed pretreatment of HUVECs with TSA or HDAC6 knockdown-attenuated UA-induced VECI and increased FGF21 expression and phosphorylation of AKT, eNOS, and FoxO3a. These effects could be reversed by FGF21 knockdown. In vivo, both TSA and TubA reduced inflammation and tissue injury while increased FGF21 expression and phosphorylation of AKT, eNOS, and FoxO3a in the aortic and renal tissues of hyperuricemia mice. Therefore, HDACs, especially HDAC6 inhibitor, alleviated UA-induced VECI through upregulating FGF21 expression and then activating the PI3K/AKT pathway. This suggests that HDAC6 may serve as a novel therapeutic target for treating UA-induced endothelial dysfunction.
Collapse
|
16
|
Zhou X, Chen H, Shi Y, Li J, Ma X, Du L, Hu Y, Tao M, Zhong Q, Yan D, Zhuang S, Liu N. Histone deacetylase 8 inhibition prevents the progression of peritoneal fibrosis by counteracting the epithelial-mesenchymal transition and blockade of M2 macrophage polarization. Front Immunol 2023; 14:1137332. [PMID: 36911746 PMCID: PMC9995794 DOI: 10.3389/fimmu.2023.1137332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Background Peritoneal dialysis (PD) is an effective replacement therapy for end-stage renal disease patients. However, long-term exposure to peritoneal dialysate will lead to the development of peritoneal fibrosis. Epigenetics has been shown to play an important role in peritoneal fibrosis, but the role of histone deacetylases 8 (HDAC8) in peritoneal fibrosis have not been elucidated. In this research, we focused on the role and mechanisms of HDAC8 in peritoneal fibrosis and discussed the mechanisms involved. Methods We examined the expression of HDAC8 in the peritoneum and dialysis effluent of continuous PD patients. Then we assessed the role and mechanism of HDAC8 in peritoneal fibrosis progression in mouse model of peritoneal fibrosis induced by high glucose peritoneal dialysis fluid by using PCI-34051. In vitro, TGF-β1 or IL-4 were used to stimulate human peritoneal mesothelial cells (HPMCs) or RAW264.7 cells to establish two cell injury models to further explore the role and mechanism of HDAC8 in epithelial-mesenchymal transition (EMT) and macrophage polarization. Results We found that HDAC8 expressed highly in the peritoneum from patients with PD-related peritonitis. We further revealed that the level of HDAC8 in the dialysate increased over time, and HDAC8 was positively correlated with TGF-β1 and vascular endothelial growth factor (VEGF), and negatively correlated with cancer antigen 125. In mouse model of peritoneal fibrosis induced by high glucose dialysate, administration of PCI-34051 (a selective HDAC8 inhibitor) significantly prevented the progression of peritoneal fibrosis. Treatment with PCI-34051 blocked the phosphorylation of epidermal growth factor receptor (EGFR) and the activation of its downstream signaling pathways ERK1/2 and STAT3/HIF-1α. Inhibition of HDAC8 also reduced apoptosis. In vitro, HDAC8 silencing with PCI-34051 or siRNA inhibited TGF-β1-induced EMT and apoptosis in HPMCs. In addition, continuous high glucose dialysate or IL-4 stimulation induced M2 macrophage polarization. Blockade of HDAC8 reduced M2 macrophage polarization by inhibiting the activation of STAT6 and PI3K/Akt signaling pathways. Conclusions We demonstrated that HDAC8 promoted the EMT of HPMCs via EGFR/ERK1/2/STAT3/HIF-1α, induced M2 macrophage polarization via STAT6 and PI3K/Akt signaling pathways, and ultimately accelerated the process of peritoneal fibrosis.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Du
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Zhong
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danying Yan
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
18
|
Hou Q, Kan S, Wang Z, Shi J, Zeng C, Yang D, Jiang S, Liu Z. Inhibition of HDAC6 With CAY10603 Ameliorates Diabetic Kidney Disease by Suppressing NLRP3 Inflammasome. Front Pharmacol 2022; 13:938391. [PMID: 35910382 PMCID: PMC9332914 DOI: 10.3389/fphar.2022.938391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diabetic nephropathy (DN) is one of the leading causes of chronic kidney disease (CKD) worldwide, tubular injury is the driving force during the pathogenesis and progression of DN. Thus, we aim to utilize the connectivity map (CMap) with renal tubulointerstitial transcriptomic profiles of biopsy-proven DN to identify novel drugs for treating DN. Methods: We interrogated the CMap profile with tubulointerstitial transcriptomic data from renal biopsy-proven early- and late-stage DN patients to screen potential drugs for DN. Therapeutic effects of candidate drug were assessed in Murine model of diabetic kidney disease (STZ-induced CD-1 mice), and HK-2 cells and immortalized bone marrow-derived macrophages (iBMDMs). Results: We identified CAY10603, a specific inhibitor of histone deacetylase 6 (HDAC6), as a potential drug that could significantly reverse the altered genes in the tubulointerstitial component. In DN patients and mice, upregulation of HDAC6 was mainly observed in renal tubular cells and infiltrated macrophages surrounding the diluted tubules. In both early- and late-onset diabetic mice, daily CAY10603 administration effectively alleviated renal dysfunction and reduced macrophage infiltration, tubular injury and tubulointerstitial fibrosis. Mechanistically, CAY10603 suppressed NLRP3 activation in both HK-2 cells and iBMDMs. Conclusion: CAY10603 exhibited therapeutic potential for DN by suppressing NLRP3 inflammasome activation in both tubular cells and macrophages.
Collapse
Affiliation(s)
- Qing Hou
- National Clinical Research Center for Kidney Diseases, Jinling Clinical College, Southeast University School of Medicine, Nanjing, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuyan Kan
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Song Jiang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Song Jiang, ; Zhihong Liu,
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Clinical College, Southeast University School of Medicine, Nanjing, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Song Jiang, ; Zhihong Liu,
| |
Collapse
|
19
|
Li J, Yu M, Fu S, Liu D, Tan Y. Role of Selective Histone Deacetylase 6 Inhibitor ACY-1215 in Cancer and Other Human Diseases. Front Pharmacol 2022; 13:907981. [PMID: 35652048 PMCID: PMC9149003 DOI: 10.3389/fphar.2022.907981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
The deacetylation process regulated by histone deacetylases (HDACs) plays an important role in human health and diseases. HDAC6 belongs to the Class IIb of HDACs family, which mainly modifies non-histone proteins located in the cytoplasm. HDAC6 plays a key role in tumors, neurological diseases, and inflammatory diseases. Therefore, targeting HDAC6 has become a promising treatment strategy in recent years. ACY-1215 is the first orally available highly selective HDAC6 inhibitor, and its efficacy and therapeutic effects are being continuously verified. This review summarizes the research progress of ACY-1215 in cancer and other human diseases, as well as the underlying mechanism, in order to guide the future clinical trials of ACY-1215 and more in-depth mechanism researches.
Collapse
Affiliation(s)
- Jianglei Li
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Meihong Yu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Shifeng Fu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu, ; Yuyong Tan,
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu, ; Yuyong Tan,
| |
Collapse
|
20
|
Shen F, Zhuang S. Histone Acetylation and Modifiers in Renal Fibrosis. Front Pharmacol 2022; 13:760308. [PMID: 35559244 PMCID: PMC9086452 DOI: 10.3389/fphar.2022.760308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Histones are the most abundant proteins bound to DNA in eukaryotic cells and frequently subjected to post-modifications such as acetylation, methylation, phosphorylation and ubiquitination. Many studies have shown that histone modifications, especially histone acetylation, play an important role in the development and progression of renal fibrosis. Histone acetylation is regulated by three families of proteins, including histone acetyltransferases (HATs), histone deacetylases (HDACs) and bromodomain and extraterminal (BET) proteins. These acetylation modifiers are involved in a variety of pathophysiological processes leading to the development of renal fibrosis, including partial epithelial-mesenchymal transition, renal fibroblast activation, inflammatory response, and the expression of pro-fibrosis factors. In this review, we summarize the role and regulatory mechanisms of HATs, HDACs and BET proteins in renal fibrosis and provide evidence for targeting these modifiers to treat various chronic fibrotic kidney diseases in animal models.
Collapse
Affiliation(s)
- Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Abstract
It has been estimated that nearly 80% of anticancer drug-treated patients receive potentially nephrotoxic drugs, while the kidneys play a central role in the excretion of anticancer drugs. Nephrotoxicity has long been a serious complication that hampers the effectiveness of cancer treatment and continues to influence both mortality and length of hospitalization among cancer patients exposed to either conventional cytotoxic agents or targeted therapies. Kidney injury arising from anticancer drugs tends to be associated with preexisting comorbidities, advanced cancer stage, and the use of concomitant non-chemotherapeutic nephrotoxic drugs. Despite the prevalence and impact of kidney injury on therapeutic outcomes, the field is sorely lacking in an understanding of the mechanisms driving cancer drug-induced renal pathophysiology, resulting in quite limited and largely ineffective management of anticancer drug-induced nephrotoxicity. Consequently, there is a clear imperative for understanding the basis for nephrotoxic manifestations of anticancer agents for the successful management of kidney injury by these drugs. This article provides an overview of current preclinical research on the nephrotoxicity of cancer treatments and highlights prospective approaches to mitigate cancer therapy-related renal toxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
22
|
Tanemoto F, Mimura I. Therapies Targeting Epigenetic Alterations in Acute Kidney Injury-to-Chronic Kidney Disease Transition. Pharmaceuticals (Basel) 2022; 15:ph15020123. [PMID: 35215236 PMCID: PMC8877070 DOI: 10.3390/ph15020123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Acute kidney injury (AKI) was previously thought to be a merely transient event; however, recent epidemiological evidence supports the existence of a causal relationship between AKI episodes and subsequent progression to chronic kidney disease (CKD). Although the pathophysiology of this AKI-to-CKD transition is not fully understood, it is mediated by the interplay among multiple components of the kidney including tubular epithelial cells, endothelial cells, pericytes, inflammatory cells, and myofibroblasts. Epigenetic alterations including histone modification, DNA methylation, non-coding RNAs, and chromatin conformational changes, are also expected to be largely involved in the pathophysiology as a “memory” of the initial injury that can persist and predispose to chronic progression of fibrosis. Each epigenetic modification has a great potential as a therapeutic target of AKI-to-CKD transition; timely and target-specific epigenetic interventions to the various temporal stages of AKI-to-CKD transition will be the key to future therapeutic applications in clinical practice. This review elaborates on the latest knowledge of each mechanism and the currently available therapeutic agents that target epigenetic modification in the context of AKI-to-CKD transition. Further studies will elucidate more detailed mechanisms and novel therapeutic targets of AKI-to-CKD transition.
Collapse
|
23
|
Yang SR, Hung SC, Chu LJ, Hua KF, Wei CW, Tsai IL, Kao CC, Sung CC, Chu P, Wu CY, Chen A, Wu ATH, Liu FC, Huang HS, Ka SM. NSC828779 Alleviates Renal Tubulointerstitial Lesions Involving Interleukin-36 Signaling in Mice. Cells 2021; 10:3060. [PMID: 34831283 PMCID: PMC8623783 DOI: 10.3390/cells10113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Renal tubulointerstitial lesions (TILs), a common pathologic hallmark of chronic kidney disease that evolves to end-stage renal disease, is characterized by progressive inflammation and pronounced fibrosis of the kidney. However, current therapeutic approaches to treat these lesions remain largely ineffectual. Previously, we demonstrated that elevated IL-36α levels in human renal tissue and urine are implicated in impaired renal function, and IL-36 signaling enhances activation of NLRP3 inflammasome in a mouse model of TILs. Recently, we synthesized NSC828779, a salicylanilide derivative (protected by U.S. patents with US 8975255 B2 and US 9162993 B2), which inhibits activation of NF-κB signaling with high immunomodulatory potency and low IC50, and we hypothesized that it would be a potential drug candidate for renal TILs. The current study validated the therapeutic effects of NSC828779 on TILs using a mouse model of unilateral ureteral obstruction (UUO) and relevant cell models, including renal tubular epithelial cells under mechanically induced constant pressure. Treatment with NSC828779 improved renal lesions, as demonstrated by dramatically reduced severity of renal inflammation and fibrosis and decreased urinary cytokine levels in UUO mice. This small molecule specifically inhibits the IL-36α/NLRP3 inflammasome pathway. Based on these results, the beneficial outcome represents synergistic suppression of both the IL-36α-activated MAPK/NLRP3 inflammasome and STAT3- and Smad2/3-dependent fibrogenic signaling. NSC828779 appears justified as a new drug candidate to treat renal progressive inflammation and fibrosis.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Taipei 23142, Taiwan;
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan 33302, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433304, Taiwan;
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-C.S.); (P.C.)
| | - Pauling Chu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-C.S.); (P.C.)
| | - Chung-Yao Wu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
| | - Alexander T. H. Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11301, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
24
|
Tubular Cell Cycle Response upon AKI: Revising Old and New Paradigms to Identify Novel Targets for CKD Prevention. Int J Mol Sci 2021; 22:ijms222011093. [PMID: 34681750 PMCID: PMC8537394 DOI: 10.3390/ijms222011093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid deterioration of kidney function, representing a global healthcare concern. In addition, AKI survivors frequently develop chronic kidney disease (CKD), contributing to a substantial proportion of disease burden globally. Yet, over the past 30 years, the burden of CKD has not declined to the same extent as many other important non-communicable diseases, implying a substantial deficit in the understanding of the disease progression. The assumption that the kidney response to AKI is based on a high proliferative potential of proximal tubular cells (PTC) caused a critical confounding factor, which has led to a limited development of strategies to prevent AKI and halt progression toward CKD. In this review, we discuss the latest findings on multiple mechanisms of response related to cell cycle behavior of PTC upon AKI, with a specific focus on their biological relevance. Collectively, we aim to (1) provide a new perspective on interpreting cell cycle progression of PTC in response to damage and (2) discuss how this knowledge can be used to choose the right therapeutic window of treatment for preserving kidney function while avoiding CKD progression.
Collapse
|
25
|
Shi Y, Tao M, Ni J, Tang L, Liu F, Chen H, Ma X, Hu Y, Zhou X, Qiu A, Zhuang S, Liu N. Requirement of Histone Deacetylase 6 for Interleukin-6 Induced Epithelial-Mesenchymal Transition, Proliferation, and Migration of Peritoneal Mesothelial Cells. Front Pharmacol 2021; 12:722638. [PMID: 34526901 PMCID: PMC8435636 DOI: 10.3389/fphar.2021.722638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: Influenced by microenvironment, human peritoneal mesothelial cells (HPMCs) acquired fibrotic phenotype, which was identified as the protagonist for peritoneal fibrosis. In this study, we examined the role of histone deacetylase 6 (HDAC6) for interleukin-6 (IL-6) induced epithelial-mesenchymal transition (EMT), proliferation, and migration of HPMCs. Methods: The role of HDAC6 in IL-6-elicited EMT of HPMCs was tested by morphological observation of light microscope, immunoblotting, and immune-fluorescence assay; and the function of HDAC6 in proliferation and migration of HPMCs was examined by CCK-8 assay, wound healing experiment, and immunoblotting. Results: IL-6 stimulation significantly increased the expression of HDAC6. Treatment with tubastatin A (TA), a highly selective HDAC6 inhibitor, or silencing of HDAC6 with siRNA decreased the expression of HDAC6. Moreover, TA or HDAC6 siRNA suppressed IL-6-induced EMT, as evidenced by decreased expressions of α-SMA, Fibronectin, and collagen I and the preserved expression of E-cadherin in cultured HPMCs. Mechanistically, HDAC6 inhibition suppressed the expression of transforming growth factor β (TGFβ) receptor I (TGFβRI), phosphorylation of Smad3, secretion of connective tissue growth factor (CTGF), and transcription factor Snail. On the other hand, the pharmacological inhibition or genetic target of HDAC6 suppressed HPMCs proliferation, as evidenced by the decreased optical density of CCK-8 and the expressions of PCNA and Cyclin E. The migratory rate of HPMCs also decreased. Mechanistically, HDAC6 inhibition blocked the activation of JAK2 and STAT3. Conclusion: Our study illustrated that IL-6-induced HDAC6 not only regulated IL-6 itself downstream JAK2/STAT3 signaling but also co-activated the TGF-β/Smad3 signaling, leading to the change of the phenotype and mobility of HPMCs. HDAC6 could be a potential therapeutic target for the prevention and treatment of peritoneal fibrosis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Li Z, Li N. Epigenetic Modification Drives Acute Kidney Injury-to-Chronic Kidney Disease Progression. Nephron Clin Pract 2021; 145:737-747. [PMID: 34419948 DOI: 10.1159/000517073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical critical disease. Due to its high morbidity, increasing risk of complications, high mortality rate, and high medical costs, it has become a global concern for human health problems. Initially, researchers believed that kidneys have a strong ability to regenerate and repair, but studies over the past 20 years have found that kidneys damaged by AKI are often incomplete or even unable to repair. Even when serum creatinine returns to baseline levels, renal structural damage persists for a long time, leading to the development of chronic kidney disease (CKD). The mechanism of AKI-to-CKD transition has not been fully elucidated. As an important regulator of gene expression, epigenetic modifications, such as histone modification, DNA methylation, and noncoding RNAs, may play an important role in this process. Alterations in epigenetic modification are induced by hypoxia, thus promoting the expression of inflammatory factor-related genes and collagen secretion. This review elaborated the role of epigenetic modifications in AKI-to-CKD progression, the diagnostic value of epigenetic modifications biomarkers in AKI chronic outcome, and the potential role of targeting epigenetic modifications in the prevention and treatment of AKI to CKD, in order to provide ideas for the subsequent establishment of targeted therapeutic strategies to prevent the progression of renal tubular-interstitial fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
27
|
Hu Y, Shang M, Shi Y, Tao M, Yuan W, Tang L, Ma X, Cui B, Chen H, Zhou X, Zhuang S, Liu N. Correlation analysis between expression of histone deacetylase 6 and clinical parameters in IgA nephropathy patients. Ren Fail 2021; 43:684-697. [PMID: 33896334 PMCID: PMC8079031 DOI: 10.1080/0886022x.2021.1914657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background It has been demonstrated that histone deacetylase 6 (HDAC6) is involved in various kidney diseases in experimental study. However, correlation between HDAC6 and clinical parameters in IgA nephropathy (IgAN) patients is still unknown. Methods A total of 46 human kidney biopsy specimens with IgAN were selected as observation group, specimens of normal renal cortex tissue that was not affected by the tumor from patients with renal carcinoma (n = 7) served as control. We investigated the relationship between HDAC6 and clinical parameters in IgAN. Results HDAC6 was highly expressed in human kidney biopsy specimens with IgAN compared with control group, while the number of acetyl histone H3 positive cells were significantly decreased. There was a statistical difference in the indexes of albumin, estimated glomerular filtration rate (eGFR), serum urea, serum creatinine, serum uric acid, β2-microglobulin, cystatin C, cholesterol, high-density lipoprotein, low-density lipoprotein, and HDAC6 positive area among the different Oxford Classification (p < 0.05). The expression of HDAC6 was different in various eGFR levels, the expression of HDAC6 increased with the decreasing of eGFR level, the expression of acetyl histone H3 decreased with the decreasing of eGFR level. In addition, the expression of HDAC6 positively correlated with Masson trichrome positive area, serum urea, serum creatinine, β2 macroglobulin, and cystatin C, while negatively correlated with eGFR and acetyl histone H3. Multivariate linear regression analysis demonstrated that eGFR and cystatin C were independently associated with HDAC6, respectively (p < 0.05). Conclusions These results suggested that high level of HDAC6 expression in IgAN is correlated with renal dysfunction.
Collapse
Affiliation(s)
- Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Minghua Shang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|