1
|
Drugge ED, Farhan K, Zhao H, Abramov R, Graham LA, Stambler N, Hao S, Ferreri NR. Sex and race differences in urinary Tumor Necrosis Factor-α (TNF-α) levels: Secondary analysis of the DASH-sodium trial. J Hum Hypertens 2023; 37:701-708. [PMID: 36008598 DOI: 10.1038/s41371-022-00748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Previous work in mouse models shows that urinary TNF-α levels become elevated when dietary salt (NaCl) intake increases. To examine if this relationship exists in humans, we conducted a secondary analysis of the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial to determine levels of urinary TNF-α in 367 subjects categorized by race, sex, and blood pressure. The DASH-Sodium trial is a multicenter feeding trial in which subjects were randomly assigned to either the DASH or control diet, and high, medium, and low sodium in random order. Multivariable linear regression was used to model baseline TNF-α and a mixed model was used to model TNF-α as a function of dietary intervention. At baseline, with all subjects on a "typical American diet", urinary TNF-α levels were lowest in Black, p = 0.002 and male subjects, p < 0.001. After randomization to either the DASH or control diet, with increasing levels of sodium, urinary TNF-α levels increased only in subjects on the control diet, p < 0.05. As in the baseline analysis, TNF-α levels were highest in White females, then White males, Black females and lowest in Black males. The results indicate that urinary TNF-α levels in DASH-Sodium subjects are regulated by NaCl intake, modulated by the DASH diet, and influenced by both race and sex. The inherent differences between subgroups support studies in mice showing that increases in renal TNF-α minimize the extent salt-dependent activation of NKCC2.
Collapse
Affiliation(s)
- Elizabeth D Drugge
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Khalid Farhan
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Hong Zhao
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Rozalia Abramov
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Lesley A Graham
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Nancy Stambler
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Shoujin Hao
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Nicholas R Ferreri
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
2
|
Edwards A, Kurtcuoglu V. Renal blood flow and oxygenation. Pflugers Arch 2022; 474:759-770. [PMID: 35438336 PMCID: PMC9338895 DOI: 10.1007/s00424-022-02690-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Our kidneys receive about one-fifth of the cardiac output at rest and have a low oxygen extraction ratio, but may sustain, under some conditions, hypoxic injuries that might lead to chronic kidney disease. This is due to large regional variations in renal blood flow and oxygenation, which are the prerequisite for some and the consequence of other kidney functions. The concurrent operation of these functions is reliant on a multitude of neuro-hormonal signaling cascades and feedback loops that also include the regulation of renal blood flow and tissue oxygenation. Starting with open questions on regulatory processes and disease mechanisms, we review herein the literature on renal blood flow and oxygenation. We assess the current understanding of renal blood flow regulation, reasons for disparities in oxygen delivery and consumption, and the consequences of disbalance between O2 delivery, consumption, and removal. We further consider methods for measuring and computing blood velocity, flow rate, oxygen partial pressure, and related parameters and point out how limitations of these methods constitute important hurdles in this area of research. We conclude that to obtain an integrated understanding of the relation between renal function and renal blood flow and oxygenation, combined experimental and computational modeling studies will be needed.
Collapse
Affiliation(s)
- Aurelie Edwards
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- National Center of Competence in Research, Kidney.CH, University of Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Dibo P, Marañón RO, Chandrashekar K, Mazzuferi F, Silva GB, Juncos LA, Juncos LI. Angiotensin-(1-7) inhibits sodium transport via Mas receptor by increasing nitric oxide production in thick ascending limb. Physiol Rep 2019; 7:e14015. [PMID: 30839176 PMCID: PMC6401662 DOI: 10.14814/phy2.14015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
Sodium transport in the thick ascending loop of Henle (TAL) is tightly regulated by numerous factors, especially angiotensin II (Ang II), a key end-product of the renin-angiotensin system (RAS). However, an alternative end-product of the RAS, angiotensin-(1-7) [Ang-(1-7)], may counter some of the Ang II actions. Indeed, it causes vasodilation and promotes natriuresis through its effects in the proximal and distal tubule. However, its effects on the TAL are unknown. Because the TAL expresses the Mas receptor, an Ang-(1-7) ligand, which in turn may increase NO and inhibit Na+ transport, we hypothesized that Ang-(1-7) inhibits Na transport in the TAL, via a Mas receptor/NO-dependent mechanism. We tested this by measuring transport-dependent oxygen consumption (VO2 ) in TAL suspensions. Administering Ang-(1-7) decreased VO2 ; an effect prevented by dimethyl amiloride and furosemide, signifying that Ang-(1-7) inhibits transport-dependent VO2 in TAL. Ang-(1-7) also increased NO levels, known inhibitors of Na+ transport in the TAL. The effects of Ang-(1-7) on VO2 , as well as on NO levels, were ameliorated by the Mas receptor antagonist, D-Ala, in effect suggesting that Ang-(1-7) may inhibit transport-dependent VO2 in TAL via Mas receptor-dependent activation of the NO pathway. Indeed, blocking NO synthesis with L-NAME prevented the inhibitory actions of Ang-(1-7) on VO2 . Our data suggest that Ang-(1-7) may modulate TAL Na+ transport via Mas receptor-dependent increases in NO leading to the inhibition of transport activity.
Collapse
Affiliation(s)
- Paula Dibo
- Department of Basic ResearchJ. Robert Cade FoundationCordobaArgentina
| | - Rodrigo O. Marañón
- Department of Medicine/NephrologyUniversity of Mississippi Medical CenterJacksonMississippi
- Department of Cell and Molecular BiologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Kiran Chandrashekar
- Department of Medicine/NephrologyCentral Arkansas Veterans Healthcare SystemUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | | | - Guillermo B. Silva
- Department of Basic ResearchJ. Robert Cade FoundationCordobaArgentina
- Gabinete de Tecnología Médica (GATEME‐UNSJ)Universidad Nacional de San Juan ‐ Consejo Nacional de Investigaciones Científicas y Técnicas – CONICETSan JuanArgentina
| | - Luis A. Juncos
- Department of Medicine/NephrologyCentral Arkansas Veterans Healthcare SystemUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Luis I. Juncos
- Department of Basic ResearchJ. Robert Cade FoundationCordobaArgentina
| |
Collapse
|
4
|
Zhang Z, Payne K, Pallone TL. Adaptive responses of rat descending vasa recta to ischemia. Am J Physiol Renal Physiol 2018; 314:F373-F380. [PMID: 28814437 DOI: 10.1152/ajprenal.00062.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
tested whether rat descending vasa recta (DVR) undergo regulatory adaptations after the kidney is exposed to ischemia. Left kidneys (LK) were subjected to 30-min renal artery cross clamp. After 48 h, the postischemic LK and contralateral right kidney (RK) were harvested for study. When compared with DVR isolated from either sham-operated LK or the contralateral RK, postischemic LK DVR markedly increased their NO generation. The selective inducible NOS (iNOS) inhibitor 1400W blocked the NO response. Immunoblots from outer medullary homogenates showed a parallel 2.6-fold increase in iNOS expression ( P = 0.01). Microperfused postischemic LK DVR exposed to angiotensin II (ANG II, 10 nM), constricted less than those from the contralateral RK, and constricted more when exposed to 1400W (10 µM). Resting membrane potentials of pericytes from postischemic LK DVR pericytes were hyperpolarized relative to contralateral RK pericytes (62.0 ± 1.6 vs. 51.8 ± 2.2 mV, respectively, P < 0.05) or those from sham-operated LK (54.9 ± 2.1 mV, P < 0.05). Blockade of NO generation with 1400W did not repolarize postischemic pericytes (62.5 ± 1.4 vs. 61.1 ± 3.4 mV); however, control pericytes were hyperpolarized by exposure to NO donation from S-nitroso- N-acetyl- dl-penicillamine (51.5 ± 2.9 to 62.1 ± 1.4 mV, P < 0.05). We conclude that postischemic adaptations intrinsic to the DVR wall occur after ischemia. A rise in 1400W sensitive NO generation and iNOS expression occurs that is associated with diminished contractile responses to ANG II. Pericyte hyperpolarization occurs that is not explained by the rise in ambient NO generation within the DVR wall.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kristie Payne
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Thomas L Pallone
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Administration Medical Center , Baltimore, Maryland
| |
Collapse
|
5
|
Effects of Nitric Oxide on Renal Proximal Tubular Na + Transport. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6871081. [PMID: 29181400 PMCID: PMC5664255 DOI: 10.1155/2017/6871081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) has a wide variety of physiological functions in the kidney. Besides the regulatory effects in intrarenal haemodynamics and glomerular microcirculation, in vivo studies reported the diuretic and natriuretic effects of NO. However, opposite results showing the stimulatory effect of NO on Na+ reabsorption in the proximal tubule led to an intense debate on its physiological roles. Animal studies have showed the biphasic effect of angiotensin II (Ang II) and the overall inhibitory effect of NO on the activity of proximal tubular Na+ transporters, the apical Na+/H+ exchanger isoform 3, basolateral Na+/K+ ATPase, and the Na+/HCO3− cotransporter. However, whether these effects could be reproduced in humans remained unclear. Notably, our recent functional analysis of isolated proximal tubules demonstrated that Ang II dose-dependently stimulated human proximal tubular Na+ transport through the NO/guanosine 3′,5′-cyclic monophosphate (cGMP) pathway, confirming the human-specific regulation of proximal tubular transport via NO and Ang II. Of particular importance for this newly identified pathway is its possibility of being a human-specific therapeutic target for hypertension. In this review, we focus on NO-mediated regulation of proximal tubular Na+ transport, with emphasis on the interaction with individual Na+ transporters and the crosstalk with Ang II signalling.
Collapse
|
6
|
Kouyoumdzian NM, Mikusic NR, Cao G, Choi MR, Penna SD, Fernández BE, Toblli JE, Rosón MI. Adverse effects of tempol on hidrosaline balance in rats with acute sodium overload. Biotech Histochem 2017; 91:510-521. [PMID: 27849390 DOI: 10.1080/10520295.2016.1249029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We studied the effects of tempol, an oxygen radical scavenger, on hydrosaline balance in rats with acute sodium overload. Male rats with free access to water were injected with isotonic (control group) or hypertonic saline solution (0.80 mol/l NaCl) either alone (Na group) or with tempol (Na-T group). Hydrosaline balance was determined during a 90 min experimental period. Protein expressions of aquaporin 1 (AQP1), aquaporin 2 (AQP2), angiotensin II (Ang II) and endothelial nitric oxide synthase (eNOS) were measured in renal tissue. Water intake, creatinine clearance, diuresis and natriuresis increased in the Na group. Under conditions of sodium overload, tempol increased plasma sodium and protein levels and increased diuresis, natriuresis and sodium excretion. Tempol also decreased water intake without affecting creatinine clearance. AQP1 and eNOS were increased and Ang II decreased in the renal cortex of the Na group, whereas AQP2 was increased in the renal medulla. Nonglycosylated AQP1 and eNOS were increased further in the renal cortex of the Na-T group, whereas AQP2 was decreased in the renal medulla and was localized mainly in the cell membrane. Moreover, p47-phox immunostaining was increased in the hypothalamus of Na group, and this increase was prevented by tempol. Our findings suggest that tempol causes hypernatremia after acute sodium overload by inhibiting the thirst mechanism and facilitating diuresis, despite increasing renal eNOS expression and natriuresis.
Collapse
Affiliation(s)
- N M Kouyoumdzian
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - Nl Rukavina Mikusic
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - G Cao
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - M R Choi
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - Sl Della Penna
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - B E Fernández
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - J E Toblli
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - M I Rosón
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
7
|
Gerber L, Madsen SS, Jensen FB. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2016; 204:1-8. [PMID: 27838356 DOI: 10.1016/j.cbpa.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na+/K+-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects. Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle intestine, Nos2 expression was up-regulated by cortisol injection in FW but unchanged in SW fish. Nos1 expression was up-regulated by cortisol injection in FW kidney and down-regulated in SW kidney, whereas it was unaffected in gill and middle intestine of FW and SW fish. Our data provide the first evidence that cortisol may influence NO production in fish by regulating Nos expression. Indeed, the down-regulation of Nos2 expression by cortisol in the gill may prevent the inhibitory effect of NO on NKA activity thereby furthering the stimulatory effect of cortisol on ion-transport.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
8
|
Mao X, Li F, Yang N, Qi C, Zhang SQ, Zhang Z, Wu H. Glomeruli or interstitium targeted by inter-renal injections supplemented by electroporation: Still a useful tool in renal research. J Gene Med 2016; 18:343-352. [PMID: 27794198 DOI: 10.1002/jgm.2931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Studies concerning proteins are always a crucial part of renal research. As a result of current technologies, scientists have mastered several techniques for generating genetically modified animals. However, in most cases, accessing these animals is still time-consuming and often expensive. This makes the alteration of protein expression by in vivo plasmid transfection an easily-accessible alternative. However, there is still no comprehensive study describing where plasmids would be expressed when they are injected into the kidneys. METHODS We injected pEGFP-N1 into rats via intra-/inter-renal channels and detected green fluorescent protein (GFP) by immunohistochemistry and immunofluorescence to localize plasmid expression. RESULTS Seven days post-injection, we found that GFP was expressed in the glomeruli when pEGFP-N1 was injected via the renal artery or vein enhanced by electroporation and in the interstitium following injection via the ureter. Other channels, including intraperitoneal, subcapsule and parenchymal injection, only led to scattered expression within the kidneys. CONCLUSIONS The present study provides evidence that plasmid transfection via the renal vessels is suitable for glomeruli research and that transfection via the ureter is appropriate for studies regarding interstitium lesions. Additionally, we provide evidence that plasmid transfection on live animals is still an applicable and useful tool, as well as being cost-effective and facile.
Collapse
Affiliation(s)
- Xing Mao
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Fang Li
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Nianji Yang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Chenyang Qi
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Steven Qian Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhigang Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China.,Shanghai Institute for Kidneys and Dialysis, Shanghai, PR China.,Key Laboratory of Molecular Medicine, Chinese Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Huijuan Wu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China.,Shanghai Institute for Kidneys and Dialysis, Shanghai, PR China.,Key Laboratory of Molecular Medicine, Chinese Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
9
|
Gerber L, Jensen FB, Madsen SS, Marshall WS. Nitric oxide inhibition of NaCl secretion in the opercular epithelium of seawater-acclimated killifish, Fundulus heteroclitus. ACTA ACUST UNITED AC 2016; 219:3455-3464. [PMID: 27591310 DOI: 10.1242/jeb.145045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) modulates epithelial ion transport pathways in mammals, but this remains largely unexamined in fish. We explored the involvement of NO in controlling NaCl secretion by the opercular epithelium of seawater killifish using an Ussing chamber approach. Pharmacological agents were used to explore the mechanism(s) triggering NO action. A modified Biotin-switch technique was used to investigate S-nitrosation of proteins. Stimulation of endogenous NO production via the nitric oxide synthase (NOS) substrate l-arginine (2.0 mmol l-1), and addition of exogenous NO via the NO donor SNAP (10-6 to 10-4 mol l-1), decreased the epithelial short-circuit current (Isc). Inhibition of endogenous NO production by the NOS inhibitor l-NAME (10-4 mol l-1) increased Isc and revealed a tonic control of ion transport by NO in unstimulated opercular epithelia. The NO scavenger PTIO (10-5 mol l-1) supressed the NO-mediated decrease in Isc, and confirmed that the effect observed was elicited by release of NO. The effect of SNAP on Isc was abolished by inhibitors of the soluble guanylyl cyclase (sGC), ODQ (10-6 mol l-1) and Methylene Blue (10-4 mol l-1), revealing NO signalling via the sGC/cGMP pathway. Incubation of opercular epithelium and gill tissues with SNAP (10-4 mol l-1) led to S-nitrosation of proteins, including Na+/K+-ATPase. Blocking of NOS with l-NAME (10-6 mol l-1) or scavenging of NO with PTIO during hypotonic shock suggested an involvement of NO in the hypotonic-mediated decrease in Isc Yohimbine (10-4 mol l-1), an inhibitor of α2-adrenoceptors, did not block NO effects, suggesting that NO is not involved in the α-adrenergic control of NaCl secretion.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - William S Marshall
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| |
Collapse
|
10
|
Stec DE, Juncos LA, Granger JP. Renal intramedullary infusion of tempol normalizes the blood pressure response to intrarenal blockade of heme oxygenase-1 in angiotensin II-dependent hypertension. ACTA ACUST UNITED AC 2016; 10:346-51. [PMID: 26922123 DOI: 10.1016/j.jash.2016.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 12/28/2022]
Abstract
Previous studies have demonstrated that intramedullary inhibition of heme oxygenase-1 (HO-1) increases the blood pressure and superoxide production response to angiotensin II (Ang II) infusion. The present study was designed to test the hypothesis that increased renal medullary superoxide production contributes to the increase in blood pressure in response to blockade of renal medullary HO-1 in Ang II-induced hypertension. Male C57BL/6J mice (16-24 weeks of age) were implanted with chronic intrarenal medullary interstitial (IRMI) and infused with: saline, tempol (6 mM), the HO-1 inhibitor QC-13 (25 μM), or a combination of tempol + QC-13. Tempol treatment was started 2 days before infusion of QC-13. After 2 days, Ang II was infused subcutaneously at a rate of 1 μg/kg/min for 10 days. Blood pressures on days 7-10 of Ang II infusion alone averaged 150 ± 3 mm Hg in mice receiving IRMI infusion of saline. IRMI infusion of QC-13 increased blood pressure in Ang II-treated mice to 164 ± 2 (P < .05). Renal medullary superoxide production in Ang II-treated mice was significantly increased by infusion of QC-13 alone. Ang II-treated mice receiving IRMI infusion of tempol had a blood pressure of 136 ± 3 mm Hg. Ang II-treated mice receiving IRMI infusion of tempol and QC-13 had a significantly lower blood pressure (142 ± 2 mm Hg, P < .05) than mice receiving QC-13 alone. The increase in renal medullary superoxide production was normalized by infusion of tempol alone or in combination with QC-13. These results demonstrate that renal medullary interstitial blockade of HO-1 exacerbates Ang II-induced hypertension via a mechanism that is dependent on enhanced superoxide generation and highlight the important antioxidant function of HO-1 in the renal medulla.
Collapse
Affiliation(s)
- David E Stec
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Luis A Juncos
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
11
|
Zhang Y, Sun Y, Ding G, Huang S, Zhang A, Jia Z. Inhibition of Mitochondrial Complex-1 Prevents the Downregulation of NKCC2 and ENaCα in Obstructive Kidney Disease. Sci Rep 2015. [PMID: 26207612 PMCID: PMC4513566 DOI: 10.1038/srep12480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ureteral obstruction with subsequent hydronephrosis is a common clinical complication. Downregulation of renal sodium transporters in obstructed kidneys could contribute to impaired urinary concentrating capability and salt waste following the release of a ureteral obstruction. The current study was undertaken to investigate the role of mitochondrial complex-1 inhibition in modulating sodium transporters in obstructive kidney disease. Following unilateral ureteral obstruction (UUO) for 7 days, a global reduction of sodium transporters, including NHE3, α-Na-K-ATPase, NCC, NKCC2, p-NKCC2, ENaCα, and ENaCγ, was observed, as determined via qRT-PCR and/or Western blotting. Interestingly, inhibition of mitochondrial complex-1 by rotenone markedly reversed the downregulation of NKCC2, p-NKCC2, and ENaCα. In contrast, other sodium transporters were not affected by rotenone. To study the potential mechanisms involved in mediating the effects of rotenone on sodium transporters, we examined a number of known sodium modulators, including PGE2, ET1, Ang II, natriuretic peptides (ANP, BNP, and CNP), and nitric oxide synthases (iNOS, nNOS, and eNOS). Importantly, among these modulators, only BNP and iNOS were significantly reduced by rotenone treatment. Collectively, these findings demonstrated a substantial role of mitochondrial dysfunction in mediating the downregulation of NKCC2 and ENaCα in obstructive kidney disease, possibly via iNOS-derived nitric oxide and BNP.
Collapse
Affiliation(s)
- Yue Zhang
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Ying Sun
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Guixia Ding
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Aihua Zhang
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| | - Zhanjun Jia
- 1] Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China [2] Institute of Pediatrics, Nanjing Medical University, Nanjing, China [3] Nanjing Key Laboratory of Pediatrics, Nanjing Children Hospital, Affiliated with Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
12
|
Kopkan L, Husková Z, Jíchová Š, Červenková L, Červenka L, Saifudeen Z, El-Dahr SS. Conditional knockout of collecting duct bradykinin B2 receptors exacerbates angiotensin II-induced hypertension during high salt intake. Clin Exp Hypertens 2015; 38:1-9. [PMID: 26151827 DOI: 10.3109/10641963.2015.1047945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We elucidated the role of collecting duct kinin B2 receptor (B2R) in the development of salt-sensitivity and angiotensin II (ANG II)-induced hypertension. To this end, we used a Cre-Lox recombination strategy to generate mice lacking Bdkrb2 gene for B2R in the collecting duct (Hoxb7-Cre(tg/+):Bdkrb2(flox/flox)). In 3 groups of control (Bdkrb2(flox/flox)) and 3 groups of UB(Bdkrb2-/-) mice, systolic blood pressure (SBP) responses to high salt intake (4 or 8% NaCl; HS) were monitored by radiotelemetry in comparison with standard salt diet (0.4% NaCl) prior to and during subcutaneous ANG II infusion (1000 ng/min/kg) via osmotic minipumps. High salt intakes alone for 2 weeks did not alter SBP in either strain. ANG II significantly increased SBP equally in control (121 ± 2 to 156 ± 3 mmHg) and UB(Bdkrb2-/-) mice (120 ± 2 to 153 ± 2 mmHg). The development of ANG II-induced hypertension was exacerbated by 4%HS in both control (125 ± 3 to 164 ± 5 mmHg) and UB(Bdkrb2-/-) mice (124 ± 2 to 162 ± 3 mmHg) during 2 weeks. Interestingly, 8%HS caused a more profound and earlier ANG II-induced hypertension in UB(Bdkrb2-/-) (129 ± 2 to 166 ± 3 mmHg) as compared to control (128 ± 2 to 158 ± 2 mmHg) and it was accompanied by body weight loss and increased mortality. In conclusion, targeted inactivation of B2R in the renal collecting duct does not cause salt-sensitivity; however, collecting duct B2R attenuates the hypertensive actions of ANG II under conditions of very high salt intake.
Collapse
Affiliation(s)
- Libor Kopkan
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Zuzana Husková
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Šárka Jíchová
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Lenka Červenková
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Luděk Červenka
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic .,b Department of Pathophysiology, 2nd Faculty of Medicine , Charles University , Prague , Czech Republic , and
| | - Zubaida Saifudeen
- c Department of Pediatrics , Tulane University School of Medicine , New Orleans , LA , USA
| | - Samir S El-Dahr
- c Department of Pediatrics , Tulane University School of Medicine , New Orleans , LA , USA
| |
Collapse
|
13
|
Majid DSA, Prieto MC, Navar LG. Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms. Curr Hypertens Rev 2015; 11:38-48. [PMID: 26028244 DOI: 10.2174/1573402111666150530203858] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Salt sensitive hypertension is characterized by increases in blood pressure in response to increases in dietary salt intake and is associated with an enhanced risk of cardiovascular and renal morbidity. Although researchers have sought for decades to understand how salt sensitivity develops in humans, the mechanisms responsible for the increases in blood pressure in response to high salt intake are complex and only partially understood. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. Although a central role for the kidneys in the development of salt sensitivity and hypertension has been generally accepted, it is also recognized that hypertension is of multifactorial origin and a variety of factors can induce, or prevent, blood pressure responsiveness to the manipulation of salt intake. Excess salt intake in susceptible persons may also induce inappropriate central and sympathetic nervous system responses and increase the production of intrarenal angiotensin II, catecholamines and other factors such as oxidative stress and inflammatory cytokines. One key factor is the concomitant inappropriate or paradoxical activation of the intrarenal renin-angiotensin system, by high salt intake. This is reflected by the increases in urinary angiotensinogen during high salt intake in salt sensitive models. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for some individuals to retain salt and develop salt-dependent hypertension. In this review, we focus mainly on the renal contributions that provide the mechanistic links between chronic salt intake and the development of hypertension.
Collapse
Affiliation(s)
- Dewan S A Majid
- Department of Physiology, SL39, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
14
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Gordish KL, Beierwaltes WH. Sustained resveratrol infusion increases natriuresis independent of renal vasodilation. Physiol Rep 2014; 2:2/9/e12144. [PMID: 25214522 PMCID: PMC4270224 DOI: 10.14814/phy2.12144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Resveratrol is reported to exert cardio‐renal protective effects in animal models of pathology, yet the mechanisms underlying these effects are poorly understood. Previously, we reported an i.v. bolus of resveratrol induces renal vasodilation by increasing nitric oxide bioavailability and inhibiting reactive oxygen species. Thus, we hypothesized a sustained infusion of resveratrol would also increase renal blood flow (RBF), and additionally glomerular filtration rate (GFR). We infused vehicle for 30 min followed by 30 min resveratrol at either: 0, 0.5, 1.0, 1.5 mg/min, and measured RBF, renal vascular resistance (RVR), GFR, and urinary sodium excretion. At all three doses, blood pressure and GFR remained unchanged. Control RBF was 7.69 ± 0.84 mL/min/gkw and remained unchanged by 0.5 mg/min resveratrol (7.88 ± 0.94 mL/min/gkw, n = 9), but urinary sodium excretion increased from 2.19 ± 1.1 to 5.07 ± 0.92 μmol/min/gkw (n = 7, P < 0.01). In separate experiments, 1.0 mg/min resveratrol increased RBF by 17%, from 7.16 ± 0.29 to 8.35 ± 0.42 mL/min/gkw (P < 0.01, n = 10), decreased RVR 16% from 13.63 ± 0.65 to 11.36 ± 0.75 ARU (P < 0.003) and increased sodium excretion from 1.57 ± 0.46 to 3.10 ± 0.80 μmol/min/gkw (n = 7, P < 0.04). At the 1.5 mg/min dose, resveratrol increased RBF 12% from 6.76 ± 0.57 to 7.58 ± 0.60 mL/min/gkw (n = 8, P < 0.003), decreased RVR 15% (15.58 ± 1.35 to 13.27 ± 1.14 ARU, P < 0.003) and increased sodium excretion (3.99 ± 1.71 to 7.80 ± 1.51 μmol/min/gkw, n = 8, P < 0.04). We conclude that a constant infusion of resveratrol can induce significant renal vasodilation while not altering GFR or blood pressure. Also, resveratrol infusion produced significant natriuresis at all doses, suggesting it may have a direct effect on renal tubular sodium handling independent of renal perfusion pressure or flow. We have previously documented that resveratrol causes a nitric oxide‐dependent acute renal vasodilation. We now report that sustained resveratrol has no effect on GFR but induced a remarkable natriuresis which is independent from the hemodynamic effects, suggesting resveratrol acts directly on nephron sodium reabsorption.
Collapse
Affiliation(s)
- Kevin L Gordish
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - William H Beierwaltes
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan Department Internal Medicine, Hypertension and Vascular Research Div., Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
16
|
Kawada N, Isaka Y, Kitamura H, Rakugi H, Moriyama T. A pilot study of the effects of eplerenone add-on therapy in patients taking renin-angiotensin system blockers. J Renin Angiotensin Aldosterone Syst 2014; 16:360-5. [PMID: 24961502 DOI: 10.1177/1470320314532509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
HYPOTHESIS This study determined the parameters for predicting the clinical effects of eplerenone (Ep) add-on therapy on blood pressure (BP) and proteinuria in patients taking angiotensin-converting enzyme inhibitors (ACEis) or angiotensin II type I receptor blockers (ARBs). MATERIALS AND METHODS Patients were treated with a gradual increase of Ep to a final dose of 50 mg/day for 2 months. In 35 patients, the efficacy of Ep was evaluated by peripheral BP, proteinuria, and the transtubular K gradient (TTKG). Fifteen patients had additional analysis for central BP, plasma renin activity (PRA) and plasma aldosterone concentration (PAC), measured in the supine position, and 24-hour urine collection before and after receiving Ep. RESULTS Ep add-on therapy reduced the mean arterial pressure (p=0.0005) and central BP (p=0.009) independently to the baseline PAC. Ep induced PRA, but failed to show effects on PAC, TTKG, or albuminuria. Correlation analysis showed inverse relationships between the percent reduction in albuminuria and baseline PAC. CONCLUSIONS Ep add-on therapy in patients taking renin-angiotensin system blockers is expected to reduce BP, even in patients with low PAC. In contrast, the anti-proteinuric action of Ep is dependent on baseline plasma aldosterone levels. TTKG is not appropriate for evaluating the efficacy of Ep.
Collapse
Affiliation(s)
| | - Yoshitaka Isaka
- Division of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Harumi Kitamura
- Division of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Hiromi Rakugi
- Division of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Japan
| | | |
Collapse
|
17
|
Liu ZZ, Schmerbach K, Lu Y, Perlewitz A, Nikitina T, Cantow K, Seeliger E, Persson PB, Patzak A, Liu R, Sendeski MM. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. Am J Physiol Renal Physiol 2014; 306:F864-72. [PMID: 24431205 DOI: 10.1152/ajprenal.00302.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Iodinated contrast media (CM) have adverse effects that may result in contrast-induced acute kidney injury. Oxidative stress is believed to play a role in CM-induced kidney injury. We test the hypothesis that oxidative stress and reduced nitric oxide in tubules are consequences of CM-induced direct cell damage and that increased local oxidative stress may increase tubuloglomerular feedback. Rat thick ascending limbs (TAL) were isolated and perfused. Superoxide and nitric oxide were quantified using fluorescence techniques. Cell death rate was estimated using propidium iodide and trypan blue. The function of macula densa and tubuloglomerular feedback responsiveness were measured in isolated, perfused juxtaglomerular apparatuses (JGA) of rabbits. The expression of genes related to oxidative stress and the activity of superoxide dismutase (SOD) were investigated in the renal medulla of rats that received CM. CM increased superoxide concentration and reduced nitric oxide bioavailability in TAL. Propidium iodide fluorescence and trypan blue uptake increased more in CM-perfused TAL than in controls, indicating increased rate of cell death. There were no marked acute changes in the expression of genes related to oxidative stress in medullary segments of Henle's loop. SOD activity did not differ between CM and control groups. The tubuloglomerular feedback in isolated JGA was increased by CM. Tubular cell damage and accompanying oxidative stress in our model are consequences of CM-induced direct cell damage, which also modifies the tubulovascular interaction at the macula densa, and may therefore contribute to disturbances of renal perfusion and filtration.
Collapse
Affiliation(s)
- Zhi Zhao Liu
- Institut für Vegetative Physiologie, Charité, Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
19
|
Fox MOB, Gutiérrez EB. Role of the glomerular–tubular imbalance with tubular predominance in the arterial hypertension pathophysiology. Med Hypotheses 2013; 81:397-9. [DOI: 10.1016/j.mehy.2013.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
|
20
|
Montanari A, Pelà G, Musiari L, Crocamo A, Boeti L, Cabassi A, Biggi A, Cherney DZ. Nitric oxide-angiotensin II interactions and renal hemodynamic function in patients with uncomplicated type 1 diabetes. Am J Physiol Renal Physiol 2013; 305:F42-51. [DOI: 10.1152/ajprenal.00109.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective is to elucidate the effect of nitric oxide (NO)-renin-angiotensin system (RAS) interactions on renal hemodynamic function in uncomplicated, type 1 diabetes mellitus (DM). In 14 salt-replete, male healthy volunteers (C) and 9 male DM patients on euglycemia, glomerular filtration rate (GFR), renal blood flow (RBF), filtration fraction (FF), and sodium excretion (UNaV) were measured at baseline and during a 90-min infusion of 3.0 μg·kg−1·min−1 NG-nitro-l-arginine-methyl-ester (l-NAME) after 3 days of pretreatment with either placebo (PL) or 50 mg losartan (LOS). Baseline GFR, RBF, and FF were higher in DM ( P < 0.005). In the C group, PL + l-NAME caused declines in GFR (101 ± 3 to 90 ± 3 ml·min−1·1.73 m−2), RBF (931 ± 22 to 754 ± 31 ml·min−1·1.73 m−2), and UNaV (158 ± 12 to 82 ± 18 μmol/min) and an increase in FF (0.19 ± 0.02 to 0.21 ± 02; P < 0.001), which were not influenced by LOS pretreatment ( P > 0.05 for LOS + l-NAME-C vs. PL + l-NAME-C). In DM, PL + l-NAME resulted in exaggerated renal effects, with changes in GFR (128 ± 3 to 104 ± 3 ml·min−1·1.73 m−2), RBF (1,019 ± 27 to 699 ± 34 ml·min−1·1.73 m−2), UNaV (150 ± 13 to 39 ± 14 μmol/min), and FF (0.22 ± 0.03 to 0.26 ± 0.02) that were significantly greater vs. PL + l-NAME-C ( P < 0.005). LOS pretreatment blunted GFR, RBF, FF, and UNaV responses to l-NAME in DM ( P < 0.005 vs. PL + l-NAME-DM), resulting in a response profile that was similar to PL + l-NAME and LOS + l-NAME in C ( P > 0.05). Renal responses to l-NAME in uncomplicated, type 1 DM are exaggerated vs. C, consistent with an upregulation of NO bioactivity. LOS, without effects in C, prevents the accentuated actions of l-NAME in DM, thus indicating an augmented role for NO-RAS interactions in renal hemodynamic function in DM.
Collapse
Affiliation(s)
- Alberto Montanari
- Department of Clinical and Experimental Medicine, University of Parma Medical School, Parma, Italy; and
| | - Giovanna Pelà
- Department of Clinical and Experimental Medicine, University of Parma Medical School, Parma, Italy; and
| | - Luisa Musiari
- Department of Clinical and Experimental Medicine, University of Parma Medical School, Parma, Italy; and
| | - Antonio Crocamo
- Department of Clinical and Experimental Medicine, University of Parma Medical School, Parma, Italy; and
| | - Luisella Boeti
- Department of Clinical and Experimental Medicine, University of Parma Medical School, Parma, Italy; and
| | - Aderville Cabassi
- Department of Clinical and Experimental Medicine, University of Parma Medical School, Parma, Italy; and
| | - Almerina Biggi
- Department of Clinical and Experimental Medicine, University of Parma Medical School, Parma, Italy; and
| | - David Z. Cherney
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Liu N, Patzak A, Sendeski MM. Nitric oxide and reactive oxygen species in renal medulla pathophysiology - so small yet so special: the renal medulla. Acta Physiol (Oxf) 2013; 208:144-7. [PMID: 23374156 DOI: 10.1111/apha.12075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Andreas Patzak
- Charité-Universitaetsmedizin Berlin; Institute fuer Vegetative Physiologie; Berlin; Germany
| | - Mauricio M. Sendeski
- Charité-Universitaetsmedizin Berlin; Institute fuer Vegetative Physiologie; Berlin; Germany
| |
Collapse
|
22
|
Csongradi E, Juncos LA, Drummond HA, Vera T, Stec DE. Role of carbon monoxide in kidney function: is a little carbon monoxide good for the kidney? Curr Pharm Biotechnol 2012; 13:819-26. [PMID: 22201605 DOI: 10.2174/138920112800399284] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 08/28/2010] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO) is an endogenously produced gas resulting from the degradation of heme by heme oxygense or from fatty acid oxidation. Heme oxygenase (HO) enzymes are constitutively expressed in the kidney (HO-2) and HO-1 is induced in the kidney in response to several physiological and pathological stimuli. While the beneficial actions of HO in the kidney have been recognized for some time, the important role of CO in mediating these effects has not been fully examined. Recent studies using CO inhalation therapy and carbon monoxide releasing molecules (CORMs) have demonstrated that increases in CO alone can be beneficial to the kidney in several forms of acute renal injury by limiting oxidative injury, decreasing cell apoptosis, and promoting cell survival pathways. Renal CO is also emerging as a major regulator of renal vascular and tubular function acting to protect the renal vasculature against excessive vasoconstriction and to promote natriuresis by limiting sodium reabsorption in tubule cells. Within this review, recent studies on the physiological actions of CO in the kidney will be explored as well as the potential therapeutic avenues that are being developed targeting CO in the kidney which may be beneficial in diseases such as acute renal failure and hypertension.
Collapse
Affiliation(s)
- Eva Csongradi
- Department of Physiology & Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|
23
|
Jiang R, Wang S, Takahashi K, Fujita H, Fruci CR, Breyer MD, Harris RC, Takahashi T. Generation of a conditional allele for the mouse endothelial nitric oxide synthase gene. Genesis 2012; 50:685-92. [PMID: 22467476 DOI: 10.1002/dvg.22026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/16/2012] [Accepted: 03/18/2012] [Indexed: 01/21/2023]
Abstract
Mice with endothelial nitric oxide synthase (eNOS) deletions have defined the crucial role of eNOS in vascular development, homeostasis, and pathology. However, cell specific eNOS function has not been determined, although an important role of eNOS has been suggested in multiple cell types. Here, we have generated a floxed eNOS allele in which exons 9-12, encoding the sites essential to eNOS activity, are flanked with loxP sites. Mice homozygous for the floxed allele showed normal eNOS protein levels and no overt phenotype. Conversely, homozygous mice with Cre-deleted alleles displayed truncated eNOS protein, lack of vascular NO production, and exhibited similar phenotype to eNOS knockout mice, including hypertension, low heart rate, and focal renal scarring. These findings demonstrate that the floxed allele is normal and it can be converted to a non-functional eNOS allele through Cre recombination. This mouse will allow time- and cell-specific eNOS deletion.
Collapse
Affiliation(s)
- Rosie Jiang
- Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Persson P, Hansell P, Palm F. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1443-9. [PMID: 22552796 DOI: 10.1152/ajpregu.00502.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sustained hyperglycemia is associated with increased oxidative stress resulting in decreased intrarenal oxygen tension (Po(2)) due to increased oxygen consumption (Qo(2)). Chronic blockade of the main superoxide radicals producing system, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, normalizes Qo(2) by isolated proximal tubular cells (PTC) and reduces proteinuria in diabetes. The aim was to investigate the effects of acute NADPH oxidase inhibition on tubular Na(+) transport and kidney Po(2) in vivo. Glomerular filtration rate (GFR), renal blood flow (RBF), filtration fraction (FF), Na(+) excretion, fractional Li(+) excretion, and intrarenal Po(2) was measured in control and streptozotocin-diabetic rats during baseline and after acute NADPH oxidase inhibition using apocynin. The effects on tubular transporters were investigated using freshly isolated PTC. GFR was increased in diabetics compared with controls (2.2 ± 0.3 vs. 1.4 ± 0.1 ml·min(-1)·kidney(-1)). RBF was similar in both groups, resulting in increased FF in diabetics. Po(2) was reduced in cortex and medulla in diabetic kidneys compared with controls (34.4 ± 0.7 vs. 42.5 ± 1.2 mmHg and 15.7 ± 1.2 vs. 25.5 ± 2.3 mmHg, respectively). Na(+) excretion was increased in diabetics compared with controls (24.0 ± 4.7 vs. 9.0 ± 2.0 μm·min(-1)·kidney(-1)). In controls, all parameters were unaffected. However, apocynin increased Na(+) excretion (+112%) and decreased fractional lithium reabsorption (-10%) in diabetics, resulting in improved cortical (+14%) and medullary (+28%) Po(2). Qo(2) was higher in PTC isolated from diabetic rats compared with control. Apocynin, dimethylamiloride, and ouabain reduced Qo(2), but the effects of combining apocynin with either dimethylamiloride or ouabain were not additive. In conclusion, NADPH oxidase inhibition reduces tubular Na(+) transport and improves intrarenal Po(2) in diabetes.
Collapse
Affiliation(s)
- Patrik Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
25
|
Ren Y, D'Ambrosio MA, Wang H, Falck JR, Peterson EL, Garvin JL, Carretero OA. Mechanisms of carbon monoxide attenuation of tubuloglomerular feedback. Hypertension 2012; 59:1139-44. [PMID: 22508834 DOI: 10.1161/hypertensionaha.112.192120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbon monoxide (CO) is a physiological messenger with diverse functions in the kidney, including controlling afferent arteriole tone both directly and via tubuloglomerular feedback (TGF). We have reported that CO attenuates TGF, but the mechanisms underlying this effect remain unknown. We hypothesized that CO, acting via cGMP, cGMP-dependent protein kinase, and cGMP-stimulated phosphodiesterase 2, reduces cAMP in the macula densa, leading to TGF attenuation. In vitro, microdissected rabbit afferent arterioles and their attached macula densa were simultaneously perfused. TGF was measured as the decrease in afferent arteriole diameter elicited by switching macula densa NaCl from 10 to 80 mmol/L. Adding a CO-releasing molecule (CORM-3, 5 × 10(-5) mol/L) to the macula densa blunted TGF from 3.3 ± 0.3 to 2.0 ± 0.3 μm (P<0.001). The guanylate cyclase inhibitor LY-83583 (10(-6) mol/L) enhanced TGF (5.8 ± 0.6 μm; P<0.001 versus control) and prevented the effect of CORM-3 on TGF (LY-83583+CORM-3, 5.5 ± 0.3 μm). Similarly, the cGMP-dependent protein kinase inhibitor KT-5823 (2 × 10(-6) mol/L) enhanced TGF and prevented the effect of CORM-3 on TGF (KT-5823, 6.0 ± 0.7 μm; KT-5823+CORM-3, 5.9 ± 0.8 μm). However, the phosphodiesterase 2 inhibitor BAY-60-7550 (10(-6) mol/L) did not prevent the effect of CORM-3 on TGF (BAY-60-7550, 4.07 ± 0.31 μm; BAY-60-7550+CORM-3, 1.84 ± 0.31 μm; P<0.001). Finally, the degradation-resistant cAMP analog dibutyryl-cAMP (10(-3) mol/L) prevented the attenuation of TGF by CORM-3 (dibutyryl-cAMP, 4.6 ± 0.5 μm; dibutyryl-cAMP+CORM-3, 5.0 ± 0.6 μm). We conclude that CO attenuates TGF by reducing cAMP via a cGMP-dependent pathway mediated by cGMP-dependent protein kinase rather than phosphodiesterase 2. Our results will lead to a better understanding of the mechanisms that control the renal microcirculation.
Collapse
Affiliation(s)
- Yilin Ren
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Stec DE, Drummond HA, Gousette MU, Storm MV, Abraham NG, Csongradi E. Expression of heme oxygenase-1 in thick ascending loop of henle attenuates angiotensin II-dependent hypertension. J Am Soc Nephrol 2012; 23:834-41. [PMID: 22323644 DOI: 10.1681/asn.2011050455] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidney-specific induction of heme oxygenase-1 (HO-1) attenuates the development of angiotensin II (Ang II) -dependent hypertension, but the relative contribution of vascular versus tubular induction of HO-1 is unknown. To determine the specific contribution of thick ascending loop of Henle (TALH) -derived HO-1, we generated a transgenic mouse in which the uromodulin promoter controlled expression of human HO-1. Quantitative RT-PCR and confocal microscopy confirmed successful localization of the HO-1 transgene to TALH tubule segments. Medullary HO activity, but not cortical HO activity, was significantly higher in transgenic mice than control mice. Enhanced TALH HO-1 attenuated the hypertension induced by Ang II delivered by an osmotic minipump for 10 days (139 ± 3 versus 153 ±2 mmHg in the transgenic and control mice, respectively; P<0.05). The lower blood pressure in transgenic mice associated with a 60% decrease in medullary NKCC2 transporter expression determined by Western blot. Transgenic mice also exhibited a 36% decrease in ouabain-sensitive sodium reabsorption and a significantly attenuated response to furosemide in isolated TALH segments. In summary, these results show that increased levels of HO-1 in the TALH can lower blood pressure by a mechanism that may include alterations in NKCC2-dependent sodium reabsorption.
Collapse
Affiliation(s)
- David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, 39216, USA.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Albertoni Borghese MF, Bettini LM, Nitta CH, de Frutos S, Majowicz M, Gonzalez Bosc LV. Aquaporin-2 promoter is synergistically regulated by nitric oxide and nuclear factor of activated T cells. NEPHRON EXTRA 2011; 1:124-38. [PMID: 22470386 PMCID: PMC3290856 DOI: 10.1159/000333066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background/Aims We have previously shown that aquaporin-2 (AQP2) is down-regulated in the renal medulla of rats made hypertensive by chronic inhibition of nitric oxide synthase. It has been shown that AQP2 expression is regulated by the calcineurin/nuclear factor of activated T cells (NFATc). Nitric oxide (NO) regulates the activity of NFATc via c-Jun-N-terminal kinase 2 (JNK2). Therefore, we hypothesized that increases in NO enhance NFATc-mediated up-regulation of AQP2 promoter activity. Methods AQP2 mRNA and protein expression were detected in mouse renal papilla. AQP2 promoter luciferase reporter- and NFAT luciferase reporter-transfected MDCK cells were used to determine AQP2 promoter activity and NFATc activity, respectively. Cells were incubated with classic activators and inhibitors of NFATc and the NO pathway. Results Our results demonstrate that both Ca2+ and NO have a synergistic effect resulting in an increase in AQP2 mRNA and protein in mouse papilla and activation of the AQP2 promoter in kidney-derived cells. In addition, NO enhances Ca2+-induced NFATc activation. The underlying mechanism involves increased NFATc nuclear import and decreased export via protein kinase G-mediated inhibition of JNK1/2. Conclusions This is the first study defining novel regulatory roles for NO and NFATc in the control of AQP2, which is an important renal protein.
Collapse
Affiliation(s)
- María F Albertoni Borghese
- Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
29
|
Lara LS, McCormack M, Semprum-Prieto LC, Shenouda S, Majid DSA, Kobori H, Navar LG, Prieto MC. AT1 receptor-mediated augmentation of angiotensinogen, oxidative stress, and inflammation in ANG II-salt hypertension. Am J Physiol Renal Physiol 2011; 302:F85-94. [PMID: 21900456 DOI: 10.1152/ajprenal.00351.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Augmentation of intrarenal angiotensinogen (AGT) synthesis, secretion, and excretion is associated with the development of hypertension, renal oxidative stress, and tissue injury during ANG II-dependent hypertension. High salt (HS) exacerbates hypertension and kidney injury, but the mechanisms remain unclear. In this study, we determined the consequences of HS intake alone compared with chronic ANG II infusion and combined HS plus ANG II on the stimulation of urinary AGT (uAGT), renal oxidative stress, and renal injury markers. Sprague-Dawley rats were subjected to 1) a normal-salt diet [NS, n = 5]; 2) HS diet [8% NaCl, n = 5]; 3) ANG II infusion in NS rats [ANG II 80 ng/min, n = 5]; 4) ANG II infusion in HS rats [ANG II+HS, n = 5]; and 5) ANG II infusion in HS rats treated with ANG II type 1 receptor blocker (ARB) [ANG II+HS+ARB, n = 5] for 14 days. Rats fed a HS diet alone did not show changes in systolic blood pressure (SBP), proteinuria, cell proliferation, or uAGT excretion although they did exhibit mesangial expansion, collagen deposition, and had increased NADPH oxidase activity accompanied by increased peroxynitrite formation in the kidneys. Compared with ANG II rats, the combination of ANG II infusion and a HS diet led to exacerbation in SBP (175 ± 10 vs. 221 ± 8 mmHg; P < 0.05), proteinuria (46 ± 7 vs. 127 ± 7 mg/day; P < 0.05), and uAGT (1,109 ± 70 vs.. 7,200 ± 614 ng/day; P < 0.05) associated with greater collagen deposition, mesangial expansion, interstitial cell proliferation, and macrophage infiltration. In both ANG II groups, the O(2)(-) levels were increased due to increased NADPH oxidase activity without concomitant increases in peroxynitrite formation. The responses in ANG II rats were prevented or ameliorated by ARB treatment. The results indicate that HS independently stimulates ROS formation, which may synergize with the effect of ANG II to limit peroxynitrite formation, leading to exacerbation of uAGT and greater injury during ANG II salt hypertension.
Collapse
Affiliation(s)
- Lucienne S Lara
- Tulane Univ., School of Medicine, Dept. of Physiology, Rm. 4061, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bełtowski J. Leptin and the Regulation of Renal Sodium Handling and Renal Na-Transporting ATPases: Role in the Pathogenesis of Arterial Hypertension. Curr Cardiol Rev 2011; 6:31-40. [PMID: 21286276 PMCID: PMC2845792 DOI: 10.2174/157340310790231644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 12/13/2022] Open
Abstract
Leptin, an adipose tissue hormone which regulates food intake, is also involved in the pathogenesis of arterial hypertension. Plasma leptin concentration is increased in obese individuals. Chronic leptin administration or transgenic overexpression increases blood pressure in experimental animals, and some studies indicate that plasma leptin is elevated in hypertensive subjects independently of body weight. Leptin has a dose- and time-dependent effect on urinary sodium excretion. High doses of leptin increase Na(+) excretion in the short run; partially by decreasing renal Na(+),K(+)-ATPase (sodium pump) activity. This effect is mediated by phosphatidylinositol 3-kinase (PI3K) and is impaired in animals with dietary-induced obesity. In contrast to acute, chronic elevation of plasma leptin to the level observed in patients with the metabolic syndrome impairs renal Na(+) excretion, which is associated with the increase in renal Na(+),K(+)-ATPase activity. This effect results from oxidative stress-induced deficiency of nitric oxide and/or transactivation of epidermal growth factor receptor and subsequent stimulation of extracellular signal-regulated kinases. Ameliorating "renal leptin resistance" or reducing leptin level and/or leptin signaling in states of chronic hyperleptinemia may be a novel strategy for the treatment of arterial hypertension associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Dept. of Pathophysiology, Medical University, Lublin, Poland
| |
Collapse
|
31
|
O'Connor PM, Cowley AW. Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr Hypertens Rep 2011; 12:86-92. [PMID: 20424940 DOI: 10.1007/s11906-010-0094-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The renal pressure-natriuresis mechanism is the dominant controller of body fluid balance and long-term arterial pressure. In recent years, it has become clear that the balance of reactive oxygen and nitrogen species within the renal medullary region is a key determinant of the set point of the renal pressure-natriuresis curve. The development of renal medullary oxidative stress causes dysfunction of the pressure-natriuresis mechanism and contributes to the development of hypertension in numerous disease models. The purpose of this review is to point out the known mechanisms within the renal medulla through which reactive oxygen and nitrogen species modulate the pressure-natriuresis response and to update the reader on recent advances in this field.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53202, USA.
| | | |
Collapse
|
32
|
Zhu Q, Xia M, Wang Z, Li PL, Li N. A novel lipid natriuretic factor in the renal medulla: sphingosine-1-phosphate. Am J Physiol Renal Physiol 2011; 301:F35-41. [PMID: 21478479 DOI: 10.1152/ajprenal.00014.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite formed by phosphorylation of sphingosine. S1P has been indicated to play a significant role in the cardiovascular system. It has been shown that the enzymes for S1P metabolism are expressed in the kidneys. The present study characterized the expression of S1P receptors in the kidneys and determined the role of S1P in the control of renal hemodynamics and sodium excretion. Real-time RT-PCR analyses showed that S1P receptors S1P1, S1P2, and S1P3 were most abundantly expressed in the renal medulla. Immunohistochemistry revealed that all three types of S1P receptors were mainly located in collecting ducts. Intramedullary infusion of FTY720, an S1P agonist, produced a dramatic increase in sodium excretion by twofold and a small but significant increase in medullary blood flow (16%). Administration of W146, an S1P1 antagonist, into the renal medulla blocked the effect of FTY720 and decreased the sodium excretion by 37% when infused alone. The antagonists of S1P2 and S1P3 had no effect. FTY720 produced additive natriuretic effects in combination with different sodium transporter inhibitors except amiloride, an epithelial sodium channel blocker. In the presence of nitric oxide synthase inhibitor l-NAME, FTY720 still increased sodium excretion. These data suggest that S1P produces natriuretic effects via activation of S1P1 in the renal medulla and this natriuretic effect may be through inhibition of epithelial sodium channel, which is nitric oxide independent. It is concluded that S1P is a novel diuretic factor in the renal medulla and may be an important regulator of sodium homeostasis.
Collapse
Affiliation(s)
- Qing Zhu
- Dept. of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
33
|
Jung J, Basile DP, Pratt JH. Sodium reabsorption in the thick ascending limb in relation to blood pressure: a clinical perspective. Hypertension 2011; 57:873-9. [PMID: 21403087 DOI: 10.1161/hypertensionaha.108.120246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jeesun Jung
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
34
|
Amlal H, Soleimani M. Pendrin as a Novel Target for Diuretic Therapy. Cell Physiol Biochem 2011; 28:521-6. [DOI: 10.1159/000335117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2011] [Indexed: 01/04/2023] Open
|
35
|
Kopkan L, Hess A, Husková Z, Cervenka L, Navar LG, Majid DSA. High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity. Am J Physiol Renal Physiol 2010; 299:F656-63. [PMID: 20610532 DOI: 10.1152/ajprenal.00047.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A deficiency in nitric oxide (NO) generation leads to salt-sensitive hypertension, but the role of increased superoxide (O(2)(-)) in such salt sensitivity has not been delineated. We examined the hypothesis that an enhancement in O(2)(-) activity induced by high-salt (HS) intake under deficient NO production contributes to the development of salt-sensitive hypertension. Endothelial NO synthase knockout (eNOS KO; total n = 64) and wild-type (WT; total n = 58) mice were given diets containing either normal (NS; 0.4%) or high-salt (HS; 4%) for 2 wk. During this period, mice were chronically treated with a O(2)(-) scavenger, tempol (400 mg/l), or an inhibitor of NADPH oxidase, apocynin (1 g/l), in drinking water or left untreated (n = 6-8 per group). Blood pressure was measured by radiotelemetry and 24-h urine samples were collected in metabolic cages. Basal mean arterial pressure (MAP) in eNOS KO was higher (125 +/- 4 vs. 106 +/- 3 mmHg) compared with WT. Feeding HS diet did not alter MAP in WT but increased it in eNOS KO to 166 +/- 9 mmHg. Both tempol and apocynin treatment significantly attenuated the MAP response to HS in eNOS KO (134 +/- 3 and 139 +/- 4 mmHg, respectively). Basal urinary 8-isoprostane excretion rates (U(Iso)V), a marker for endogenous O(2)(-) activity, were similar (2.8 +/- 0.2 and 2.4 +/- 0.3 ng/day) in both eNOS KO and WT mice. However, HS increased U(Iso)V more in eNOS KO than in WT (4.6 +/- 0.3 vs. 3.8 +/- 0.2 ng/day); these were significantly attenuated by both tempol and apocynin treatment. These data indicate that an enhancement in O(2)(-) activity contributes substantially to the development of salt-sensitive hypertension under NO-deficient conditions.
Collapse
Affiliation(s)
- Libor Kopkan
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
36
|
Edwards A, Layton AT. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension. Am J Physiol Renal Physiol 2010; 299:F616-33. [PMID: 20534869 DOI: 10.1152/ajprenal.00680.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the impact of the complex radial organization of the rat outer medulla (OM) on the distribution of nitric oxide (NO), superoxide (O(2)(-)) and total peroxynitrite (ONOO), we developed a mathematical model that simulates the transport of those species in a cross section of the rat OM. To simulate the preferential interactions among tubules and vessels that arise from their relative radial positions in the OM, we adopted the region-based approach developed by Layton and Layton (Am J Physiol Renal Physiol 289: F1346-F1366, 2005). In that approach, the structural organization of the OM is represented by means of four concentric regions centered on a vascular bundle. The model predicts the concentrations of NO, O(2)(-), and ONOO in the tubular and vascular lumen, epithelial and endothelial cells, red blood cells (RBCs), and interstitial fluid. Model results suggest that the large gradients in Po(2) from the core of the vascular bundle toward its periphery, which stem from the segregation of O(2)-supplying descending vasa recta (DVR) within the vascular bundles, in turn generate steep radial NO and O(2)(-) concentration gradients, since the synthesis of both solutes is O(2) dependent. Without the rate-limiting effects of O(2), NO concentration would be lowest in the vascular bundle core, that is, the region with the highest density of RBCs, which act as a sink for NO. Our results also suggest that, under basal conditions, the difference in NO concentrations between DVR that reach into the inner medulla and those that turn within the OM should lead to differences in vasodilation and preferentially increase blood flow to the inner medulla.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
37
|
Herrera M, Garvin JL. Angiotensin II stimulates thick ascending limb NO production via AT(2) receptors and Akt1-dependent nitric-oxide synthase 3 (NOS3) activation. J Biol Chem 2010; 285:14932-14940. [PMID: 20299462 DOI: 10.1074/jbc.m110.109041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (Ang II) acutely stimulates thick ascending limb (TAL) NO via an unknown mechanism. In endothelial cells, activation of Ang II type 2 receptor (AT(2)) stimulates NO. Akt1 activates NOS3 by direct phosphorylation. We hypothesized that Ang II stimulates TAL NO production via AT(2)-mediated Akt1 activation, which phosphorylates NOS3 at serine 1177. We measured NO production by fluorescence microscopy. In isolated TALs, Ang II (100 nm) increased NO production by 1.1 +/- 0.2 fluorescence units/min (p < 0.01). Ang II increased cGMP accumulation by 4.9 +/- 1.3 fmol/microg (p < 0.01). Upon adding the AT(2) antagonist PD123319 (1 microm), Ang II failed to stimulate NO (0.1 +/- 0.1 fluorescence units/min; p < 0.001 versus Ang II); adding the AT(1) antagonist losartan (1 microm) resulted in Ang II stimulating NO by 0.9 +/- 0.1 fluorescence units/min. Akt inhibitor (5 microm) blocked Ang II-stimulated NO (-0.1 +/- 0.2 fluorescence units/min versus inhibitor alone). Phospho-Akt1 increased by 72% after 5 min (p < 0.006), returning to basal after 10 min. Phospho-Akt2 did not change after 5 min but increased by 115 and 163% after 10 and 15 min (p < 0.02). Phospho-Akt3 did not change. An AT(2) agonist increased pAkt1 by 78% (p < 0.02), PI3K inhibition blocked this effect. In TALs transduced with dominant negative Akt1, Ang II failed to stimulate NO (0.1 +/- 0.2 fluorescence units/min versus 1.2 +/- 0.2 for controls; p < 0.001). Ang II increased phospho-NOS3 at serine 1177 by 130% (p < 0.01) and 150% after 5 and 10 min (p < 0.02). Ang II increased phosphoNOS3 at serine 633 by 50% after 5 min (p < 0.01). Akt inhibition prevented NOS3 phosphorylation. We concluded that Ang II enhances TAL NO production via activation of AT(2) and Akt1-dependent phosphorylation of NOS3 at serines 1177 and 633.
Collapse
Affiliation(s)
- Marcela Herrera
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202.
| | - Jeffrey L Garvin
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202
| |
Collapse
|
38
|
Palm F, Fasching A, Hansell P, Källskog O. Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney. Am J Physiol Renal Physiol 2009; 298:F416-20. [PMID: 19923416 DOI: 10.1152/ajprenal.00229.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) is a potent regulator of both vascular tone and cellular oxygen consumption (Q(O(2)). Diabetic kidneys have reduced NO availability and increased Q(O(2)). However, the exact nitric oxide synthase (NOS) isoform regulating Q(O(2)), hemodynamics, and excretory function in the diabetic kidney remains unclear. We therefore investigated the effects of both selective neuronal NOS (NOS1) inhibition and nonselective NOS inhibition. Oxygen utilization, electrolyte transport efficiency [tubular Na(+) transport (T(Na))/Q(O(2))], renal blood flow (RBF), glomerular filtration rate (GFR), and mean arterial pressure (MAP) were measured in vivo in control and streptozotocin-diabetic rats before and after administration of the selective NOS1 inhibitor S-methyl-L-thiocitrulline (SMTC) or the nonselective NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Diabetic rats had higher baseline Q(O(2)) and GFR than control rats, although RBF was similar in the groups. SMTC and L-NAME increased Q(O(2)) and reduced T(Na)/Q(O(2)) only in the diabetic animals, whereas both inhibitors increased MAP and reduced RBF in both groups. GFR was reduced by L-NAME, but SMTC had no effect in either group. Carbachol increased RBF and decreased MAP in SMTC-treated rats, whereas it had no effect in L-NAME-treated rats, indicating that SMTC selectively inhibited NOS1. In conclusion, NO regulates RBF and GFR similarly in both control and diabetic rats. However, selective NOS1 inhibition increased Qo(2) and reduced T(Na)/Q(O(2)) in the diabetic rat kidney, indicating a pivotal role of NO produced by NOS1 in maintaining control of Q(O(2)) and tissue oxygenation in these kidneys.
Collapse
Affiliation(s)
- Fredrik Palm
- Division of Integrative Physiology, Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
39
|
Kopkan L, Khan MAH, Lis A, Awayda MS, Majid DSA. Cholesterol induces renal vasoconstriction and anti-natriuresis by inhibiting nitric oxide production in anesthetized rats. Am J Physiol Renal Physiol 2009; 297:F1606-13. [PMID: 19776170 DOI: 10.1152/ajprenal.90743.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although hypercholesterolemia is implicated in the pathophysiology of many renal disorders as well as hypertension, its direct actions in the kidney are not yet clearly understood. In the present study, we evaluated renal responses to administration of cholesterol (8 microg x min(-1).100 g body wt(-1); bound by polyethylene glycol) into the renal artery of anesthetized male Sprague-Dawley rats. Total renal blood flow (RBF) was measured by a Transonic flow probe, and glomerular filtration rate (GFR) was determined by Inulin clearance. In control rats (n = 8), cholesterol induced reductions of 10 +/- 2% in RBF [baseline (b) 7.6 +/- 0.3 microg x min(-1).100 g(-1)], 17 +/- 3% in urine flow (b, 10.6 +/- 0.9 microg x min(-1).100 g(-1)), 29 +/- 3% in sodium excretion (b, 0.96 +/- 0.05 mumol.min(-1).100 g(-1)) and 24 +/- 2% in nitrite/nitrate excretion (b, 0.22 +/- 0.01 nmol.min(-1).100 g(-1)) without an appreciable change in GFR (b, 0.87 +/- 0.03 ml.min(-1).100 g(-1)). These renal vasoconstrictor and anti-natriuretic responses to cholesterol were absent in rats pretreated with nitric oxide (NO) synthase inhibitor, nitro-l-arginine methylester (0.5 microg x min(-1).100 g(-1); n = 6). In rats pretreated with superoxide (O(2)(-)) scavenger tempol (50 microg x min(-1).100 g(-1); n = 6), the cholesterol-induced renal responses remained mostly unchanged, although there was a slight attenuation in anti-natriuretic response. This anti-natriuretic response to cholesterol was abolished in furosemide-pretreated rats (0.3 microg x min(-1).100 g(-1); n = 6) but remained unchanged in amiloride-pretreated rats (0.2 microg x min(-1).100 g(-1); n = 5), indicating that Na(+)/K(+)/2Cl(-) cotransport is the dominant mediator of this effect. These data demonstrate that cholesterol-induced acute renal vasoconstrictor and antinatriuretic responses are mediated by a decrease in NO production. These data also indicate that tubular effect of cholesterol on sodium reabsorption is mediated by the furosemide sensitive Na(+)/K(+)/2Cl(-) cotransporter.
Collapse
Affiliation(s)
- Libor Kopkan
- Physiology, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Prenatally programmed hypertension induced by maternal protein restriction is associated with increased expression of the renal tubular Na+/K+/2Cl- co-transporter (NKCC2) and the Na+/Cl- co-transporter (NCC). This has led to the suggestion that renal Na+ retention contributes to the development of hypertension in the LP rat (offspring exposed to a maternal low-protein diet in utero). However, this hypothesis has not been tested in vivo. Renal clearance measurements in hypertensive 4-week-old male and female LP rats showed that, although the glomerular filtration rate remained unaltered, urine flow (P<0.01) and urinary Na+ excretion rates (1.6+/-0.3 and 3.0+/-0.4 mumol.min-1.100 g-1 of body weight in control male and LP male respectively; P<0.001) were increased. Na+ excretion was positively correlated with mean arterial pressure in both males (P<0.01) and females (P<0.05), but neither the slope nor the intercept differed between control and LP rats. Fractional excretion of Na+ was increased in male (1.5+/-0.2 and 3.0+/-0.5% in control and LP rats respectively; P<0.001) and female LP rats, implying reduced tubular reabsorption of Na+. Western blotting and quantitative PCR showed that NKCC2 expression was increased, whereas NCC mRNA was not up-regulated. Na+/K+ ATPase alpha1 subunit expression did not differ from controls; however, there was a significant reduction in whole kidney pump activity (23.4+/-1.8 and 17.7+/-1.2 nmol of phosphate.mug-1 of protein.h-1 in control male and male LP rats respectively; P<0.001); immunohistochemistry showed that the alpha1 subunit was virtually absent from the inner medulla. The greater Na+ excretion of LP rats can be explained, in part, by a pressure-natriuresis mechanism; however, the loss of the Na+/K+ ATPase alpha1 subunit from the inner medulla and up-regulation of NKCC2 suggests that altered renal Na+ handling is also programmed prenatally.
Collapse
|
41
|
Banday AA, Lokhandwala MF. Inhibition of natriuretic factors increases blood pressure in rats. Am J Physiol Renal Physiol 2009; 297:F397-402. [PMID: 19474184 DOI: 10.1152/ajprenal.90729.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal dopamine and nitric oxide contribute to natriuresis during high-salt intake which maintains sodium and blood pressure homeostasis. We wanted to determine whether concurrent inhibition of these natriuretic factors increases blood pressure during high-sodium intake. Male Sprague-Dawley rats were divided into the following groups: 1) vehicle (V)-tap water, 2) NaCl-1% NaCl drinking water, 3) 30 mM l-buthionine sulfoximine (BSO), an oxidant, 4) BSO plus NaCl, and 5) BSO plus NaCl with 1 mM tempol (antioxidant). Compared with V, NaCl intake for 10 days doubled sodium intake and increased urinary dopamine level but reduced urinary nitric oxide content. NaCl intake also reduced basal renal proximal tubular Na-K-ATPase activity with no effect on blood pressure. However, NaCl intake in BSO-treated rats failed to reduce basal Na-K-ATPase activity despite higher urinary dopamine levels. Also, dopamine failed to inhibit proximal tubular Na-K-ATPase activity and these rats exhibited reduced urinary nitric oxide levels and high blood pressure. Tempol supplementation in NaCl plus BSO-treated rats reduced blood pressure. BSO treatment alone did not affect the urinary nitric oxide and dopamine levels or blood pressure. However, dopamine failed to inhibit proximal tubular Na-K-ATPase activity in BSO-treated rats. BSO treatment also increased basal protein kinase C activity, D1 receptor serine phosphorylation, and oxidative markers like malondialdehyde and 8-isoprostane. We suggest that NaCl-mediated reduction in nitric oxide does not increase blood pressure due to activation of D1 receptor signaling. Conversely, oxidative stress-provoked inhibition of D1 receptor signaling fails to elevate blood pressure due to presence of normal nitric oxide. However, simultaneously decreasing nitric oxide levels with NaCl and inhibiting D1 receptor signaling with BSO elevated blood pressure.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, Univ. of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | |
Collapse
|
42
|
Sendeski M, Patzak A, Pallone TL, Cao C, Persson AE, Persson PB. Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy. Radiology 2009; 251:697-704. [PMID: 19366904 DOI: 10.1148/radiol.2513081732] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine whether a type of contrast medium (CM), iodixanol, modifies outer medullary descending vasa recta (DVR) vasoreactivity and nitric oxide (NO) production in isolated microperfused DVR. MATERIALS AND METHODS Animal handling conformed to the Animal Care Committee Guidelines of all participating institutions. Single specimens of DVR were isolated from rats and perfused with a buffered solution containing iodixanol. A concentration of 23 mg of iodine per milliliter was chosen to mimic that expected to be used in usual examinations in humans. Luminal diameter was determined by using video microscopy, and NO was measured by using fluorescent techniques. RESULTS Iodixanol led to 52% reduction of DVR luminal diameter, a narrowing that might interfere with passage of erythrocytes in vivo. Vasoconstriction induced by angiotensin II was enhanced by iodixanol. Moreover, iodixanol decreased NO bioavailability by more than 82%. Use of 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (a superoxide dismutase mimetic) prevented both vasoconstriction with iodixanol alone and increased constriction with angiotensin II caused by CM. CONCLUSION Iodixanol in doses typically used for coronary interventions constricts DVR, intensifies angiotensin II-induced constriction, and reduces bioavailability of NO. CM-induced nephropathy may be related to these events and scavenging of reactive oxygen species might exert a therapeutic benefit by preventing the adverse effects that a CM has on medullary perfusion.
Collapse
Affiliation(s)
- Mauricio Sendeski
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Tucholskystrasse 2, Berlin 10117, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Wilcox CS, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 2009; 60:418-69. [PMID: 19112152 DOI: 10.1124/pr.108.000240] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
44
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Silva GB, Garvin JL. TRPV4 mediates hypotonicity-induced ATP release by the thick ascending limb. Am J Physiol Renal Physiol 2008; 295:F1090-5. [PMID: 18684885 DOI: 10.1152/ajprenal.90365.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular ATP is an autocrine/paracrine factor that regulates renal function. Transient receptor potential vanilloid (TRPV) 4 is a cation channel that mediates release of autocrine/paracrine factors by acting as an osmosensor. The renal medulla, and therefore the thick ascending limb, is exposed to osmotic stress. We hypothesize that reduced osmolality stimulates ATP release from the thick ascending limb via transient receptor potential vanilloid (TRPV) 4 activation. We measured ATP release by medullary thick ascending limb suspensions after reducing bath osmolality from 350 to 323 mosmol/kgH2O, using the luciferin-luciferase assay. Decreasing osmolality stimulated ATP release compared with control (38.9+/-7.2 vs. 2.4+/-1.0 pmol/mg protein; n=6, P<0.01). To examine the role of TRPV4, we used 1) Ca-free solutions, 2) a TRPV4 inhibitor, 3) small interfering (si) RNA against TRPV4, and 4) a TRPV4 activator. Removal of Ca completely blocked osmolality-induced ATP release (42.2+/-5.9 vs. 2.6+/-1.5 pmol/mg protein; n=6, P<0.01). In the presence of the TRPV4-selective inhibitor ruthenium red, osmolality-induced ATP release was blocked by 73% (56.4+/-19.9 vs. 8.8+/-2.3 pmol/mg protein; n=6; P<0.03). In vivo treatment of thick ascending limbs with siRNA against TRPV4 decreased osmolality-induced ATP release by 62% (31.5+/-3.4 vs. 12.4+/-1.1 pmol/mg protein; n=6; P<0.01), while reducing TRPV4 expression by 74% compared with the nontreated kidney. Treatment with scrambled siRNA did not affect TRPV4 expression and/or osmolality-induced ATP release. Finally, in the absence of changes in osmolality, the specific TRPV4 agonist 4alpha-PDD increased ATP release (3.6+/-0.9 vs. 25.4+/-7.4 pmol/mg protein; n=6; P<0.04). We concluded that decreases in osmolality stimulate ATP release by thick ascending limbs and this effect is mediated by TRPV4 activation.
Collapse
Affiliation(s)
- Guillermo B Silva
- Division of Hypertension and Vascular Research, Henry Ford Hospital, and Department of Physiology, School of Medicine, Wayne State University, 2799 W. Grand Blvd., Detroit, MI 48202, USA
| | | |
Collapse
|
46
|
Affiliation(s)
- David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
47
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
48
|
Bełtowski J, Borkowska E, Wójcicka G, Marciniak A. Regulation of renal ouabain-resistant Na+-ATPase by leptin, nitric oxide, reactive oxygen species, and cyclic nucleotides: implications for obesity-associated hypertension. Clin Exp Hypertens 2007; 29:189-207. [PMID: 17497345 DOI: 10.1080/10641960701361585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study examined the effect of leptin on renal ouabain-resistant Na(+)-ATPase, which drives the reabsorption of about 10% of sodium transported in the proximal tubule. Chronic leptin administration (0.25 mg/kg s.c. twice daily for seven days) increased Na(+)-ATPase activity by 62.9%. This effect was prevented by the coadministration of superoxide dismutase mimetic, tempol, or the NADPH oxidase inhibitor, apocynin (2 mM in the drinking water). Acutely administered NO donors decreased Na(+)-ATPase activity. This effect was abolished by soluble guanylate cyclase inhibitor, ODQ, but not by protein kinase G inhibitors. Exogenous cGMP reduced Na(+)-ATPase activity, but its synthetic analogues, 8-bromo-cGMP and 8-pCPT-cGMP, were ineffective. The inhibitory effect of NO donors and cGMP was abolished by EHNA, an inhibitor of cGMP-stimulated phosphodiesterase (PDE2). Exogenous cAMP analogue and dibutyryl-cAMP increased Na(+)-ATPase activity and abolished the inhibitory effect of cGMP. Finally, the administration of superoxide-generating mixture (xanthine oxidase+hypoxanthine) increased Na(+)-ATPase activity. The results suggest that nitric oxide decreases renal Na(+)-ATPase activity by stimulating cGMP, which in turn activates PDE2 and decreases cAMP concentration. Increased production of reactive oxygen species may lead to the elevation of Na(+)-ATPase activity by scavenging NO and limiting its inhibitory effect. Chronic hyperleptinemia is associated with increased Na(+)-ATPase activity due to excessive oxidative stress.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University, Lublin, Poland.
| | | | | | | |
Collapse
|
49
|
Abstract
Nitric oxide (NO) produced by endothelial cells diffuses to vascular smooth muscle cells to cause dilatation of the renal vasculature and other vessels. Although it is generally assumed that NO moves from cell to cell by free diffusion, we recently showed that aquaporin-1 (AQP-1) transports NO across cell membranes. AQP-1 is expressed in endothelial and vascular smooth muscle cells. We hypothesized that diffusion of NO into vascular smooth muscle cells and out of endothelial cells is facilitated by AQP-1, and transport of NO by AQP-1 is involved in endothelium-dependent relaxation. In intact aortic rings from AQP-1 −/− mice, vasorelaxation induced by acetylcholine (which increases endogenous NO) was reduced ( P < 0.0001 vs. control). No differences were found in the relaxation caused by intracellular delivery of NO or intracellular cGMP between strains. In endothelium-denuded aortic rings from AQP-1 −/− mice, the vasorelaxant capability of NO released in the extracellular space was reduced ( P < 0.0001 vs. control). Influx of NO (5 μM) into vascular smooth muscle cells was 0.17 ± 0.02 f.u./s for control and 0.07 ± 0.01 f.u./s for AQP-1 −/− mice, 62% lower ( P < 0.002). NO released by endothelial cells in response to 1 μM acetylcholine was 96.2 ± 17.7 pmol NO/mg for control and 41.9 ± 13.4 pmol NO/mg for AQP-1 −/− mice, 56% reduction ( P < 0.04). NOS3 expression was 1.33 ± 0.29 O.D. units for control and 3.84 ± 0.76 O.D. units for AQP-1 −/− mice, 188% increase ( P < 0.01). We conclude that 1) AQP-1 facilitates NO influx into vascular smooth muscle cells, 2) AQP-1 facilitates NO diffusion out of endothelial cells, and 3) transport of NO by AQP-1 is required for full expression of endothelium-dependent relaxation.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiology
- Aquaporin 1/deficiency
- Aquaporin 1/metabolism
- Aquaporin 1/physiology
- Biological Transport/physiology
- Diffusion
- Endothelial Cells/metabolism
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide/physiology
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Marcela Herrera
- Henry Ford Hospital, Division of Hypertension and Vascular Research, Wayne State University, Detroit, Michigan 48202, USA.
| | | |
Collapse
|
50
|
Marin E, Sessa WC. Role of endothelial-derived nitric oxide in hypertension and renal disease. Curr Opin Nephrol Hypertens 2007; 16:105-10. [PMID: 17293684 DOI: 10.1097/mnh.0b013e328017f893] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW To highlight recent advances in the field of endothelial-derived nitric oxide regulation of blood pressure and renal homeostasis. RECENT FINDINGS Many laboratories have dissected a role for nitric oxide in regulating blood pressure and renal function. In models of hypertension, and chronic and acute renal disease, the loss of nitric oxide bioavailability may occur due to inactivation of endothelial nitric oxide synthase, synthesis of endogenous inhibitors or oxidative inactivation of nitric oxide. SUMMARY Understanding the molecular mechanisms of nitric oxide synthesis may lead to novel diagnostics and treatments for cardiovascular disorders.
Collapse
Affiliation(s)
- Ethan Marin
- Departments of Pharmacology and Nephrology and Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|