1
|
Xue J, Zhou Z, Zhu Z, Sun Q, Zhu Y, Wu P. A high salt diet impairs the bladder epithelial barrier and activates the NLRP3 and NF‑κB signaling pathways to induce an overactive bladder in vivo. Exp Ther Med 2024; 28:362. [PMID: 39071900 PMCID: PMC11273259 DOI: 10.3892/etm.2024.12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024] Open
Abstract
Overactive bladder (OAB) is a condition characterized by an urgency to urinate, which is associated with the urodynamic observation of detrusor overexcitation. Although the etiology of OAB is currently unclear, it has been suggested that in patients with OAB, disruption of bladder epithelial barrier integrity can disturb the normal contractile function of the detrusor. Additionally, dietary preferences have been suggested to influence the severity of OAB. Therefore, the aim of the present study was to investigate the effect of a high salt diet (HSD) on the development of OAB in a murine model. Mice were fed either a HSD or standard diet for 8 weeks, following which voiding characteristics and bladder barrier function were assessed. The present study demonstrated that a HSD in mice was associated with OAB-like symptoms such as increased urinary frequency and non-voiding bladder contractions. The HSD group demonstrated a thinner bladder mucus layer and decreased expression of bladder barrier markers, tight junction protein-1 and claudin-1, which may be potentially indicative of induced bladder damage. A HSD for 8 weeks in mice and a high salt treatment at the uroepithelium cellular (SV-HUC-1s) level resulted in increased uroepithelial oxidative stress and inflammatory cell infiltration, as indicated by increased expression levels of TNF-α and IL-1β, as well as activation of the nucleotide-binding domain leucine-rich-containing family pyrin domain-containing 3 (NLRP3) and NF-κB signaling pathways in vivo and in vitro. Therefore, the present study indicated that a HSD could be a potentially important risk factor for the development of OAB, as it may be associated with overactivation of contractile function of the bladder by impairing the integrity of the bladder epithelial barrier and activation of the NLRP3 and NF-κB signaling pathways. Remodeling of the bladder barrier and reduction of the inflammatory response may be potential targets for the treatment of OAB in the future.
Collapse
Affiliation(s)
- Jingwen Xue
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhipeng Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Urology, Jinshan Branch of Fujian Provincial Hospital, Fuzhou, Fujian 350004, P.R. China
| | - Zhangrui Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Sun
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuexuan Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
2
|
Pang S, Yan J. Research and progress on the mechanism of lower urinary tract neuromodulation: a literature review. PeerJ 2024; 12:e17870. [PMID: 39148679 PMCID: PMC11326431 DOI: 10.7717/peerj.17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The storage and periodic voiding of urine in the lower urinary tract are regulated by a complex neural control system that includes the brain, spinal cord, and peripheral autonomic ganglia. Investigating the neuromodulation mechanisms of the lower urinary tract helps to deepen our understanding of urine storage and voiding processes, reveal the mechanisms underlying lower urinary tract dysfunction, and provide new strategies and insights for the treatment and management of related diseases. However, the current understanding of the neuromodulation mechanisms of the lower urinary tract is still limited, and further research methods are needed to elucidate its mechanisms and potential pathological mechanisms. This article provides an overview of the research progress in the functional study of the lower urinary tract system, as well as the key neural regulatory mechanisms during the micturition process. In addition, the commonly used research methods for studying the regulatory mechanisms of the lower urinary tract and the methods for evaluating lower urinary tract function in rodents are discussed. Finally, the latest advances and prospects of artificial intelligence in the research of neuromodulation mechanisms of the lower urinary tract are discussed. This includes the potential roles of machine learning in the diagnosis of lower urinary tract diseases and intelligent-assisted surgical systems, as well as the application of data mining and pattern recognition techniques in advancing lower urinary tract research. Our aim is to provide researchers with novel strategies and insights for the treatment and management of lower urinary tract dysfunction by conducting in-depth research and gaining a comprehensive understanding of the latest advancements in the neural regulation mechanisms of the lower urinary tract.
Collapse
Affiliation(s)
- Shutong Pang
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Junan Yan
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Fan X, Li J, Yan J. Automated identification and segmentation of urine spots based on deep-learning. PeerJ 2024; 12:e17398. [PMID: 39035153 PMCID: PMC11260409 DOI: 10.7717/peerj.17398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 07/23/2024] Open
Abstract
Micturition serves an essential physiological function that allows the body to eliminate metabolic wastes and maintain water-electrolyte balance. The urine spot assay (VSA), as a simple and economical assay, has been widely used in the study of micturition behavior in rodents. However, the traditional VSA method relies on manual judgment, introduces subjective errors, faces difficulty in obtaining appearance time of each urine spot, and struggles with quantitative analysis of overlapping spots. To address these challenges, we developed a deep learning-based approach for the automatic identification and segmentation of urine spots. Our system employs a target detection network to efficiently detect each urine spot and utilizes an instance segmentation network to achieve precise segmentation of overlapping urine spots. Compared with the traditional VSA method, our system achieves automated detection of urine spot area of micturition in rodents, greatly reducing subjective errors. It accurately determines the urination time of each spot and effectively quantifies the overlapping spots. This study enables high-throughput and precise urine spot detection, providing important technical support for the analysis of urination behavior and the study of the neural mechanism underlying urination.
Collapse
Affiliation(s)
- Xin Fan
- Medical School, Guangxi University, Nanning, Guangxi, China
| | - Jun Li
- School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Junan Yan
- Naval Medical Center, Naval Medical University, Shanghai, Shanghai, China
| |
Collapse
|
4
|
Barge S, Wu A, Zhang L, Robson SC, Olumi A, Alper SL, Zeidel ML, Yu W. Role of ecto-5'-nucleotidase in bladder function. FASEB J 2024; 38:e23416. [PMID: 38198186 PMCID: PMC10783849 DOI: 10.1096/fj.202301393r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Purinergic signaling plays an important role in regulating bladder contractility and voiding. Abnormal purinergic signaling is associated with lower urinary tract symptoms (LUTS). Ecto-5'-nucleotidase (NT5E) catalyzes dephosphorylation of extracellular AMP to adenosine, which in turn promotes adenosine-A2b receptor signaling to relax bladder smooth muscle (BSM). The functional importance of this mechanism was investigated using Nt5e knockout (Nt5eKO) mice. Increased voiding frequency of small voids revealed by voiding spot assay was corroborated by urodynamic studies showing shortened voiding intervals and decreased bladder compliance. Myography indicated reduced contractility of Nt5eKO BSM. These data support a role for NT5E in regulating bladder function through modulation of BSM contraction and relaxation. However, the abnormal bladder phenotype of Nt5eKO mice is much milder than we previously reported in A2b receptor knockout (A2bKO) mice, suggesting compensatory response(s) in Nt5eKO mouse bladder. To better understand this compensatory mechanism, we analyzed changes in purinergic and other receptors controlling BSM contraction and relaxation in the Nt5eKO bladder. We found that the relative abundance of muscarinic CHRM3 (cholinergic receptor muscarinic 3), purinergic P2X1, and A2b receptors was unchanged, whereas P2Y12 receptor was significantly downregulated, suggesting a negative feedback response to elevated ADP signaling. Further studies of additional ecto-nucleotidases indicated significant upregulation of the nonspecific urothelial alkaline phosphatase ALPL, which might mitigate the degree of voiding dysfunction by compensating for Nt5e deletion. These data suggest a mechanistic complexity of the purinergic signaling network in bladder and imply a paracrine mechanism in which urothelium-released ATP and its rapidly produced metabolites coordinately regulate BSM contraction and relaxation.
Collapse
Affiliation(s)
- Sagar Barge
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Ali Wu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Aria Olumi
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Seth L. Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Luo C, Liu J, Yang J, Xie X, Yu W, Chen H. Minimizing the variables of voiding spot assay for comparison between laboratories. PeerJ 2023; 11:e15420. [PMID: 37250709 PMCID: PMC10215753 DOI: 10.7717/peerj.15420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The voiding spot assay (VSA) is increasingly being adopted as a standard method for assessing mouse urinary function. However, VSA outcomes are highly sensitive to housing environment and procedural parameters. Many variables exist among laboratories, including analytical software, type of daily housing cage, transportation, and the time of the day. Some of these variables, such as the time of VSA and analytical software, have been shown to result in inconsistency and incomparability of data. In this study, we evaluated whether the results of VSA can be compared across laboratories by minimizing these variables. We found that analytical tools between Fiji and MATLAB are in good agreement in the quantification of VSA parameters, especially primary voiding spot (PVS) parameters. Unexpectedly, we found that mice housed in different daily home cages did not alter voiding patterns in a standard VSA cage. Nonetheless, we still recommend acclimation when performing VSA in unfamiliar cages. Notably, mice are highly sensitive to transportation and the time in the morning versus afternoon, which can induce significant changes in voiding patterns. Therefore, a standardized period among laboratories and allowing 2-3 days of rest for mice acclimation after transportation are necessary for VSA. Finally, we performed VSA using identical procedural parameters in two laboratories from two geographical locations to compare the results of VSA and concluded that it is possible to generate limited comparable VSA data, such as PVS volume.
Collapse
Affiliation(s)
- Chuang Luo
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Lv T, Zhong S, Guo X. Establishment of an overactive bladder model in mice. BMC Urol 2023; 23:19. [PMID: 36782229 PMCID: PMC9926576 DOI: 10.1186/s12894-023-01181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Overactive bladder (OAB) is a syndrome characterized by symptoms of urinary urgency, often accompanied by frequent urination and nocturia or urge incontinence. METHODS Twenty female ICR mice were randomly divided into pBOO (partial bladder outlet obstruction) and control groups. The mouse OAB model was constructed by ligating the bladder outlet. Eight weeks after the operation, the methods of voiding spot on paper (VSOP), isolated detrusor muscle, and HE staining were used for analysis and research. RESULTS After the operation, two mice in the experimental and one in control died, and one in the control groups had an abnormal bladder size, so it was excluded from the statistical analysis. Eight weeks after the operation, there was an insignificant difference (P = 0.15) in the body weight of mice in the pBOO (26.54 ± 2.62 g) and the control group (24.84 ± 1.76 g). The number of urinations in 12 h was significantly higher (P < 0.001) in the pBOO (7.63 ± 1.19) than in the control group (4.13 ± 0.99). Also, the 12-h urine volume of pBOO (1491.23 ± 94.72 μL) was significantly greater (P = 0.006) than that of the control group (1344.86 ± 88.17 μL). The isolated bladder of the pBOO mice was significantly heavier than that in the control group (53.16 ± 1.79 mg vs. 24.54 ± 1.80 mg, P < 0.001), the horizontal and vertical length of the bladder in pBOO group were larger than those in the control group (P < 0.001). The detrusor thickness of pBOO group (357.50 ± 11.88 µm) was significantly thicker than that of control group (258.52 ± 17.22 µm, P < 0.001), and the isolated muscle strip was more sensitive to carbachol stimulation. According to HE staining, the bladder wall of the pBOO mice was significantly thickened. CONCLUSIONS A pBOO-mediated mouse OAB model was successfully established by ligating the bladder outlet.
Collapse
Affiliation(s)
- Tengfei Lv
- grid.268505.c0000 0000 8744 8924The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China ,grid.411870.b0000 0001 0063 8301The Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shan Zhong
- grid.411405.50000 0004 1757 8861The Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiao Guo
- The Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
7
|
Dalghi MG, Montalbetti N, Wheeler TB, Apodaca G, Carattino MD. Real-Time Void Spot Assay. J Vis Exp 2023:10.3791/64621. [PMID: 36847378 PMCID: PMC10153432 DOI: 10.3791/64621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Normal voiding behavior is the result of the coordinated function of the bladder, the urethra, and the urethral sphincters under the proper control of the nervous system. To study voluntary voiding behavior in mouse models, researchers have developed the void spot assay (VSA), a method that measures the number and area of urine spots deposited on a filter paper lining the floor of an animal's cage. Although technically simple and inexpensive, this assay has limitations when used as an end-point assay, including a lack of temporal resolution of voiding events and difficulties quantifying overlapping urine spots. To overcome these limitations, we developed a video-monitored VSA, which we call real-time VSA (RT-VSA), and which allows us to determine voiding frequency, assess voided volume and voiding patterns, and make measurements over 6 h time windows during both the dark and light phases of the day. The method described in this report can be applied to a wide variety of mouse-based studies that explore the physiological and neurobehavioral aspects of voluntary micturition in health and disease states.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh
| | | | - Gerard Apodaca
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh; Department of Cell Biology, University of Pittsburgh;
| |
Collapse
|
8
|
Chen H, Wu A, Zeidel ML, Yu W. Smooth Muscle Insulin Receptor Deletion Causes Voiding Dysfunction: A Mechanism for Diabetic Bladder Dysfunction. Diabetes 2022; 71:2197-2208. [PMID: 35876633 PMCID: PMC9501730 DOI: 10.2337/db22-0233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/20/2022] [Indexed: 01/03/2023]
Abstract
Diabetic bladder dysfunction (DBD) is the most common complication in diabetes. Myogenic abnormalities are common in DBD; however, the underlying mechanisms leading to these remain unclear. To understand the importance of smooth muscle insulin receptor (IR)-mediated signaling in the pathogenesis of DBD, we conditionally deleted it to achieve either heterozygous (SMIR+/-) or homozygous (SMIR-/-) deletion in smooth muscle cells. Despite impaired glucose and insulin tolerance seen with SMIR-/- mice, both SMIR+/- and SMIR-/- mice exhibited normal blood glucose and plasma insulin levels. Interestingly, these mice had abnormal voiding phenotypes, that included urinary frequency and small voids, and bladder smooth muscle (BSM) had significantly diminished contraction force. Morphology revealed a dilated bladder with thinner BSM layer, and BSM bundles were disorganized with penetrating interstitial tissue. Deletion of IR elevated FoxO and decreased mTOR protein expression, which further decreased the expression of Chrm3, P2x1, Sm22, and Cav1.2, crucial functional proteins for BSM contraction. Furthermore, we determined the expression of adiponectin in BSM, and deletion of IR in BSM inhibited adiponectin-mediated signaling. In summary, disruption of IR-mediated signaling in BSM caused abnormalities in proliferation and differentiation, leading to diminished BSM contractility and a voiding dysfunction phenotype that recapitulates human DBD.
Collapse
Affiliation(s)
| | | | | | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Aresta Branco MSL, Gutierrez Cruz A, Dayton J, Perrino BA, Mutafova-Yambolieva VN. Mechanosensitive Hydrolysis of ATP and ADP in Lamina Propria of the Murine Bladder by Membrane-Bound and Soluble Nucleotidases. Front Physiol 2022; 13:918100. [PMID: 35784885 PMCID: PMC9246094 DOI: 10.3389/fphys.2022.918100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Prior studies suggest that urothelium-released adenosine 5′-triphosphate (ATP) has a prominent role in bladder mechanotransduction. Urothelial ATP regulates the micturition cycle through activation of purinergic receptors that are expressed in many cell types in the lamina propria (LP), including afferent neurons, and might also be important for direct mechanosensitive signaling between urothelium and detrusor. The excitatory action of ATP is terminated by enzymatic hydrolysis, which subsequently produces bioactive metabolites. We examined possible mechanosensitive mechanisms of ATP hydrolysis in the LP by determining the degradation of 1,N6-etheno-ATP (eATP) at the anti-luminal side of nondistended (empty) or distended (full) murine (C57BL/6J) detrusor-free bladder model, using HPLC. The hydrolysis of eATP and eADP was greater in contact with LP of distended than of nondistended bladders whereas the hydrolysis of eAMP remained unchanged during filling, suggesting that some steps of eATP hydrolysis in the LP are mechanosensitive. eATP and eADP were also catabolized in extraluminal solutions (ELS) that were in contact with the LP of detrusor-free bladders, but removed from the organ chambers prior to addition of substrate. The degradation of both purines was greater in ELS from distended than from nondistended preparations, suggesting the presence of mechanosensitive release of soluble nucleotidases in the LP. The released enzyme activities were affected differently by Ca2+ and Mg2+. The common nucleotidase inhibitors ARL67156, POM-1, PSB06126, and ENPP1 Inhibitor C, but not the alkaline phosphatase inhibitor (-)-p-bromotetramisole oxalate, inhibited the enzymes released during bladder distention. Membrane-bound nucleotidases were identified in tissue homogenates and in concentrated ELS from distended preparations by Wes immunodetection. The relative distribution of nucleotidases was ENTPD1 >> ENPP1 > ENTPD2 = ENTPD3 > ENPP3 = NT5E >> ENTPD8 = TNAP in urothelium and ENTPD1 >> ENTPD3 >> ENPP3 > ENPP1 = ENTPD2 = NT5E >> ENTPD8 = TNAP in concentrated ELS, suggesting that regulated ectodomain shedding of membrane-bound nucleotidases possibly occurs in the LP during bladder filling. Mechanosensitive degradation of ATP and ADP by membrane-bound and soluble nucleotidases in the LP diminishes the availability of excitatory purines in the LP at the end of bladder filling. This might be a safeguard mechanism to prevent over-excitability of the bladder. Proper proportions of excitatory and inhibitory purines in the bladder wall are determined by distention-associated purine release and purine metabolism.
Collapse
|
10
|
Zwaans BMM, Grobbel M, Carabulea AL, Lamb LE, Roccabianca S. Increased extracellular matrix stiffness accompanies compromised bladder function in a murine model of radiation cystitis. Acta Biomater 2022; 144:221-229. [PMID: 35301146 PMCID: PMC9100859 DOI: 10.1016/j.actbio.2022.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Radiation cystitis, a long-term bladder defect due to pelvic radiation therapy, results in lower urinary tract symptoms, such as urinary frequency and nocturia, suggestive of compromised bladder compliance. The goal of this study was to identify alterations to the mechanical behavior of the urinary bladder extracellular matrix of a murine model of radiation cystitis, at 3 and 6 months after radiation exposure. The results of this study demonstrated that the extracellular matrix of irradiated bladders was significantly less distensible when compared to age matching controls. These findings coincided with functional bladder changes, including increased number of voids and decreased voided volume. Both mechanical and functional changes were apparent at 3 months post-irradiation and were statistically significant at 6 months, demonstrating the progressive nature of radiation cystitis. Overall, the results of this study indicate that irradiation exposure changes both the mechanical and physiological properties of the bladder. STATEMENT OF SIGNIFICANCE: In humans, radiation cystitis results in lower urinary tract symptoms, such as urinary frequency and nocturia, suggestive of compromised bladder compliance. This pathology can significantly affect recovery and quality of life for cancer survivors. Gaining knowledge about how alterations to the mechanical behavior of the urinary bladder extracellular matrix can affect urinary function will have a significant impact on this population. The results of this study demonstrated that the extracellular matrix of irradiated bladders was significantly less distensible when compared to age matching controls, in a mouse model of radiation cystitis. These findings were accompanied by functional voiding changes, including increased number of voids and decreased voided volume. The results of this study uncovered that irradiation exposure changes the mechanical and physiological properties of the bladder.
Collapse
Affiliation(s)
- Bernadette M M Zwaans
- Department of Urology, Beaumont Health System, Royal Oak, MI, United States; Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Marissa Grobbel
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Laura E Lamb
- Department of Urology, Beaumont Health System, Royal Oak, MI, United States; Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Sara Roccabianca
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
11
|
Xie AX, Iguchi N, Clarkson TC, Malykhina AP. Pharmacogenetic inhibition of lumbosacral sensory neurons alleviates visceral hypersensitivity in a mouse model of chronic pelvic pain. PLoS One 2022; 17:e0262769. [PMID: 35077502 PMCID: PMC8789164 DOI: 10.1371/journal.pone.0262769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The study investigated the cellular and molecular mechanisms in the peripheral nervous system (PNS) underlying the symptoms of urologic chronic pelvic pain syndrome (UCPPS) in mice. This work also aimed to test the feasibility of reversing peripheral sensitization in vivo in alleviating UCPPS symptoms. Intravesical instillation of vascular endothelial growth factor A (VEGFA) was used to induce UCPPS-like symptoms in mice. Spontaneous voiding spot assays and manual Von Frey tests were used to evaluate the severity of lower urinary tract symptoms (LUTS) and visceral hypersensitivity in VEGFA-instilled mice. Bladder smooth muscle strip contractility recordings (BSMSC) were used to identify the potential changes in myogenic and neurogenic detrusor muscle contractility at the tissue-level. Quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry were performed to compare the expression levels of VEGF receptors and nociceptors in lumbosacral dorsal root ganglia (DRG) between VEGFA-instilled mice and saline-instilled controls. To manipulate primary afferent activity, Gi-coupled Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) were expressed in lumbosacral DRG neurons of TRPV1-Cre-ZGreen mice via targeted adeno-associated viral vector (AAVs) injections. A small molecule agonist of Gi-DREADD, clozapine-N-oxide (CNO), was injected into the peritoneum (i. p.) in awake animals to silence TRPV1 expressing sensory neurons in vivo during physiological and behavioral recordings of bladder function. Intravesical instillation of VEGFA in the urinary bladders increased visceral mechanical sensitivity and enhanced RTX-sensitive detrusor contractility. Sex differences were identified in the baseline detrusor contractility responses and VEGF-induced visceral hypersensitivity. VEGFA instillations in the urinary bladder led to significant increases in the mRNA and protein expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) in lumbosacral DRG, whereas the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1) and VEGF receptors (VEGFR1 and VEGFR2) remained unchanged when compared to saline-instilled animals. Importantly, the VEGFA-induced visceral hypersensitivity was reversed by Gi-DREADD-mediated neuronal silencing in lumbosacral sensory neurons. Activation of bladder VEGF signaling causes sensory neural plasticity and visceral hypersensitivity in mice, confirming its role of an UCPPS biomarker as identified by the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research studies. Pharmacogenetic inhibition of lumbosacral sensory neurons in vivo completely reversed VEGFA-induced pelvic hypersensitivity in mice, suggesting the strong therapeutic potential for decreasing primary afferent activity in the treatment of pain severity in UCPPS patients.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Nao Iguchi
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Taylor C. Clarkson
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Anna P. Malykhina
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
12
|
Nogueira-Rodrigues J, Leite SC, Pinto-Costa R, Sousa SC, Luz LL, Sintra MA, Oliveira R, Monteiro AC, Pinheiro GG, Vitorino M, Silva JA, Simão S, Fernandes VE, Provazník J, Benes V, Cruz CD, Safronov BV, Magalhães A, Reis CA, Vieira J, Vieira CP, Tiscórnia G, Araújo IM, Sousa MM. Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev Cell 2021; 57:440-450.e7. [PMID: 34986324 DOI: 10.1016/j.devcel.2021.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Regeneration of adult mammalian central nervous system (CNS) axons is abortive, resulting in inability to recover function after CNS lesion, including spinal cord injury (SCI). Here, we show that the spiny mouse (Acomys) is an exception to other mammals, being capable of spontaneous and fast restoration of function after severe SCI, re-establishing hind limb coordination. Remarkably, Acomys assembles a scarless pro-regenerative tissue at the injury site, providing a unique structural continuity of the initial spinal cord geometry. The Acomys SCI site shows robust axon regeneration of multiple tracts, synapse formation, and electrophysiological signal propagation. Transcriptomic analysis of the spinal cord following transcriptome reconstruction revealed that Acomys rewires glycosylation biosynthetic pathways, culminating in a specific pro-regenerative proteoglycan signature at SCI site. Our work uncovers that a glycosylation switch is critical for axon regeneration after SCI and identifies β3gnt7, a crucial enzyme of keratan sulfate biosynthesis, as an enhancer of axon growth.
Collapse
Affiliation(s)
- Joana Nogueira-Rodrigues
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Sérgio C Leite
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rita Pinto-Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Sara C Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Liliana L Luz
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Maria A Sintra
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Raquel Oliveira
- Translational NeuroUrology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London WC2R 2LS, London, UK
| | - Ana C Monteiro
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Gonçalo G Pinheiro
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Marta Vitorino
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joana A Silva
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Sónia Simão
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal
| | - Vitor E Fernandes
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal
| | - Jan Provazník
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Célia D Cruz
- Translational NeuroUrology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Boris V Safronov
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Ana Magalhães
- Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology, IPATIMUP), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Celso A Reis
- Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology, IPATIMUP), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; Department of Pathology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Jorge Vieira
- Phenotypic Evolution Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Cristina P Vieira
- Phenotypic Evolution Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Gustavo Tiscórnia
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Clinica Eugin, Research and Development, 08006 Barcelona, Spain
| | - Inês M Araújo
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Mónica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
13
|
Dalghi MG, Ruiz WG, Clayton DR, Montalbetti N, Daugherty SL, Beckel JM, Carattino MD, Apodaca G. Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight 2021; 6:e152984. [PMID: 34464353 PMCID: PMC8525643 DOI: 10.1172/jci.insight.152984] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The mechanisms that link visceral mechanosensation to the perception of internal organ status (i.e., interoception) remain elusive. In response to bladder filling, the urothelium releases ATP, which is hypothesized to stimulate voiding function by communicating the degree of bladder fullness to subjacent tissues, including afferent nerve fibers. To determine if PIEZO channels function as mechanosensors in these events, we generated conditional urothelial Piezo1-, Piezo2-, and dual Piezo1/2-knockout (KO) mice. While functional PIEZO1 channels were expressed in all urothelial cell layers, Piezo1-KO mice had a limited phenotype. Piezo2 expression was limited to a small subset of superficial umbrella cells, yet male Piezo2-KO mice exhibited incontinence (i.e., leakage) when their voiding behavior was monitored during their active dark phase. Dual Piezo1/2-KO mice had the most affected phenotype, characterized by decreased urothelial responses to mechanical stimulation, diminished ATP release, bladder hypoactivity in anesthetized Piezo1/2-KO females but not males, and urinary incontinence in both male and female Piezo1/2-KO mice during their dark phase but not inactive light one. Our studies reveal that the urothelium functions in a sex- and circadian rhythm–dependent manner to link urothelial PIEZO1/2 channel–driven mechanotransduction to normal voiding function and behavior, and in the absence of these signals, bladder dysfunction ensues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcelo D Carattino
- Department of Medicine.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gerard Apodaca
- Department of Medicine.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Dalghi MG. A "NEW" way to look at an "old" test: Transforming the void spot assay (VSA) into a diagnostic tool. Physiol Rep 2021; 9:e14985. [PMID: 34337907 PMCID: PMC8326885 DOI: 10.14814/phy2.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Marianela G. Dalghi
- Renal‐Electrolyte DivisionDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
15
|
Xie X, Luo C, Liang JY, Huang R, Yang JL, Li L, Li Y, Xing H, Chen H. NMDAR in bladder smooth muscle is not a pharmacotherapy target for overactive bladder in mice. PeerJ 2021; 9:e11684. [PMID: 34277150 PMCID: PMC8272467 DOI: 10.7717/peerj.11684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Overactive bladder (OAB) is a common condition that affects a significant patient population. The N-methyl-D-aspartate receptor (NMDAR) has a role in developing bladder overactivity, pharmacological inhibition of which inhibits bladder overactivity. The common pathogenesis of OAB involves bladder smooth muscle (BSM) overactivity. In this study, a smooth muscle-specific NMDAR knockout (SMNRKO) mouse model was generated. The bladders from SMNRKO mice displayed normal size and weight with an intact bladder wall and well-arranged BSM bundles. Besides, SMNRKO mice had normal voiding patterns and urodynamics and BSM contractility, indicating that NMDAR in BSM was not essential for normal physiological bladder morphology and function. Unexpectedly, cyclophosphamide (CYP)-treated SMNRKO and wild-type (WT) mice had similar pathological changes in the bladder. Furthermore, SMNRKO mice displayed similar altered voiding patterns and urodynamic abnormalities and impaired BSM contractility compared with WT mice after CYP treatment. MK801 partially reversed the pathological bladder morphology and improved bladder dysfunction induced by CYP, but did not cause apparent differences between WT mice and SMNRKO mice, suggesting that NMDAR in BSM was not involved in pathological bladder morphology and function. Moreover, the direct instillation of NMDAR agonists or antagonists into the CYP-induced OAB did not affect bladder urodynamic function, indicating that NMDAR in BSM was not the pharmacotherapy target of MK801 for CYP-induced cystitis. The findings indicated that NMDAR in BSM was not essential for normal physiological or pathological bladder morphology and function, and MK801 improving pathological bladder function was not mediated by an action on NMDAR in BSM.
Collapse
Affiliation(s)
- Xiang Xie
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chuang Luo
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Yu Liang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Run Huang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Li Yang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Linlong Li
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - YangYang Li
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongming Xing
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Chen
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
16
|
Urine and Tissue Bacterial Loads Correlate With Voiding Behaviors in a Murine Urinary Tract Infection Model. Urology 2021; 154:344.e1-344.e7. [PMID: 34010680 DOI: 10.1016/j.urology.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To describe associations between voiding behavior and bacterial loads in a murine model of urinary tract infection (UTI). METHODS Fourteen female C57BL/6J mice were transurethrally inoculated with 108colony-forming unit uropathogenic E. coli (UPEC) UTI89 in 50 μL two times, 24 hours apart. Voiding spot assays were used to measure voiding behavior. Voiding spot assays and urine cultures were performed at various time points between 1 and 28 days postinfection (dpi). Bladder and kidney bacterial loads were measured at 28 dpi. Correlations were calculated between voiding spot assay variables and bacterial loads at different dpi. In a separate experiment, 3 female mice were infected with UPEC in the same manner for histology changes at 28-dpi in chronic UTI. RESULTS During the 28 days, among 14 mice, 8 developed chronic cystitis and 11 developed chronic pyelonephritis based on a priori definitions. All infected mice showed increased urinary frequency, polyuria, and decreased bladder capacity. Tissue fibrosis was also observed in the infected bladder. At 1 dpi and 28 dpi, the urinary bacterial loads were positively associated with frequency and polyuria. Bladder and kidney bacterial loads at 28 dpi were positively with frequency and polyuria. CONCLUSIONS Urine and tissue bacterial loads were associated with changes of voiding behavior at both 1 and 28 dpi.
Collapse
|
17
|
Xie X, Chen H, Zhang L, Chan D, Hill WG, Zeidel ML, Yu W. Molecular mechanisms of voiding dysfunction in a novel mouse model of acute urinary retention. FASEB J 2021; 35:e21447. [PMID: 33742688 PMCID: PMC9844132 DOI: 10.1096/fj.202002415r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 01/19/2023]
Abstract
Acute urinary retention (AUR) is a common urological emergency and affects a significant patient population. The inability to eliminate urine may lead to permanent damage to the bladder's structure and functioning. However, we know little about the underlying molecular sequelae to the urine retention. To closely mirror the potential high pressures that patients with AUR could experience, we catheterized anesthetized female mice via the urethra and filled the bladder by pumping saline (25 µL/min) into the bladder lumen to 50 cm or 80 cm water pressure. A water column with designated height (50 or 80 cm) was then adjusted to maintain constant pressure in the bladder lumen for 30 minutes. Functional and morphological evaluations were performed from 0 to 24 hours after AUR treatment. Mice exhibited incontinence and overactivity with diminished voiding pressure. Significant injury was confirmed which revealed bladders with disrupted urothelial barrier, edematous lamina propria, and distorted muscle bundles. Bladder smooth muscle (BSM) from pressure-treated mice have significantly diminished contraction force, suggesting that bladder voiding dysfunction can be attributed to impaired BSM contractility. Indeed, dysregulation of acetylcholine and purinergic signaling pathways were demonstrated, indicating that reduced efficacy of these pathways contributes to impaired BSM contractility. Finally, altered expression of β1-integrin and extracellular matrix mediated mechanotransduction pathways were detected, suggesting a profound remodeling process. These data demonstrated an easy to perform, quantifiable, and reproducible AUR mouse model, which mimics well the characteristics of human AUR patients, and our data generate new insights into the molecular mechanisms that occur following AUR.
Collapse
Affiliation(s)
- Xiang Xie
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Daniel Chan
- Brown University/Harvard Summer Research Program in Kidney Medicine, Providence, RI, USA
| | - Warren G. Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Wazir J, Ullah R, Khongorzul P, Hossain MA, Khan MW, Aktar N, Cui X, Zhou X. The effectiveness of Hedyotis diffusa Willd extract in a mouse model of experimental autoimmune prostatitis. Andrologia 2020; 53:e13913. [PMID: 33236398 DOI: 10.1111/and.13913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a frustrating and often debilitating disease. Current studies have shown that Traditional Chinese Medicine (TCM) can improve patients' quality of life and alleviate CP/CPPS symptoms. In this study, the efficacy of Hedyotis diffusa Willd aqueous extraction in experimental autoimmune prostatitis (EAP) mice models was revealed. The C57BL/6 mice were randomly assigned to three groups. Except for the control group, all other groups were subcutaneously injected with 0.2 ml emulsion of T2 peptide, on day 0 and day 14, for inducing EAP models. After the EAP modelling, oral saline was given to the model group, while the H. diffusa group was treated with aqueous extract of H. diffusa Willd. Micturition habits and withdrawal response frequencies were measured. Haematoxylin and eosin staining and immunohistochemistry were used to investigate inflammatory cell infiltration and TNF-α in the prostate tissue respectively. TNF-α levels in the serum were evaluated by ELISA. The H. diffusa Willd aqueous extraction considerably reduced the urine spots number and increased the pain threshold in H. diffusa group. H. diffusa group showed significantly reduced inflammatory lesion and inflammatory cell infiltration than the model group. The levels of TNF-α in H. diffusa group were considerably reduced.
Collapse
Affiliation(s)
- Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rahat Ullah
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Puregmaa Khongorzul
- Antibody Engineering Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | - Nasrin Aktar
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu, China.,Department of Cardiothoracic Surgery, Zhongda Hospital affiliated to Southeast University, Nanjing, China
| |
Collapse
|
19
|
Chen H, Vandorpe DH, Xie X, Alper SL, Zeidel ML, Yu W. Disruption of Cav1.2-mediated signaling is a pathway for ketamine-induced pathology. Nat Commun 2020; 11:4328. [PMID: 32859919 PMCID: PMC7455701 DOI: 10.1038/s41467-020-18167-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/04/2020] [Indexed: 01/03/2023] Open
Abstract
The general anesthetic ketamine has been repurposed by physicians as an anti-depressant and by the public as a recreational drug. However, ketamine use can cause extensive pathological changes, including ketamine cystitis. The mechanisms of ketamine's anti-depressant and adverse effects remain poorly understood. Here we present evidence that ketamine is an effective L-type Ca2+ channel (Cav1.2) antagonist that directly inhibits calcium influx and smooth muscle contractility, leading to voiding dysfunction. Ketamine prevents Cav1.2-mediated induction of immediate early genes and transcription factors, and inactivation of Cav1.2 in smooth muscle mimics the ketamine cystitis phenotype. Our results demonstrate that ketamine inhibition of Cav1.2 signaling is an important pathway mediating ketamine cystitis. In contrast, Cav1.2 agonist Bay k8644 abrogates ketamine-induced smooth muscle dysfunction. Indeed, Cav1.2 activation by Bay k8644 decreases voiding frequency while increasing void volume, indicating Cav1.2 agonists might be effective drugs for treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David H Vandorpe
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiang Xie
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Cui X, Naveed M, Baig MMFA, Wang W, Mikrani R, Liu Z, Ahmad B, Tang M, Wazir J, Zhou X, Han L. Therapeutic effects of Qianlie Tongli decoction on chronic prostatitis/chronic pelvic pain syndrome induced by peptide T2 in mice. J Pharm Pharmacol 2020; 72:1436-1444. [DOI: 10.1111/jphp.13325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022]
Abstract
Abstract
Objectives
This study was undertaken to reveal therapeutic effects and the preliminary mechanism of Chinese medicine formula Qianlie Tongli decoction (QTD) in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS).
Methods
A total of 50 male C57BL/6 mice were randomly divided into five groups. All groups except the control group were injected subcutaneously T2 peptide emulsion, which induced the CP/CPPS model. After the induction of CP/CPPS, the model group was given normal saline by oral gavage while low-dose, medium-dose and high-dose groups were treated with Chinese medicine formula. Micturition habits and pain behaviour of mice were analysed for each group. Haematoxylin and eosin (H&E) staining was used to investigate prostate inflammation. The serum level of tumour necrosis factor-α (TNF-α) was measured by enzyme-linked immunosorbent assay (ELISA) kit.
Key findings
Chinese medicine formula significantly reduced the number of urine spots and improved pain response frequency in the medium-dose and high-dose group. The high-dose group showed reduced considerably inflammatory lesion and inflammatory cell infiltration than the low-dose and medium-dose groups. Serum levels of TNF-α in the high-dose group were significantly reduced compared with the model group.
Conclusions
The results demonstrated the therapeutic effects of Qianlie Tongli decoction in CP/CPPS mice by analysing clinically relevant symptoms (urinary tract system, pelvic pain and prostate inflammation) and preliminarily explored the inflammatory-related treatment mechanisms by measuring TNF-α.
Collapse
Affiliation(s)
- Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenlu Wang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Bilal Ahmad
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, China
- Zhongda Hospital, Affiliated with Southeast University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Pharmacy, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu Province, China
| |
Collapse
|
21
|
Zhu K, Hill WG, Li F, Shi B, Chai TC. Early Increased Urinary IL-2 and IL-10 Levels Were Associated With Development of Chronic UTI in a Murine Model. Urology 2020; 141:188.e1-188.e6. [PMID: 32201154 DOI: 10.1016/j.urology.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To analyze factors during early stage of urinary tract infection (UTI) that are associated with development of chronic UTI. METHODS Mice were inoculated with Uropathogenic Escherichia coli (UPEC) 2 times 24 hours apart. At 1, 3, 7, 10, 14, 21 and 28 days post infection (dpi), urine bacterial loads and voiding behavior (voiding spot assay, VSA) were measured. At 1 and 28 dpi, 32 urine inflammatory cytokines/chemokines were measured using enzyme-linked immunosorbent assay (ELISA). Bladder and kidney cytokines/chemokines were measured on 28 dpi. Mice that had no more than 1 episode of urine bacterial load < 104 colony forming unit/ml during the entire 4 weeks were defined as susceptible to chronic UTI, otherwise, mice were considered resistant. RESULTS At 28 dpi, 64.3% mice developed chronic UTI (susceptible group) and 35.7% mice did not (resistant group). Factors at 1 dpi that were predictive of chronic UTI included increased urine IL-2 (OR 11.9, 95%CI 1.1-130.8, P = .043) and increased urine IL-10 (OR 14.0, 95%CI 1.0-201.2, P = .052). At 28 dpi, there were several significant differences between the susceptible vs resistant groups including urine/tissue bacterial loads and certain urine/tissue cytokines/chemokines. CONCLUSIONS Higher urine IL-2 and IL-10 at 1 dpi predicted chronic UTI infection in this model. There have been recent publications associating both of these cytokines to UTI susceptibility. Further explorations into IL-2 and IL-10 mediated pathways could shed light on the biology of recurrent and chronic UTI which are difficult to treat.
Collapse
Affiliation(s)
- Kejia Zhu
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China; Department of Urology, Yale School of Medicine, New Haven, CT
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China.
| | - Toby C Chai
- Department of Urology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
22
|
Kim AK, Hamadani C, Zeidel ML, Hill WG. Urological complications of obesity and diabetes in males and females of three mouse models: temporal manifestations. Am J Physiol Renal Physiol 2020; 318:F160-F174. [PMID: 31682171 DOI: 10.1152/ajprenal.00207.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic bladder dysfunction is a frequent complication of diabetes. Although many mouse models of diabetes now exist, there has been little systematic effort to characterize them for the timing of onset and severity of bladder dysfunction. We monitored metabolic status and tested bladder function by void spot assay and limited anesthetized cystometry in both male and female mice of three models of obesity and diabetes: a type 1 diabetes model (the Akita mouse) and two type 2 diabetes models [the diet-induced obese (DIO) model and the ob/ob mouse]. Akita mice had insulin pellets implanted subcutaneously every 3 mo to mimic poorly controlled type 1 diabetes in humans. Mice were hyperglycemic by 48 days after implants. Female mice exhibited no bladder dysfunction at any age up to 20 mo and gained weight normally. In contrast, by 7 mo, male Akita mice developed a profound polyuria and failed to show normal weight gain. There were no observable signs of bladder dysfunction in either sex. DIO mice on high/low-fat diets for 16 mo exhibited mild hyperglycemia in female mice (not in male mice), mild weight gain, and no evidence of bladder dysfunction. Ob/ob mice were followed for 8 mo and became extremely obese. Male and female mice were glucose intolerant, insulin intolerant, and hyperinsulinemic at 4 mo. By 8 mo, their metabolic status had improved but was still abnormal. Urine volume increased in male mice but not in female mice. Bladder dysfunction was observed in the spotting patterns of female mice at 4 and 6 mo of age, resolving by 8 mo. We conclude there are dramatic sex-related differences in lower urinary tract function in these models. Male Akita mice may be a good model for polyuria-related bladder remodeling, whereas female ob/ob mice may better mimic storage problems related to loss of outlet control in a setting of type 2 diabetes complicated by obesity.
Collapse
Affiliation(s)
- Alexandra K Kim
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Christine Hamadani
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Warren G Hill
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Hao Y, Wang L, Chen H, Hill WG, Robson SC, Zeidel ML, Yu W. Targetable purinergic receptors P2Y12 and A2b antagonistically regulate bladder function. JCI Insight 2019; 4:122112. [PMID: 31434806 DOI: 10.1172/jci.insight.122112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormalities in purine availability or purinergic receptor density are commonly seen in patients with lower urinary tract symptoms (LUTS), but the underlying mechanisms relating altered receptor function to LUTS are unknown. Here we provide extensive evidence for the reciprocal interplay of multiple receptors responding to ATP, ADP (adenosine diphosphate), and adenosine, agonists that regulate bladder function significantly. ADP stimulated P2Y12 receptors, causing bladder smooth muscle (BSM) contraction, whereas adenosine signaling through potentially newly defined A2b receptors, actively inhibited BSM purinergic contractility. The modulation of adenylyl cyclase-cAMP signaling via A2b and P2Y12 interaction actively regulated bladder contractility by modulating intracellular calcium levels. KO mice lacking the receptors display diametrically opposed bladder phenotypes, with P2Y12-KO mice exhibiting an underactive bladder (UAB) phenotype with increased bladder capacity and reduced voiding frequency, whereas A2b-KO mice have an overactive bladder (OAB), with decreased capacity and increased voiding frequency. The opposing phenotypes in P2Y12-KO and A2b-KO mice not only resulted from dysregulated BSM contractility, but also from abnormal BSM cell growth. Finally, we demonstrate that i.p. administration of drugs targeting P2Y12 or A2b receptor rescues these abnormal phenotypes in both KO mice. These findings strongly indicate that P2Y12 and A2b receptors are attractive therapeutic targets for human patients with LUTS.
Collapse
Affiliation(s)
- Yuan Hao
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Lu Wang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Chongqing University, Chongqing, China
| | - Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Simon C Robson
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Effect of Oral T2 Antigen on Chronic Prostatitis/Chronic Pelvic Pain Syndrome in Mice Model. Inflammation 2019; 42:2086-2094. [DOI: 10.1007/s10753-019-01072-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Jensen MM, Jia W, Schults AJ, Isaacson KJ, Steinhauff D, Green B, Zachary B, Cappello J, Ghandehari H, Oottamasathien S. Temperature-responsive silk-elastinlike protein polymer enhancement of intravesical drug delivery of a therapeutic glycosaminoglycan for treatment of interstitial cystitis/painful bladder syndrome. Biomaterials 2019; 217:119293. [PMID: 31276948 DOI: 10.1016/j.biomaterials.2019.119293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/28/2022]
Abstract
Interstitial cystitis (IC), also known as painful bladder syndrome, is a debilitating chronic condition with many patients failing to respond to current treatment options. Rapid clearance, mucosal coating, and tight epithelium create strong natural barriers that reduce the effectiveness of many pharmacological interventions in the bladder. Intravesical drug delivery (IDD) is the administration of therapeutic compounds or devices to the urinary bladder via a urethral catheter. Previous work in improving IDD for IC has focused on the sustained delivery of analgesics within the bladder and other small molecule drugs which do not address underlying inflammation and bladder damage. Therapeutic glycosaminoglycans (GAG) function by restoring the mucosal barrier within the bladder, promoting healing responses, and preventing irritating solutes from reaching the bladder wall. There is an unmet medical need for a therapy that provides both acute relief of symptoms while alleviating underlying physiological sources of inflammation and promoting healing within the urothelium. Semi-synthetic glycosaminoglycan ethers (SAGE) are an emerging class of therapeutic GAG with intrinsic anti-inflammatory and analgesic properties. To reduce SAGE clearance and enhance its accumulation in the bladder, we developed a silk-elastinlike protein polymer (SELP) based system to enhance SAGE IDD. We evaluated in vitro release kinetics, rheological properties, impact on bladder function, pain response, and bladder inflammation and compared their effectiveness to other temperature-responsive polymers including Poloxamer 407 and poly(lactic-co-glycolic acid)-poly(ethylene glycol). SAGE delivered via SELP-enhanced intravesical delivery substantially improved SAGE accumulation in the urothelium, provided a sustained analgesic effect 24 h after administration, and reduced inflammation.
Collapse
Affiliation(s)
- M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Wanjian Jia
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Austin J Schults
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Kyle J Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Douglas Steinhauff
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bryant Green
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - B Zachary
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA; (b)Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Siam Oottamasathien
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Department of Surgery and Division of Pediatric Urology, Primary Children's Hospital, Salt Lake City, UT, 84113, USA; Department of Pediatric Surgery, Division of Pediatric Urology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
26
|
Hill WG, Zeidel ML, Bjorling DE, Vezina CM. Void spot assay: recommendations on the use of a simple micturition assay for mice. Am J Physiol Renal Physiol 2018; 315:F1422-F1429. [PMID: 30156116 DOI: 10.1152/ajprenal.00350.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigators have for decades used mouse voiding patterns as end points for studying behavioral biology. It is only recently that mouse voiding patterns were adopted for study of lower urinary tract physiology. The spontaneous void spot assay (VSA), a popular micturition assessment tool, involves placing a mouse in an enclosure lined by filter paper and quantifying the resulting urine spot pattern. The VSA has advantages of being inexpensive and noninvasive, but some investigators challenge its ability to distinguish lower urinary tract function from behavioral voiding. A consensus group of investigators who regularly use the VSA was established by the National Institutes of Health in 2015 to address the strengths and weaknesses of the assay, determine whether it can be standardized across laboratories, and determine whether it can be used as a surrogate for evaluating urinary function. Here we leverage experience from the consensus group to review the history of the VSA and its uses, summarize experiments to optimize assay design for urinary physiology assessment, and make best practice recommendations for performing the assay and analyzing its results.
Collapse
Affiliation(s)
- Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts
| | - Chad M Vezina
- University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
27
|
Wegner KA, Abler LL, Oakes SR, Mehta GS, Ritter KE, Hill WG, Zwaans BM, Lamb LE, Wang Z, Bjorling DE, Ricke WA, Macoska J, Marker PC, Southard-Smith EM, Eliceiri KW, Vezina CM. Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. Am J Physiol Renal Physiol 2018; 315:F1067-F1080. [PMID: 29972322 DOI: 10.1152/ajprenal.00245.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse urinary behavior is quantifiable and is used to pinpoint mechanisms of voiding dysfunction and evaluate potential human therapies. Approaches to evaluate mouse urinary function vary widely among laboratories, however, complicating cross-study comparisons. Here, we describe development and multi-institutional validation of a new tool for objective, consistent, and rapid analysis of mouse void spot assay (VSA) data. Void Whizzard is a freely available software plugin for FIJI (a distribution of ImageJ) that facilitates VSA image batch processing and data extraction. We describe its features, demonstrate them by evaluating how specific VSA method parameters influence voiding behavior, and establish Void Whizzard as an expedited method for VSA analysis. This study includes control and obese diabetic mice as models of urinary dysfunction to increase rigor and ensure relevance across distinct voiding patterns. In particular, we show that Void Whizzard is an effective tool for quantifying nonconcentric overlapping void spots, which commonly confound analyses. We also show that mouse genetics are consistently more influential than assay design parameters when it comes to VSA outcomes. None of the following procedural modifications to reduce overlapping spots masked these genetic-related differences: reduction of VSA testing duration, water access during the assay period, placement of a wire mesh cage bottom on top of or elevated over the filter paper, treatment of mesh with a hydrophobic spray, and size of wire mesh opening. The Void Whizzard software and rigorous validation of VSA methodological parameters described here advance the goal of standardizing mouse urinary phenotyping for comprehensive urinary phenome analyses.
Collapse
Affiliation(s)
- Kyle A Wegner
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Lisa L Abler
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Steven R Oakes
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Guneet S Mehta
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - K Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Bernadette M Zwaans
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Laura E Lamb
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Zunyi Wang
- Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Dale E Bjorling
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - William A Ricke
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jill Macoska
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Biology, University of Massachusetts Boston , Boston, Massachusetts
| | - Paul C Marker
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Division of Pharmaceutical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Kevin W Eliceiri
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Chad M Vezina
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
28
|
Sidler M, Aitken KJ, Forward S, Vitkin A, Bagli DJ. Non-invasive voiding assessment in conscious mice. Bladder (San Franc) 2018; 5:e33. [PMID: 32775475 PMCID: PMC7401987 DOI: 10.14440/bladder.2018.582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/15/2017] [Accepted: 01/22/2017] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To review available options of assessing murine bladder function and to evaluate a non-invasive technique suitable for long-term recording. METHODS We reviewed previously described methods to record rodent bladder function. We used modified metabolic cages to capture novel recording tracings of mouse micturition. We evaluated our method in a pilot study with female mice undergoing partial bladder outlet obstruction or sham operation, respectively; half of the partial obstruction and sham group received treatment with an S6K-inhibitor, targeting the mTOR pathway, which is known to be implicated in bladder response to obstruction. RESULTS Our non-invasive method using continuous urine weight recording reliably detected changes in murine bladder function resulting from partial bladder outlet obstruction or treatment with S6K-inhibitor. We found obstruction as well as treatment with S6K-inhibitor to correlate with a hyperactive voiding pattern. CONCLUSIONS While invasive methods to assess murine bladder function largely disturb bladder histology and intrinsically render post-cystometry gene expression analysis of questionable value, continuous urine weight recording is a reliable, inexpensive, and critically non-invasive method to assess murine bladder function, suitable for a long-term application.
Collapse
Affiliation(s)
- Martin Sidler
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada.,The Hospital for Sick Children, Pediatric Urology, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada.,Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK
| | - Karen J Aitken
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada
| | - Sarah Forward
- Department of Medical Biophysics, University of Toronto, Canada
| | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Canada
| | - Darius J Bagli
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada.,The Hospital for Sick Children, Pediatric Urology, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada
| |
Collapse
|