1
|
Liu M, Deng M, Luo Q, Sun P, Liang A, Li X, Luo X, Pan J, Zhang W, Mo M, Guo X, Dou X, Jia Z. Metabolic reprogramming of renal epithelial cells contributes to lithium-induced nephrogenic diabetes insipidus. Biochim Biophys Acta Mol Basis Dis 2023:166765. [PMID: 37245528 DOI: 10.1016/j.bbadis.2023.166765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Lithium, mainstay treatment for bipolar disorder, frequently causes nephrogenic diabetes insipidus (NDI) and renal injury. However, the detailed mechanism remains unclear. Here we used the analysis of metabolomics and transcriptomics and metabolic intervention in a lithium-induced NDI model. Mice were treated with lithium chloride (40 mmol/kg chow) and rotenone (ROT, 100 ppm) in diet for 28 days. Transmission electron microscopy showed extensive mitochondrial structural abnormalities in whole nephron. ROT treatment markedly ameliorated lithium-induced NDI and mitochondrial structural abnormalities. Moreover, ROT attenuated the decrease of mitochondrial membrane potential in line with the upregulation of mitochondrial genes in kidney. Metabolomics and transcriptomics data demonstrated that lithium activated galactose metabolism, glycolysis, and amino sugar and nucleotide sugar metabolism. All these events were indicative of metabolic reprogramming in kidney cells. Importantly, ROT ameliorated metabolic reprogramming in NDI model. Based on transcriptomics analysis, we also found the activation of MAPK, mTOR and PI3K-Akt signaling pathways and impaired focal adhesion, ECM-receptor interaction and actin cytoskeleton in Li-NDI model were inhibited or attenuated by ROT treatment. Meanwhile, ROT administration inhibited the increase of Reactive Oxygen Species (ROS) in NDI kidneys along with enhanced SOD2 expression. Finally, we observed that ROT partially restored reduced the reduced AQP2 and enhanced urinary sodium excretion along with the blockade of increased PGE2 output. Taken together, the current study demonstrates that mitochondrial abnormalities and metabolic reprogramming play a key role in lithium-induced NDI, as well as the dysregulated signaling pathways, thereby serving as a novel therapeutic target.
Collapse
Affiliation(s)
- Mi Liu
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Mokan Deng
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China
| | - Qimei Luo
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China
| | - Peng Sun
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Ailin Liang
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China
| | - Xiulin Li
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China
| | - Xiaojie Luo
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China
| | - Jianyi Pan
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China
| | - Wei Zhang
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China
| | - Min Mo
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China
| | - Xiangdong Guo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xianrui Dou
- Department of Nephrology, Southern Medical University Shunde Hospital, Foshan 528300, China.
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
2
|
de Groot T, Doty R, Damen L, Baumgarten R, Bressers S, Kraak J, Deen PMT, Korstanje R. Genetic background determines renal response to chronic lithium treatment in female mice. Physiol Genomics 2021; 53:406-415. [PMID: 34378418 DOI: 10.1152/physiolgenomics.00149.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Chronic lithium treatment for bipolar disease causes mainly side effects in the kidney. A subset of lithium users develops nephrogenic diabetes insipidus (NDI), a urinary concentrating disorder, and chronic kidney disease (CKD). Age, lithium dose and duration of treatment are important risk factors, while genetic background might also play an important role. Methods In order to investigate the role of genetics, female mice of 29 different inbred strains were treated for one year with control or lithium chow and urine, blood and kidneys were analysed. Results Chronic lithium treatment increased urine production and/or reduced urine osmolality in 21 strains. Renal histology showed that lithium increased interstitial fibrosis and/or tubular atrophy in eight strains, while in none of the strains glomerular injury was induced. Interestingly, lithium did not elevate urinary albumin-creatinine ratio (ACR) in any strain, while eight strains even demonstrated a lowered ACR. The protective effect on ACR coincided with a similar decrease in urinary IgG levels, a marker of glomerular function, while the adverse effect of lithium on interstitial fibrosis/tubular atrophy coincided with a severe increase in urinary β2-microglobulin (B2M) levels, an indicator of proximal tubule damage. Conclusion Genetic background plays an important role in the development of lithium-induced NDI and chronic renal pathology in female mice. The strong correlation of renal pathology with urinary B2M levels indicates B2M as a promising biomarker for chronic renal damage induced by lithium.
Collapse
Affiliation(s)
- Theun de Groot
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosalinda Doty
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Lars Damen
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Steffi Bressers
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joline Kraak
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States
| |
Collapse
|
3
|
El-Ashmawy NE, Al-Ashmawy GM, Fakher HE, Khedr NF. The role of WNT/β-catenin signaling pathway and glutamine metabolism in the pathogenesis of CCl 4-induced liver fibrosis: Repositioning of niclosamide and concerns about lithium. Cytokine 2020; 136:155250. [PMID: 32882667 DOI: 10.1016/j.cyto.2020.155250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Liver fibrosis is a serious health problem which may lead to advanced liver cirrhosis and hepatocellular carcinoma. OBJECTIVE The present study aimed to investigate the role of Wnt/β-catenin signaling pathway and glutamine aminohydrolase enzyme (l-glutaminase) in the pathogenesis of liver fibrosis and the potential benefits of niclosamide in treating liver fibrosis. METHODS Ninety male Albino rats were divided into 6 equal groups (n = 15) as follows: a normal control group (NC), CCl4-only treated group (Fib.) which received 1 mg/kg CCl4 two times weekly, niclosamide-treated group (Niclo.) which received 5 mg/kg of niclosamide one time daily, lithium chloride-treated group (LiCl) which received 100 mg/kg of LiCl one time daily, niclosamide-and-CCl4-treated group (Niclo. + Fib.) which received same doses of niclosamide and CCl4 given to other groups, and finally lithium chloride-and-CCl4-treated rat group (LiCl + Fib.) which received same doses of LiCl and CCl4 given to other groups. All treatments were administered orally for 8 weeks. Liver tissue was assessed for l-hydroxyproline, beta-catenin (β-catenin), l-glutaminase activity, as well as the gene expression of transforming growth factor beta-1 (TGF-β1) and Dishevelled-2 (Dvl2). Histopathological and immunohistochemical analyses of alpha smooth muscle actin α-SMA were performed. Serum alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin were measured. RESULTS The group of niclosamide-and-CCl4-treated rats showed a significant decrease in total bilirubin, ALT and AST, β-catenin, l-hydroxyproline, l-glutaminase activity, and gene expression of TGF-β1 and Dvl2. Moreover, the liver tissue in this group of rats showed mild α-SMA reactivity compared with the rats treated with CCl4 only (fibrosis group). On the other hand, lithium chloride-and-CCl4-treated rats showed a significant increase in liver indices, TGF-β1 expression, β-catenin, l-hydroxyproline, and l-glutaminase activity with severe α-SMA reactivity and apoptosis in the liver tissue. CONCLUSIONS Niclosamide protected rats against liver fibrosis by inhibiting the Wnt/β-catenin pathway and glutaminolysis.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal code: 31527, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal code: 31527, Egypt
| | - Hoda E Fakher
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Postal code: 32511, Egypt.
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal code: 31527, Egypt
| |
Collapse
|
4
|
Jeong H, Dimick MK, Sultan A, Duong A, Park SS, El Soufi El Sabbagh D, Goldstein BI, Andreazza AC. Peripheral biomarkers of mitochondrial dysfunction in adolescents with bipolar disorder. J Psychiatr Res 2020; 123:187-193. [PMID: 32078836 DOI: 10.1016/j.jpsychires.2020.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mitochondrial dysfunction has been implicated in the pathophysiology of bipolar disorder (BD). Impediment of mitochondrial oxidative phosphorylation results in a shift toward anaerobic respiration and lactate production. Elevated CNS lactate levels in adults with BD inform the need to evaluate lactate in peripheral samples and early in the course of BD. Furthermore, there exists a recent surge of investigations looking at circulating cell-free mitochondrial DNA (ccf-mtDNA) as a potential biomarker as they are released from cells under physiological stress, apoptosis, or bioenergetic compromise. OBJECTIVES To compare lactate and ccf-mtDNA, two different ways in assessing the mitochondrial health and function, in adolescents with BD versus healthy control adolescents (HC). METHODS One-hundred and five adolescents (n = 64 BD, n = 41 HC) were included. Serum lactate level was measured using a commercially available colorimetric kit. Serum ccf-mtDNA concentration was measured using quantitative polymerase chain reaction from ccfDNA purified by commercially available spin columns. Diagnosis and mood symptoms were evaluated using semi-structured interviews. RESULTS There is an increase in serum lactate level of adolescents with BD (1.319 ± 0.444 nmol/uL) versus HC (1.168 ± 0.353 nmol/uL; p = 0.043), but not ccf-mtDNA. Among BD adolescents, depression symptoms were negatively correlated with ccf-mtDNA levels (ρ = -0.289; p = 0.038) but loses significance when corrected for multiple comparison. Lactate was positively correlated with ccf-mtDNA in the overall sample (ρ = 0.201; p = 0.043). When examined by diagnosis, this association remained in BD (ρ = 0.273; p = 0.032), but not HC. CONCLUSION These preliminary results indicate that elevated lactate is observed even among adolescents early in their course of BD, that the association between lactate and ccf-mtDNA appears to be specific to BD, and that ccf-mtDNA is potentially associated with depression symptoms in adolescent BD. In addition, the effect of psychotropic medications used in the treatment of BD on peripheral lactate and ccf-mtDNA requires further investigation.
Collapse
Affiliation(s)
- Hyunjin Jeong
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada
| | - Mikaela K Dimick
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Alysha Sultan
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Angela Duong
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada
| | - Sarah Sohyun Park
- Department of Human Biology, Faculty of Art and Science, University of Toronto, Toronto, Canada
| | - Dana El Soufi El Sabbagh
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Human Biology, Faculty of Art and Science, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Thakur S, Tobey A, Klubo-Gwiezdzinska J. The Role of Lithium in Management of Endocrine Tumors-A Comprehensive Review. Front Oncol 2019; 9:1092. [PMID: 31750236 PMCID: PMC6842984 DOI: 10.3389/fonc.2019.01092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/04/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Epidemiological data reveal that treatment with lithium, a mood stabilizer, is associated with decreased incidence and mortality of certain cancer types, such as melanoma. Therefore, repositioning of lithium as an anticancer agent has emerged as a promising strategy in oncology. Since lithium affects the physiology of several endocrine tissues, the goal of this study was to analyze the role of lithium in the pathogenesis and treatment of tumors of the endocrine system. Methods: The databases of PubMed, EMBASE, MEDLINE, were searched from January 1970 through February 2019 for articles including the keywords "lithium and"-"thyroid cancer," "thyroid nodule," "parathyroid adenoma," "parathyroid carcinoma," "pituitary adenoma," "pituitary neuroendocrine tumor," "neuroendocrine tumor," "carcinoid," "adrenal adenoma," "adrenal carcinoma," "pheochromocytoma/paraganglioma." Preclinical in vitro and in vivo studies as well as case series, retrospective cohort studies and prospective trials were selected for the analysis. Results: Treatment with lithium has been associated with a higher prevalence of thyroid enlargement, hypothyroidism and increased calcium levels due to parathyroid adenoma or hyperplasia, as one of the mechanisms of its action is to stimulate proliferation of normal follicular thyroid and parathyroid cells via activation of the Wnt signaling pathway. Supratherapeutic concentrations of lithium decrease the activity of glycogen synthase kinase-3β (GSK-3β), leading to cell cycle arrest in several in vitro cancer models including medullary thyroid cancer (TC), pheochromocytoma/paraganglioma and carcinoid. Growth inhibitory effects of lithium in vivo have been documented in medullary TC xenograft mouse models. Clinically, lithium has been used as an adjuvant agent to therapy with radioactive iodine (RAI), as it increases the residence time of RAI in TC. Conclusion: Patients chronically treated with lithium need to be screened for hypothyroidism, goiter, and hyperparathyroidism, as the prevalence of these endocrine abnormalities is higher in lithium-treated patients than in the general population. The growth inhibitory effects of lithium in medullary TC, pheochromocytoma/paraganglioma and carcinoid were achieved with supratherapeutic concentrations of lithium thus limiting its translational perspective. Currently available clinical data on the efficacy of lithium in the therapy of endocrine tumors in human is limited and associated with conflicting results.
Collapse
Affiliation(s)
- Shilpa Thakur
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew Tobey
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
de Groot T, Ebert LK, Christensen BM, Andralojc K, Cheval L, Doucet A, Mao C, Baumgarten R, Low BE, Sandhoff R, Wiles MV, Deen PMT, Korstanje R. Identification of Acer2 as a First Susceptibility Gene for Lithium-Induced Nephrogenic Diabetes Insipidus in Mice. J Am Soc Nephrol 2019; 30:2322-2336. [PMID: 31558682 DOI: 10.1681/asn.2018050549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lithium, mainstay treatment for bipolar disorder, causes nephrogenic diabetes insipidus and hypercalcemia in about 20% and 10% of patients, respectively, and may lead to acidosis. These adverse effects develop in only a subset of patients treated with lithium, suggesting genetic factors play a role. METHODS To identify susceptibility genes for lithium-induced adverse effects, we performed a genome-wide association study in mice, which develop such effects faster than humans. On day 8 and 10 after assigning female mice from 29 different inbred strains to normal chow or lithium diet (40 mmol/kg), we housed the animals for 48 hours in metabolic cages for urine collection. We also collected blood samples. RESULTS In 17 strains, lithium treatment significantly elevated urine production, whereas the other 12 strains were not affected. Increased urine production strongly correlated with lower urine osmolality and elevated water intake. Lithium caused acidosis only in one mouse strain, whereas hypercalcemia was found in four strains. Lithium effects on blood pH or ionized calcium did not correlate with effects on urine production. Using genome-wide association analyses, we identified eight gene-containing loci, including a locus containing Acer2, which encodes a ceramidase and is specifically expressed in the collecting duct. Knockout of Acer2 led to increased susceptibility for lithium-induced diabetes insipidus development. CONCLUSIONS We demonstrate that genome-wide association studies in mice can be used successfully to identify susceptibility genes for development of lithium-induced adverse effects. We identified Acer2 as a first susceptibility gene for lithium-induced diabetes insipidus in mice.
Collapse
Affiliation(s)
- Theun de Groot
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Lena K Ebert
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Karolina Andralojc
- Molecular Biology.,Biochemistry, and.,Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lydie Cheval
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France.,Physiology of Renal and Tubulopathies, CNRS (Centre National de la Recherche Scientifique) ERL 8228, Cordeliers Research Center, INSERM, Sorbonne University, Sorbonne Paris Cité University, Paris Descartes University, Paris Diderot University, Paris, France
| | - Alain Doucet
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York.,Stony Brook Cancer Center, Stony Brook, New York
| | | | | | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; and.,Centre for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| | | | | | | |
Collapse
|
7
|
Supuran CT. Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opin Ther Pat 2018; 28:713-721. [PMID: 30175635 DOI: 10.1080/13543776.2018.1519023] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION There are tissues and organs, among which kidneys and the central nervous system (CNS), rich in various isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Their role is to regulate pH, to provide bicarbonate or H+ ions for electrolyte secretion and possibly a metabolic one. Considering these two systems, CA inhibitors are clinically used mainly as diuretics and antiepileptics, but novel applications in the management of drug-induced renal injury, sleep apnea, migraine, lowering intracranial pressure, cognitive impairment, neuropathic pain, and cerebral ischemia have emerged. AREAS COVERED The various classes of clinically used/investigational CA inhibitors and their applications in the management of renal and CNS - connected diseases is reviewed. A patent and literature review covering the period 2013-2018 is presented. EXPERT OPINION Both kidneys and CNS are rich in many CA isoforms (CAIs), present also in high amounts. Their inhibition and activation has pharmacological applications, already exploited for diuretic and antiepileptic drugs for decades. New applications were demonstrated in the last years for the CAIs in the management of idiopathic intracranial hypertension, cerebral ischemia, neuropathic pain, avoiding the disruption of blood-brain barrier, and prevention/treatment of migraine, and for the activators for cognition enhancement and the possible treatment of posttraumatic shock and phobias.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|