1
|
Agudelo J, Chen X, Mukherjee SD, Nguyen JK, Bruggeman LA, Miller AW. Cefazolin shifts the kidney microbiota to promote a lithogenic environment. Nat Commun 2024; 15:10509. [PMID: 39663374 PMCID: PMC11634958 DOI: 10.1038/s41467-024-54432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Clinical studies of the urinary tract microbiome, termed urobiome, suggest a direct, antibiotic-dependent, impact of the urobiome on kidney physiology. However, evidence for kidney bacteria comes from indirect sources or infected tissue. Further, it is unclear how antibiotics impact kidney bacteria. Here we show direct evidence for the presence of bacteria in the kidneys, with microniches in nephrons. In murine kidneys, administration of cefazolin, a commonly used perioperative antibiotic, led to a loss of uroprotective Lactobacillus spp. and proliferation of Enterobacteriaceae (which includes many known uropathogens). This effect was dependent on treatment duration, with recovery post treatment. Uroprotective L. crispatus and a strain of stone-associated E. coli differentially influenced calcium oxalate (CaOx) crystallization through the incorporation of CaOx inhibitors or promoters, respectively. In humans, microbial signatures were identified in the kidney, with unique niches between the glomeruli and tubules, established through RNA sequencing analysis and direct imaging of two independent populations. Collectively, findings support the hypothesis that the kidneys harbor a stable and antibiotic-responsive microbiota that can influence CaOx lithogenesis. The presence of unique, age-dependent microbial signatures in the glomeruli and tubuli carry implications for non-infectious kidney diseases.
Collapse
Affiliation(s)
- Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, USA.
| | - Xing Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jane K Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Leslie A Bruggeman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Aaron W Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Tang SM, Lu GZ, Lei XY, Yang XY, Tang GT, Yu J, Xie ZZ. Sodium thiosulfate: A donor or carrier signaling molecule for hydrogen sulfide? Nitric Oxide 2024; 149:67-74. [PMID: 38897561 DOI: 10.1016/j.niox.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.
Collapse
Affiliation(s)
- Si-Miao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Zhong Lu
- 922th Hospital of Hengyang, Hunan, 421001, China
| | - Xiao-Yong Lei
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Xiao-Yan Yang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Tao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhi-Zhong Xie
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Starcea IM, Miron I, Lupu A, Ioniuc I, Alecsa M, Azoicai A, Morariu ID, Munteanu V, Lupu VV, Mocanu A. Unraveling chronic kidney disease in children: a surprising manifestation of celiac disease. Front Pediatr 2024; 12:1384591. [PMID: 38720942 PMCID: PMC11076832 DOI: 10.3389/fped.2024.1384591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Celiac disease, firstly described in children, is a type of T-cell enteropathy that occurs in individuals genetically predisposed to gluten exposure. The estimated global prevalence of celiac disease is continuously increasing. Although, traditionally, celiac disease was diagnosed in children with failure to thrive and digestive issues, it is now recognized that may present with a wide range of symptoms beyond gastrointestinal ones. Celiac disease continues to pose significant challenges due to the continuous advancement of knowledge in understanding its pathophysiology, diagnosing the condition, managing its effects, and exploring potential therapeutic approaches. The prevalence of celiac disease is increased among individuals with chronic kidney disease, also. The most frequent associations are with diabetic nephropathy, IgA nephropathy and urolithiasis. A gut-kidney axis has been recognized to play a significant role in chronic kidney diseases. This literature review aims to review the chronic renal pathology associated with celiac disease, with emphasis on childhood.
Collapse
Affiliation(s)
- Iuliana Magdalena Starcea
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ingrith Miron
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Mirabela Alecsa
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alice Azoicai
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Valentin Munteanu
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
4
|
Li Y, Fu Q, Fang J, Xu Z, Zhang C, Tan L, Liao X, Wu Y. Analysis of ceRNA Network and Identification of Potential Treatment Target and Biomarkers of Endothelial Cell Injury in Sepsis. Genet Test Mol Biomarkers 2024; 28:133-143. [PMID: 38501698 DOI: 10.1089/gtmb.2023.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background: Sepsis is a complex clinical syndrome caused by a dysregulated host immune response to infection. This study aimed to identify a competing endogenous RNA (ceRNA) network that can greatly contribute to understanding the pathophysiological process of sepsis and determining sepsis biomarkers. Methods: The GSE100159, GSE65682, GSE167363, and GSE94717 datasets were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene coexpression network analysis was performed to find modules possibly involved in sepsis. A long noncoding RNA-microRNA-messenger RNA (lncRNA-miRNA-mRNA) network was constructed based on the findings. Single-cell analysis was performed. Human umbilical vein endothelial cells were treated with lipopolysaccharide (LPS) to create an in vitro model of sepsis for network verification. Reverse transcription-polymerase chain reaction, fluorescence in situ hybridization, and luciferase reporter genes were used to verify the bioinformatic analysis. Result: By integrating data from three GEO datasets, we successfully constructed a ceRNA network containing 18 lncRNAs, 7 miRNAs, and 94 mRNAs based on the ceRNA hypothesis. The lncRNA ZFAS1 was found to be highly expressed in LPS-stimulated endothelial cells and may thus play a role in endothelial cell injury. Univariate and multivariate Cox analyses showed that only SLC26A6 was an independent predictor of prognosis in sepsis. Overall, our findings indicated that the ZFAS1/hsa-miR-449c-5p/SLC26A6 ceRNA regulatory axis may play a role in the progression of sepsis. Conclusion: The sepsis ceRNA network, especially the ZFAS1/hsa-miR-449c-5p/SLC26A6 regulatory axis, is expected to reveal potential biomarkers and therapeutic targets for sepsis management.
Collapse
Affiliation(s)
- Yulin Li
- The Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qinghui Fu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Junjun Fang
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhipeng Xu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chunhu Zhang
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Longwei Tan
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Liao
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yao Wu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Li J, Huang S, Liu S, Liao X, Yan S, Liu Q. SLC26 family: a new insight for kidney stone disease. Front Physiol 2023; 14:1118342. [PMID: 37304821 PMCID: PMC10247987 DOI: 10.3389/fphys.2023.1118342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
The solute-linked carrier 26 (SLC26) protein family is comprised of multifunctional transporters of substrates that include oxalate, sulphate, and chloride. Disorders of oxalate homeostasis cause hyperoxalemia and hyperoxaluria, leading to urinary calcium oxalate precipitation and urolithogenesis. SLC26 proteins are aberrantly expressed during kidney stone formation, and consequently may present therapeutic targets. SLC26 protein inhibitors are in preclinical development. In this review, we integrate the findings of recent reports with clinical data to highlight the role of SLC26 proteins in oxalate metabolism during urolithogenesis, and discuss limitations of current studies and potential directions for future research.
Collapse
Affiliation(s)
- Jialin Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sigen Huang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shengyin Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinzhi Liao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sheng Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Quanliang Liu
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Shin S, Boadi EA, Bandyopadhyay BC. Ablation of TRPC3 compromises bicarbonate and phosphate transporter activity in mice proximal tubular cells. Clin Exp Pharmacol Physiol 2023; 50:247-255. [PMID: 36433745 PMCID: PMC10258833 DOI: 10.1111/1440-1681.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022]
Abstract
Proximal tubular (PT) cells reabsorb most calcium (Ca2+ ), phosphate (PO4 3- ), bicarbonate (HCO3 - ), and oxalate (C2 O4 2- ) ions. We have shown that mice lacking Transient Receptor Potential Canonical 3 (TRPC3-/- ) channel are moderately hypercalciuric with presentation of luminal calcium phosphate (CaP) crystals at the loop of Henle (LOH). However, other predisposing factors for such crystal deposition are unknown. Thus, we examined the distinctions in functional status of HCO3 - , PO4 3- , and C2 O4 2- transporters in PT cells of wild type (WT) and TRPC3-/- mice by whole-cell patch clamp techniques to assess their contribution in the development of LOH CaP crystals. Here we show the development of concentration dependent HCO3 - -induced currents in all PT cells, which was confirmed by using specific HCO3 - channel inhibitor, S0859. Interestingly, such activities were diminished in PT cells from TRPC3-/- mice, suggesting reduced HCO3 - transport in absence of TRPC3. While PO4 3- -induced currents were also concentration dependent in all PT cells (confirmed by PO4 3- channel inhibitor, PF-06869206), those activities were reduced in absence of TRPC3, suggesting lower PO4 3- reabsorption that can leave excess luminal PO4 3- . Next, we applied thiosulfate (O3 S2 2 - ) as a competitive inhibitor of the SLC26a6 transporter upon C2 O4 2- current activation and observed a reduced C2 O4 2- -induced conductance which was greater in TRPC3-/- PT cells. Together, these results suggest that the reduced activities of HCO3 - , PO4 3- , and C2 O4 2- transporters in moderately hypercalciuric (TRPC3-/- ) PT cells can create a predisposing condition for CaP and CaP tubular crystallization, enabling CaP crystal formation in LOH of TRPC3-/- mice.
Collapse
Affiliation(s)
- Samuel Shin
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington, Columbia, USA
| | - Eugenia Awuah Boadi
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington, Columbia, USA
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington, Columbia, USA
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, Columbia, USA
| |
Collapse
|
7
|
Astragalus membranaceus Extract Prevents Calcium Oxalate Crystallization and Extends Lifespan in a Drosophila Urolithiasis Model. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081250. [PMID: 36013429 PMCID: PMC9409928 DOI: 10.3390/life12081250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Approximately 1 in 20 people develops kidney stones at some point in their life. Although the surgical removal of stones is common, the recurrence rate remains high and it is therefore important to prevent the occurrence of kidney stones. We chose Astragalus membranaceus (AM), which is a traditional Chinese medicine, to study the prevention of urolithiasis using a Drosophila model based on our previous screening of traditional Chinese herbs. Wild-type Drosophila melanogaster Canton-S adult fruit flies were used in this study. Ethylene glycol (EG, 0.5%) was added to food as a lithogenic agent. The positive control agent (2% potassium citrate (K-citrate)) was then compared with AM (2, 8, and 16 mg/mL). After 21 days, the fruit flies were sacrificed under carbon dioxide narcotization, and the Malpighian tubules were dissected, removed, and processed for polarized light microscopy examination to observe calcium oxalate (CaOx) crystallization. Then, the ex vivo dissolution of crystals in the Malpighian tubules was compared between K-citrate and AM. Survival analysis of the EG, K-citrate, and AM groups was also performed. Both 2% K-citrate and AM (16 mg/mL) significantly inhibited EG-induced CaOx crystal formation. Mean lifespan was significantly reduced by the administration of EG, and the results were significantly reversed in the AM (8 and 16 mg/mL) groups. However, AM extract did not directly dissolve CaOx crystals in Drosophila Malpighian tubules ex vivo. In conclusion, AM extract decreased the ratio of CaOx crystallization in the Malpighian tubules and significantly ameliorated EG-induced reduction of lifespan. AM prevented CaOx crystal formation in the Drosophila model.
Collapse
|
8
|
Dow JAT, Simons M, Romero MF. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 2022; 18:417-434. [PMID: 35411063 DOI: 10.1038/s41581-022-00561-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues - the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.
Collapse
Affiliation(s)
- Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
9
|
Xu J, Liu Y, Li H, Tarashansky AJ, Kalicki CH, Hung RJ, Hu Y, Comjean A, Kolluru SS, Wang B, Quake SR, Luo L, McMahon AP, Dow JAT, Perrimon N. Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2022; 119:e2203179119. [PMID: 35696569 PMCID: PMC9231607 DOI: 10.1073/pnas.2203179119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023] Open
Abstract
Recent advances in single-cell sequencing provide a unique opportunity to gain novel insights into the diversity, lineage, and functions of cell types constituting a tissue/organ. Here, we performed a single-nucleus study of the adult Drosophila renal system, consisting of Malpighian tubules and nephrocytes, which shares similarities with the mammalian kidney. We identified 11 distinct clusters representing renal stem cells, stellate cells, regionally specific principal cells, garland nephrocyte cells, and pericardial nephrocytes. Characterization of the transcription factors specific to each cluster identified fruitless (fru) as playing a role in stem cell regeneration and Hepatocyte nuclear factor 4 (Hnf4) in regulating glycogen and triglyceride metabolism. In addition, we identified a number of genes, including Rho guanine nucleotide exchange factor at 64C (RhoGEF64c), Frequenin 2 (Frq2), Prip, and CG1093 that are involved in regulating the unusual star shape of stellate cells. Importantly, the single-nucleus dataset allows visualization of the expression at the organ level of genes involved in ion transport and junctional permeability, providing a systems-level view of the organization and physiological roles of the tubules. Finally, a cross-species analysis allowed us to match the fly kidney cell types to mouse kidney cell types and planarian protonephridia, knowledge that will help the generation of kidney disease models. Altogether, our study provides a comprehensive resource for studying the fly kidney.
Collapse
Affiliation(s)
- Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Hongjie Li
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Alexander J. Tarashansky
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Colin H. Kalicki
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Julian A. T. Dow
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115
- HHMI, Harvard University, Boston, MA 02115
| |
Collapse
|
10
|
Wang S, Ju Y, Gao L, Miao Y, Qiao H, Wang Y. The fruit fly kidney stone models and their application in drug development. Heliyon 2022; 8:e09232. [PMID: 35399385 PMCID: PMC8987614 DOI: 10.1016/j.heliyon.2022.e09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.
Collapse
Affiliation(s)
- Shiyao Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yingjie Ju
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Lujuan Gao
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Huanhuan Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yiwen Wang
- Academy of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, Tianjin, China
| |
Collapse
|
11
|
Correlation between Ion Composition of Oligomineral Water and Calcium Oxalate Crystal Formation. CRYSTALS 2021. [DOI: 10.3390/cryst11121507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ion content of drinking water might be associated with urinary stone formation, representing a keystone of conservative nephrolithiasis management. However, the effects of specific ions on calcium oxalate crystal formation and their mechanism of action are still highly controversial. We report an investigation of the effects of oligomineral waters with similar total salt amount but different ion composition on calcium oxalate (CaOx) precipitation in vitro, combining gravimetric and microscopic assays. The results suggest that the “collective” physicochemical properties of the aqueous medium, deriving from the ion combination rather than from a single ionic species, are of importance. Particularly, the ability of ions to strengthen/weaken the aqueous medium structure determines an increase/decrease in the interfacial energy, modulating the formation and growth of CaOx crystals.
Collapse
|
12
|
Reynolds CJ, Turin DR, Romero MF. Transporters and tubule crystals in the insect Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:82-89. [PMID: 34044181 PMCID: PMC8487917 DOI: 10.1016/j.cois.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 05/16/2023]
Abstract
The insect renal (Malpighian) tubules are functionally homologous to the mammalian kidney. Accumulating evidence indicates that renal tubule crystals form in a manner similar to mammalian kidney stones. In Drosophila melanogaster, crystals can be induced by diet, toxic substances, or genetic mutations that reflect circumstances influencing or eliciting kidney stones in mammals. Incredibly, many mammalian proteins have distinct homologs in Drosophila, and the function of most homologs have been demonstrated to recapitulate their mammalian and human counterparts. Here, we discuss the present literature establishing Drosophila as a nephrolithiasis model. This insect model may be used to investigate and understand the etiology of kidney stone diseases, especially with regard to calcium oxalate, calcium phosphate and xanthine or urate crystallization.
Collapse
Affiliation(s)
- Carmen J Reynolds
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel R Turin
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; University of Minnesota-Rochester, 111 South Broadway, Suite 300, Rochester, MN 55904, USA
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
Branco AJ, Vattamparambil AS, Landry GM. Lead (Pb 2+)-induced calcium oxalate crystallization ex vivo is ameliorated via inositol 1,4,5-trisphosphate receptor (InsP 3R) knockdown in a Drosophila melanogaster model of nephrolithiasis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103695. [PMID: 34171488 DOI: 10.1016/j.etap.2021.103695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Nephrolithiasis causes severe pain and is a highly recurrent pathophysiological state. Calcium-containing stones, specifically calcium oxalate (CaOx), is the most common type accounting for approximately 75 % of stone composition. Genetic predisposition, gender, geographic region, diet, and low fluid intake all contribute to disease pathogenesis. However, exposure to environmental pollutants as a contribution to kidney stone formation remains insufficiently studied. Lead (Pb2+) is of particular interest as epidemiological data indicate that low-level exposure (BLL = 0.48-3.85 μM) confers a 35 % increased risk of developing CaOx nephrolithiasis. However, mechanisms underlying this association have yet to be elucidated. Drosophila melanogaster provide a useful genetic model where major molecular pathophysiological pathways can be efficiently studied. Malpighian tubules (MT) were isolated from either Wild-Type or InsP3R knockdown flies and treated with oxalate (5 mM) ± Pb2+ (2μM) for 1 h. Following exposure, MTs were imaged and crystals quantified. CaOx crystal number and total area were significantly increased (˜5-fold) in Pb2+(pre-treatment) + oxalate-exposed MTs when compared to oxalate alone controls. However, CaOx crystal number and total crystal area in Pb2+ + oxalate-exposed InsP3R knockdown MTs were significantly decreased (˜3-fold) indicating the role for principal cell-specific InsP3R-mediated Ca2+ mobilization as a mechanism for Pb2+-induced increases in CaOx crystallization inset model of nephrolithiasis.
Collapse
Affiliation(s)
- Anthony J Branco
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States
| | - Anoushka S Vattamparambil
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States
| | - Greg M Landry
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, 02115, United States.
| |
Collapse
|
14
|
Lipovšek S, Kozel P, Leitinger G, Novak T. Malpighian tubules in harvestmen. PROTOPLASMA 2021; 258:1145-1153. [PMID: 33782782 DOI: 10.1007/s00709-021-01634-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
In arachnids, the Malpighian tubules (MTs), coxal glands and stercoral pockets are capable of collecting and removing excreta from the body. The presence of the MTs among Opiliones was evidenced for the first time in Amilenus aurantiacus in 2015. Individuals undergo a winter diapause subterranean habitats. Here, we provided the morphological and cytological description of the MTs and asked whether their structure and ultrastructure change during the winter diapause. We studied the changes using light and transmission electron microscopy. The MTs consisted of the ureter and a pair of long, lateral blind-ended tubules, forming a long loop in the opisthosoma, and a coiled, terminal ball in the prosoma. The MTs were uniform, composed of a single-cell type, a monolayer of cuboidal epithelial cells, and the basal lamina. The cell ultrastructure was quite comparable to those in other arthropods, except for very long infoldings of the basal membrane protruding close to the nucleus. Except for spherite exploitation, no changes were observed in the ultrastructure of the MT epithelial cells during overwintering. We suggest that the analogous MTs in A. aurantiacus, and the nephron anatomies, along with a single-cell-type MT epithelium, might be of advantage in modelled studies of the nephron.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000, Maribor, Slovenia.
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia.
- Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, University of Maribor, SI-2000, Maribor, Slovenia.
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.
| | - Peter Kozel
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia
- ZRC SAZU Karst Research Institute, Novi trg 2, SI-1000, Ljubljana, Slovenia
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000, Maribor, Slovenia
| |
Collapse
|
15
|
Wang J, Wang W, Wang H, Tuo B. Physiological and Pathological Functions of SLC26A6. Front Med (Lausanne) 2021; 7:618256. [PMID: 33553213 PMCID: PMC7859274 DOI: 10.3389/fmed.2020.618256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Solute Carrier Family 26 (SLC26) is a conserved anion transporter family with 10 members in human (SLC26A1-A11, A10 being a pseudogene). All SLC26 genes except for SLC26A5 (prestin) are versatile anion exchangers with notable ability to transport a variety of anions. SLC26A6 has the most extensive exchange functions in the SLC26 family and is widely expressed in various organs and tissues of mammals. SLC26A6 has some special properties that make it play a particularly important role in ion homeostasis and acid-base balance. In the past few years, the function of SLC26A6 in the diseases has received increasing attention. SLC26A6 not only participates in the development of intestinal and pancreatic diseases but also serves a significant role in mediating nephrolithiasis, fetal skeletal dysplasia and arrhythmia. This review aims to explore the role of SLC26A6 in physiology and pathophysiology of relative mammalian organs to guide in-depth studies about related diseases of human.
Collapse
Affiliation(s)
- Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenkang Wang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi City), Zunyi Medical University, Zunyi, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Chen SJ, Chiu KY, Chen HY, Lin WY, Chen YH, Chen WC. Animal Models for Studying Stone Disease. Diagnostics (Basel) 2020; 10:diagnostics10070490. [PMID: 32708380 PMCID: PMC7400259 DOI: 10.3390/diagnostics10070490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022] Open
Abstract
Animals have stone disease too. There are several animal models for the research of human stone disease. Rodents are the most frequently used for stone research, although they are not prone to forming crystals in the kidneys. Ethylene glycol (EG), sodium oxalate and l-hydroxyproline are common lithogenic agents. Dogs and pigs were also reported as a study animal for stone disease. However, the breeding costs and body size are too high. The most-used genetic study animal for stone disease was the mouse, but it was high-cost. Calcium oxalate (CaOx) crystals can also be light microscopically observed in the Malphigian tubules of Drosophila melanogaster, induced by adding EG to the food. Genetic studies of flies can be done by cross-breeding, and this has a lower cost than using mice. The fly model also has several advantages, including minimal breeding equipment, the fact that it is easier to reach larger numbers in a short time with flies, that crystals can be observed under microscopy, and that they allow genetic study. We suggest the fly will be an ideal animal model for stone research in the future.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (S.-J.C.); (K.-Y.C.)
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (S.-J.C.); (K.-Y.C.)
| | - Huey-Yi Chen
- Departments of Obstetrics and Gynecology, Medical Research, and Urology, China Medical University Hospital, Taichung 404332, Taiwan;
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Yung-Hsiang Chen
- Departments of Obstetrics and Gynecology, Medical Research, and Urology, China Medical University Hospital, Taichung 404332, Taiwan;
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413305, Taiwan
- Correspondence: (Y.-H.C.); (W.-C.C.)
| | - Wen-Chi Chen
- Departments of Obstetrics and Gynecology, Medical Research, and Urology, China Medical University Hospital, Taichung 404332, Taiwan;
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
- Correspondence: (Y.-H.C.); (W.-C.C.)
| |
Collapse
|
17
|
Denburg MR, Koepsell K, Lee JJ, Gerber J, Bittinger K, Tasian GE. Perturbations of the Gut Microbiome and Metabolome in Children with Calcium Oxalate Kidney Stone Disease. J Am Soc Nephrol 2020; 31:1358-1369. [PMID: 32381601 DOI: 10.1681/asn.2019101131] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/22/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The relationship between the composition and function of gut microbial communities and early-onset calcium oxalate kidney stone disease is unknown. METHODS We conducted a case-control study of 88 individuals aged 4-18 years, which included 44 individuals with kidney stones containing ≥50% calcium oxalate and 44 controls matched for age, sex, and race. Shotgun metagenomic sequencing and untargeted metabolomics were performed on stool samples. RESULTS Participants who were kidney stone formers had a significantly less diverse gut microbiome compared with controls. Among bacterial taxa with a prevalence >0.1%, 31 taxa were less abundant among individuals with nephrolithiasis. These included seven taxa that produce butyrate and three taxa that degrade oxalate. The lower abundance of these bacteria was reflected in decreased abundance of the gene encoding butyryl-coA dehydrogenase (P=0.02). The relative abundance of these bacteria was correlated with the levels of 18 fecal metabolites, and levels of these metabolites differed in individuals with kidney stones compared with controls. The oxalate-degrading bacterial taxa identified as decreased in those who were kidney stone formers were components of a larger abundance correlation network that included Eggerthella lenta and several Lactobacillus species. The microbial (α) diversity was associated with age of stone onset, first decreasing and then increasing with age. For the individuals who were stone formers, we found the lowest α diversity among individuals who first formed stones at age 9-14 years, whereas controls displayed no age-related differences in diversity. CONCLUSIONS Loss of gut bacteria, particularly loss of those that produce butyrate and degrade oxalate, associates with perturbations of the metabolome that may be upstream determinants of early-onset calcium oxalate kidney stone disease.
Collapse
Affiliation(s)
- Michelle R Denburg
- Division of Nephrology, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kristen Koepsell
- Division of Pediatric Urology, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jung-Jin Lee
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jeffrey Gerber
- Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Infectious Diseases, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Bittinger
- Division of Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gregory E Tasian
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania .,Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Pediatric Urology, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Studies of the genetic model organism, Drosophila melanogaster, have unraveled molecular pathways relevant to human physiology and disease. The Malpighian tubule, the Drosophila renal epithelium, is described here, including tools available to study transport; conserved transporters, channels, and the signaling pathways regulating them; and fly models of kidney stone disease. RECENT FINDINGS Tools to measure Malpighian tubule transport continue to advance, including use of a transgenic sensor to quantify intracellular pH and proton fluxes. A recent study generated an RNA-sequencing-based atlas of tissue-specific gene expression, with resulting insights into Malpighian tubule gene expression of transporters and channels. Advances have been made in understanding the molecular physiology of the With No Lysine kinase-Ste20-related proline/alanine rich kinase/oxidative stress response kinase cascade that regulates epithelial ion transport in flies and mammals. New studies in Drosophila kidney stone models have characterized zinc transporters and used Malpighian tubules to study the efficacy of a plant metabolite in decreasing stone burden. SUMMARY Study of the Drosophila Malpighian tubule affords opportunities to better characterize the molecular physiology of epithelial transport mechanisms relevant to mammalian renal physiology.
Collapse
|
19
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
20
|
Tubben A, Sotomayor CG, Post A, Minovic I, Frelink T, de Borst MH, Said MY, Douwes RM, van den Berg E, Rodrigo R, Berger SP, Navis GJ, Bakker SJL. Urinary Oxalate Excretion and Long-Term Outcomes in Kidney Transplant Recipients. J Clin Med 2019; 8:E2104. [PMID: 31810202 PMCID: PMC6947615 DOI: 10.3390/jcm8122104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Epidemiologic studies have linked urinary oxalate excretion to risk of chronic kidney disease (CKD) progression and end-stage renal disease. We aimed to investigate whether urinary oxalate, in stable kidney transplant recipients (KTR), is prospectively associated with risk of graft failure. In secondary analyses we evaluated the association with post-transplantation diabetes mellitus, all-cause mortality and specific causes of death. Oxalate excretion was measured in 24-h urine collection samples in a cohort of 683 KTR with a functioning allograft ≥1 year. Mean eGFR was 52 ± 20 mL/min/1.73 m2. Median (interquartile range) urinary oxalate excretion was 505 (347-732) µmol/24-h in women and 519 (396-736) µmol/24-h in men (p = 0.08), with 302 patients (44% of the study population) above normal limits (hyperoxaluria). A consistent and independent inverse association was found with all-cause mortality (HR 0.77, 95% CI 0.63-0.94, p = 0.01). Cause-specific survival analyses showed that this association was mainly driven by an inverse association with mortality due to infection (HR 0.56, 95% CI 0.38-0.83, p = 0.004), which remained materially unchanged after performing sensitivity analyses. Twenty-four-hour urinary oxalate excretion did not associate with risk of graft failure, post-transplant diabetes mellitus, cardiovascular mortality, mortality due to malignancies or mortality due to miscellaneous causes. In conclusion, in KTR, 24-h urinary oxalate excretion is elevated in 44% of KTR and inversely associated with mortality due to infectious causes.
Collapse
Affiliation(s)
- Alwin Tubben
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Camilo G. Sotomayor
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Adrian Post
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Isidor Minovic
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands;
| | - Timoer Frelink
- Metrohm Applikon B.V., 3125 AE Schiedam, The Netherlands;
| | - Martin H. de Borst
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - M. Yusof Said
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Rianne M. Douwes
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Else van den Berg
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile;
| | - Stefan P. Berger
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Gerjan J. Navis
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands; (C.G.S.); (A.P.); (M.H.d.B.); (M.Y.S.); (R.M.D.); (E.v.d.B.); (S.P.B.); (G.J.N.); (S.J.L.B.)
| |
Collapse
|
21
|
Landry GM, Furrow E, Holmes HL, Hirata T, Kato A, Williams P, Strohmaier K, Gallo CJR, Chang M, Pandey MK, Jiang H, Bansal A, Franz MC, Montalbetti N, Alexander MP, Cabrero P, Dow JAT, DeGrado TR, Romero MF. Cloning, function, and localization of human, canine, and Drosophila ZIP10 (SLC39A10), a Zn 2+ transporter. Am J Physiol Renal Physiol 2018; 316:F263-F273. [PMID: 30520657 DOI: 10.1152/ajprenal.00573.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zinc (Zn2+) is the second most abundant trace element, but is considered a micronutrient, as it is a cofactor for many enzymes and transcription factors. Whereas Zn2+ deficiency can cause cognitive immune or metabolic dysfunction and infertility, excess Zn2+ is nephrotoxic. As for other ions and solutes, Zn2+ is moved into and out of cells by specific membrane transporters: ZnT, Zip, and NRAMP/DMT proteins. ZIP10 is reported to be localized at the apical membrane of renal proximal tubules in rats, where it is believed to play a role in Zn2+ import. Renal regulation of Zn2+ is of particular interest in light of growing evidence that Zn2+ may play a role in kidney stone formation. The objective of this study was to show that ZIP10 homologs transport Zn2+, as well as ZIP10, kidney localization across species. We cloned ZIP10 from dog, human, and Drosophila ( CG10006), tested clones for Zn2+ uptake in Xenopus oocytes and localized the protein in renal structures. CG10006, rather than foi (fear-of-intimacy, CG6817) is the primary ZIP10 homolog found in Drosophila Malpighian tubules. The ZIP10 antibody recognizes recombinant dog, human, and Drosophila ZIP10 proteins. Immunohistochemistry reveals that ZIP10 in higher mammals is found not only in the proximal tubule, but also in the collecting duct system. These ZIP10 proteins show Zn2+ transport. Together, these studies reveal ZIP10 kidney localization, a role in renal Zn2+ transport, and indicates that CG10006 is a Drosophila homolog of ZIP10.
Collapse
Affiliation(s)
- Greg M Landry
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Eva Furrow
- Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - Heather L Holmes
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Taku Hirata
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Akira Kato
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Center for Biological Resources and Informatics and Department of Biological Sciences, Tokyo Institute of Technology , Yokohama , Japan
| | - Paige Williams
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Käri Strohmaier
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Chris J R Gallo
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Minhwang Chang
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Mukesh K Pandey
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Huailei Jiang
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Aditya Bansal
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Marie-Christine Franz
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Nicolas Montalbetti
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Mariam P Alexander
- Laboratory of Medicine and Pathology, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Pablo Cabrero
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Timothy R DeGrado
- Nuclear Medicine, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,Nephrology and Hypertension, Mayo Clinic College of Medicine and Science , Rochester, Minnesota.,O'Brien Urology Research Center, Mayo Clinic College of Medicine and Science , Rochester, Minnesota
| |
Collapse
|
22
|
Jiang H, Pokhrel G, Chen Y, Wang T, Yin C, Liu J, Wang S, Liu Z. High expression of SLC26A6 in the kidney may contribute to renal calcification via an SLC26A6-dependent mechanism. PeerJ 2018; 6:e5192. [PMID: 30002986 PMCID: PMC6034601 DOI: 10.7717/peerj.5192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
Background Solute-linked carrier 26 gene family 6 (SLC26A6), which is mainly expressed in intestines and kidneys, is a multifunctional anion transporter crucial in the transport of oxalate anions. This study aimed to investigate the role of kidney SLC26A6 in urolithiasis. Methods Patients were divided into two groups: stone formers and nonstone formers. Samples were collected from patients following nephrectomy. Lentivirus with Slc26a6 (lentivirus-Slc26a6) sequence and lentivirus with siRNA-Slc26a6 (lentivirus-siRNA-Slc26a6) sequence were transfected into rats’ kidneys respectively and Slc26a6 expression was detected using Western blot and immunohistochemical analyses. After administering ethylene glycol, oxalate concentration and prevalence of stone formation between the transgenic and control groups were measured using 24-h urine analysis and Von Kossa staining, respectively. Results Immunohistochemical and Western blot analyses indicated that stone formers had a significantly higher level of expression of SLC26A6 in the kidney compared with the control group. After lentivirus infection, the urinary oxalate concentration and rate of stone formation in lentivirus-Slc26a6-tranfected rats increased remarkably, while lentivirus-siRNA-Slc26a6-transfected rats showed few crystals. Conclusion The results showed that high expression levels of renal SLC26A6 may account for kidney stone formation. Downregulating the expression of SLC26A6 in the kidney may be a potential therapeutic target to prevent or treat urolithiasis.
Collapse
Affiliation(s)
- Hongyang Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaurab Pokhrel
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinwei Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunping Yin
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Abd El-Salam M, Bastos JK, Han JJ, Previdi D, Coelho EB, Donate PM, Romero MF, Lieske J. The Synthesized Plant Metabolite 3,4,5-Tri-O-Galloylquinic Acid Methyl Ester Inhibits Calcium Oxalate Crystal Growth in a Drosophila Model, Downregulates Renal Cell Surface Annexin A1 Expression, and Decreases Crystal Adhesion to Cells. J Med Chem 2018; 61:1609-1621. [PMID: 29406740 DOI: 10.1021/acs.jmedchem.7b01566] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohamed Abd El-Salam
- Department
of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Department
of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
- Department
of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - Jairo Kenupp Bastos
- Department
of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Jing Jing Han
- Department
of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - Daniel Previdi
- Department
of Chemistry, Faculty of Philosophy, Arts and Sciences, University of São Paulo, Ribeirão Preto, São
Paulo 14040-901, Brazil
| | - Eduardo B. Coelho
- Department
of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São
Paulo 14040-900, Brazil
| | - Paulo M. Donate
- Department
of Chemistry, Faculty of Philosophy, Arts and Sciences, University of São Paulo, Ribeirão Preto, São
Paulo 14040-901, Brazil
| | - Michael F. Romero
- Department
of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| | - John Lieske
- Department
of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, United States
| |
Collapse
|
24
|
Gautam NK, Verma P, Tapadia MG. Drosophila Malpighian Tubules: A Model for Understanding Kidney Development, Function, and Disease. Results Probl Cell Differ 2017; 60:3-25. [PMID: 28409340 DOI: 10.1007/978-3-319-51436-9_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Malpighian tubules of insects are structurally simple but functionally important organs, and their integrity is important for the normal excretory process. They are functional analogs of human kidneys which are important physiological organs as they maintain water and electrolyte balance in the blood and simultaneously help the body to get rid of waste and toxic products after various metabolic activities. In addition, it receives early indications of insults to the body such as immune challenge and other toxic components and is essential for sustaining life. According to National Vital Statistics Reports 2016, renal dysfunction has been ranked as the ninth most abundant cause of death in the USA. This chapter provides detailed descriptions of Drosophila Malpighian tubule development, physiology, immune function and also presents evidences that Malpighian tubules can be used as a model organ system to address the fundamental questions in developmental and functional disorders of the kidney.
Collapse
Affiliation(s)
- Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Puja Verma
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Madhu G Tapadia
- Department of Zoology, Cytogenetics Laboratory, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
25
|
Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases. Dis Model Mech 2016; 9:235-44. [PMID: 26935102 PMCID: PMC4833332 DOI: 10.1242/dmm.023762] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many of the internal organ systems of Drosophila melanogaster are functionally analogous to those in vertebrates, including humans. Although humans and flies differ greatly in terms of their gross morphological and cellular features, many of the molecular mechanisms that govern development and drive cellular and physiological processes are conserved between both organisms. The morphological differences are deceiving and have led researchers to undervalue the study of invertebrate organs in unraveling pathogenic mechanisms of diseases. In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases. We discuss assays that have been developed in flies to study the function of specific genes in the central nervous system, heart, liver and kidney, and provide examples of the use of these assays to address questions related to human diseases. These assays provide us with simple yet powerful tools to study the pathogenic mechanisms associated with human disease-causing genes. Editors' choice - Drosophila Collection: In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases.
Collapse
Affiliation(s)
- Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
26
|
Sayer JA. Progress in Understanding the Genetics of Calcium-Containing Nephrolithiasis. J Am Soc Nephrol 2016; 28:748-759. [PMID: 27932479 DOI: 10.1681/asn.2016050576] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Renal stone disease is a frequent condition, causing a huge burden on health care systems globally. Calcium-based calculi account for around 75% of renal stone disease and the incidence of these calculi is increasing, suggesting environmental and dietary factors are acting upon a preexisting genetic background. The familial nature and significant heritability of stone disease is known, and recent genetic studies have successfully identified genes that may be involved in renal stone formation. The detection of monogenic causes of renal stone disease has been made more feasible by the use of high-throughput sequencing technologies and has also facilitated the discovery of novel monogenic causes of stone disease. However, the majority of calcium stone formers remain of undetermined genotype. Genome-wide association studies and candidate gene studies implicate a series of genes involved in renal tubular handling of lithogenic substrates, such as calcium, oxalate, and phosphate, and of inhibitors of crystallization, such as citrate and magnesium. Additionally, expression profiling of renal tissues from stone formers provides a novel way to explore disease pathways. New animal models to explore these recently-identified mechanisms and therapeutic interventions are being tested, which hopefully will provide translational insights to stop the growing incidence of nephrolithiasis.
Collapse
Affiliation(s)
- John A Sayer
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
27
|
Abstract
WNK (With-No-Lysine (K)) kinases are serine-threonine kinases characterized by an atypical placement of a catalytic lysine within the kinase domain. Mutations in human WNK1 or WNK4 cause an autosomal dominant syndrome of hypertension and hyperkalemia, reflecting the fact that WNK kinases are critical regulators of renal ion transport processes. Here, the role of WNKs in the regulation of ion transport processes in vertebrate and invertebrate renal function, cellular and organismal osmoregulation, and cell migration and cerebral edema will be reviewed, along with emerging literature demonstrating roles for WNKs in cardiovascular and neural development, Wnt signaling, and cancer. Conserved roles for these kinases across phyla are emphasized.
Collapse
Affiliation(s)
| | - Andreas Jenny
- Albert Einstein College of Medicine, New York, NY, United States.
| |
Collapse
|
28
|
Reddy TG, Knight J, Holmes RP, Harvey LM, Mitchem ALE, Wilcox CM, Monkemuller KE, Assimos DG. Oxalate Concentrations in Human Gastrointestinal Fluid. J Endourol 2016; 30 Suppl 1:S8-11. [PMID: 26943671 DOI: 10.1089/end.2015.0838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Urinary oxalate excretion is a risk factor for nephrolithiasis and is a result of endogenous metabolism and gastrointestinal processes. Gastrointestinal absorption of oxalate has been well demonstrated but to our knowledge evidence for secretion of oxalate is absent in humans. The objective of this study was to measure the amount and conformation of oxalate in the stomach and small intestine of adult subjects undergoing gastrointestinal endoscopy. MATERIALS AND METHODS Eleven adults participated in this study. Gastrointestinal fluid was collected from the stomach and small intestine during endoscopy. A determination of the soluble and insoluble components of oxalate was made by centrifugation of the sample and subsequent acidification of the resultant pellet and supernatant. Samples were processed and the amount of oxalate was measured by ion chromatography, the limit of which is 1.6 μM. RESULTS The majority of small intestinal samples contained some degree of oxalate. This is in contrast to the stomach where minimal oxalate was detected. There was a wide range of oxalate concentrations and a greater degree of insoluble oxalate in small intestinal samples. CONCLUSIONS Our results suggest that some degree of oxalate secretion in the small intestine may occur in the fasted state while this is less likely in the stomach. Further studies are warranted to provide definitive evidence of gastrointestinal secretion of oxalate.
Collapse
Affiliation(s)
- Thanmaya G Reddy
- 1 Department of Urology, University of Alabama at Birmingham School of Medicine , Birmingham, Alabama
| | - John Knight
- 1 Department of Urology, University of Alabama at Birmingham School of Medicine , Birmingham, Alabama
| | - Ross P Holmes
- 1 Department of Urology, University of Alabama at Birmingham School of Medicine , Birmingham, Alabama
| | - Lisa M Harvey
- 1 Department of Urology, University of Alabama at Birmingham School of Medicine , Birmingham, Alabama
| | - April L E Mitchem
- 1 Department of Urology, University of Alabama at Birmingham School of Medicine , Birmingham, Alabama
| | - Charles M Wilcox
- 2 Division of Gastroenterology and Hepatology, University of Alabama at Birmingham School of Medicine , Birmingham, Alabama
| | - Klaus E Monkemuller
- 2 Division of Gastroenterology and Hepatology, University of Alabama at Birmingham School of Medicine , Birmingham, Alabama
| | - Dean G Assimos
- 1 Department of Urology, University of Alabama at Birmingham School of Medicine , Birmingham, Alabama
| |
Collapse
|