1
|
Ross IL, Beardslee JA, Steil MM, Chihanga T, Kennedy MA. Statistical considerations and database limitations in NMR-based metabolic profiling studies. Metabolomics 2023; 19:64. [PMID: 37378680 DOI: 10.1007/s11306-023-02027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Interpretation and analysis of NMR-based metabolic profiling studies is limited by substantially incomplete commercial and academic databases. Statistical significance tests, including p-values, VIP scores, AUC values and FC values, can be largely inconsistent. Data normalization prior to statistical analysis can cause erroneous outcomes. OBJECTIVES The objectives were (1) to quantitatively assess consistency among p-values, VIP scores, AUC values and FC values in representative NMR-based metabolic profiling datasets, (2) to assess how data normalization can impact statistical significance outcomes, (3) to determine resonance peak assignment completion potential using commonly used databases and (4) to analyze intersection and uniqueness of metabolite space in these databases. METHODS P-values, VIP scores, AUC values and FC values, and their dependence on data normalization, were determined in orthotopic mouse model of pancreatic cancer and two human pancreatic cancer cell lines. Completeness of resonance assignments were evaluated using Chenomx, the human metabolite database (HMDB) and the COLMAR database. The intersection and uniqueness of the databases was quantified. RESULTS P-values and AUC values were strongly correlated compared to VIP or FC values. Distributions of statistically significant bins depended strongly on whether or not datasets were normalized. 40-45% of peaks had either no or ambiguous database matches. 9-22% of metabolites were unique to each database. CONCLUSIONS Lack of consistency in statistical analyses of metabolomics data can lead to misleading or inconsistent interpretation. Data normalization can have large effects on statistical analysis and should be justified. About 40% of peak assignments remain ambiguous or impossible with current databases. 1D and 2D databases should be made consistent to maximize metabolite assignment confidence and validation.
Collapse
Affiliation(s)
- Imani L Ross
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, 92093, USA
| | - Julie A Beardslee
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Maria M Steil
- Division of Plastic Surgery, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
2
|
Lu L, Liu W, Li S, Bai M, Zhou Y, Jiang Z, Jia Z, Huang S, Zhang A, Gong W. Flavonoid derivative DMXAA attenuates cisplatin-induced acute kidney injury independent of STING signaling. Clin Sci (Lond) 2023; 137:435-452. [PMID: 36815438 DOI: 10.1042/cs20220728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 11/17/2022]
Abstract
Cisplatin-induced nephrotoxicity is the main adverse effect of cisplatin-based chemotherapy and highly limits its clinical use. DMXAA, a flavonoid derivative, is a promising vascular disrupting agent and known as an agonist of STING. Although cGAS-STING activation has been demonstrated to mediate cisplatin-induced acute kidney injury (AKI), the role of DMXAA in this condition is unclear. Here, we defined an unexpected and critical role of DMXAA in improving renal function, ameliorating renal tubular injury and cell apoptosis, and suppressing inflammation in cisplatin-induced AKI. Moreover, we confirmed that DMXAA combated AKI in a STING-independent manner, as evidenced by its protective effect in STING global knockout mice subjected to cisplatin. Furthermore, we compared the role of DMXAA with another STING agonist SR717 in cisplatin-treated mice and found that DMXAA but not SR717 protected animals against AKI. To better evaluate the role of DMXAA, we performed transcriptome analyses and observed that both inflammatory and metabolic pathways were altered by DMXAA treatment. Due to the established role of metabolic disorders in AKI, which contributes to kidney injury and recovery, we also performed metabolomics using kidney tissues from cisplatin-induced AKI mice with or without DMXAA treatment. Strikingly, our results revealed that DMXAA improved the metabolic disorders in kidneys of AKI mice, especially regulated the tryptophan metabolism. Collectively, therapeutic administration of DMXAA ameliorates cisplatin-induced AKI independent of STING, suggesting a promising potential for preventing nephrotoxicity induced by cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Lingling Lu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Liu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shumin Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaohui Jiang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Wang R, Wang S, Zhang J, He M, Xu J. Serum Lactate Level in Early Stage Is Associated With Acute Kidney Injury in Traumatic Brain Injury Patients. Front Surg 2022; 8:761166. [PMID: 35174203 PMCID: PMC8841417 DOI: 10.3389/fsurg.2021.761166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/24/2021] [Indexed: 01/27/2023] Open
Abstract
Background Acute kidney injury (AKI) is a common complication in the clinical practice of managing patients with traumatic brain injury (TBI). Avoiding the development of AKI is beneficial for the prognosis of patients with TBI. We designed this study to testify whether serum lactate could be used as a predictive marker of AKI in patients with TBI. Materials and Methods In total, 243 patients with TBI admitted to our hospital were included in this study. Univariate and multivariate logistic regression analyses were utilized to analyze the association between lactate and AKI. The receiver operating characteristic (ROC) curves were drawn to verify the predictive value of lactate and the logistic model. Results Acute kidney injury group had higher age (p = 0.016), serum creatinine (p < 0.001), lactate (p < 0.001), and lower Glasgow Coma Scale (GCS; p = 0.021) than non-AKI group. Multivariate logistic regression showed that age [odds ratio (OR) = 1.026, p = 0.022], serum creatinine (OR = 1.020, p = 0.010), lactate (OR = 1.227, p = 0.031), fresh frozen plasma (FFP) transfusion (OR = 2.421, p = 0.045), and platelet transfusion (OR = 5.502, p = 0.044) were risk factors of AKI in patients with TBI. The area under the ROC curve (AUC) values of single lactate and predictive model were 0.740 and 0.807, respectively. Conclusion Serum lactate level in the early phase is associated with AKI in patients with TBI. Lactate is valuable for clinicians to evaluate the probability of AKI in patients with TBI.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shaobo Wang
- Department of Infectious Diseases, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Min He
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Jianguo Xu
| |
Collapse
|
4
|
Wang L, Huang S, Zhu T, Ge X, Pei C, Hong G, Han L. Metabolomic Study on Iohexol-Induced Nephrotoxicity in Rats Based on NMR and LC-MS Analyses. Chem Res Toxicol 2022; 35:244-253. [PMID: 35081708 DOI: 10.1021/acs.chemrestox.1c00299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iohexol, the raw material of nonionic X-ray computed tomography (X-CT) contrast medium, is usually injected into the vein before CT angiography diagnosis. It is used for angiography, urography, and lymphography. With the advantages of low contrast density and good tolerance, it is currently one of the most popular contrast media. However, the renal toxicity of iohexol seriously affects its safety use. Therefore, it is of great importance to identify new potential diagnostic biomarkers and therapeutic targets in the process of contrast medium-induced acute kidney injury (CI-AKI) in order to safely use iohexol in clinical practice. In this study, in order to understand the metabolic mechanism of CI-AKI, ultra-high-performance liquid chromatography/quadrupole-Orbitrap-mass spectrometry and 1H NMR-based metabolomic techniques were utilized to study the metabolic spectra of kidney, plasma, and urine from CI-AKI rats, and a total of 30 metabolites that were closely related to kidney injury were screened out, which were mainly related to 9 metabolic pathways. The results further indicated that iohexol might intensify kidney dysfunction in vivo by disrupting the metabolic pathways in the body, especially through blocking energy metabolism, amino acid metabolism, and promoting inflammatory reactions.
Collapse
Affiliation(s)
- Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Shuo Huang
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.,Clinical College of Orthopedics, Tianjin Medical University, Tianjin 300211, P. R. China
| | - Tongtong Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Chenxi Pei
- College of Public Health, Hebei University, Baoding 071002, P. R. China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| |
Collapse
|
5
|
Raines NH, Cheung MD, Wilson LS, Edberg JC, Erdmann NB, Schmaier AA, Berryhill TF, Manickas-Hill Z, Li JZ, Yu XG, Agarwal A, Barnes S, Parikh SM. Nicotinamide Adenine Dinucleotide Biosynthetic Impairment and Urinary Metabolomic Alterations Observed in Hospitalized Adults With COVID-19-Related Acute Kidney Injury. Kidney Int Rep 2021; 6:3002-3013. [PMID: 34541422 PMCID: PMC8439094 DOI: 10.1016/j.ekir.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is common in COVID-19 and associated with increased morbidity and mortality. We investigated alterations in the urine metabolome to test the hypothesis that impaired nicotinamide adenine dinucleotide (NAD+) biosynthesis and other deficiencies in energy metabolism in the kidney, previously characterized in ischemic, toxic, and inflammatory etiologies of AKI, will be present in COVID-19-associated AKI. METHODS This is a case-control study among the following 2 independent populations of adults hospitalized with COVID-19: a critically ill population in Boston, Massachusetts, and a general population in Birmingham, Alabama. The cases had AKI stages 2 or 3 by Kidney Disease Improving Global Outcomes (KDIGO) criteria; the controls had no AKI. Metabolites were measured by liquid chromatography-mass spectrometry. RESULTS A total of 14 cases and 14 controls were included from Boston and 8 cases and 10 controls from Birmingham. Increased urinary quinolinate-to-tryptophan ratio (Q/T), found with impaired NAD+ biosynthesis, was present in the cases at each location and pooled across locations (median [interquartile range]: 1.34 [0.59-2.96] in cases, 0.31 [0.13-1.63] in controls, P = 0.0013). Altered energy metabolism and purine metabolism contributed to a distinct urinary metabolomic signature that differentiated patients with and without AKI (supervised random forest class error: 2 of 28 in Boston, 0 of 18 in Birmingham). CONCLUSION Urinary metabolites spanning multiple biochemical pathways differentiate AKI versus non-AKI in patients hospitalized with COVID-19 and suggest a conserved impairment in NAD+ biosynthesis, which may present a novel therapeutic target to mitigate COVID-19-associated AKI.
Collapse
Affiliation(s)
- Nathan H. Raines
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew D. Cheung
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Landon S. Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey C. Edberg
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathaniel B. Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alec A. Schmaier
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor F. Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachary Manickas-Hill
- Ragon Institute of the Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University, Massachusetts General Hospital, Cambridge, Massachusetts, USA
| | - Jonathan Z. Li
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of the Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University, Massachusetts General Hospital, Cambridge, Massachusetts, USA
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Standage SW, Xu S, Brown L, Ma Q, Koterba A, Lahni P, Devarajan P, Kennedy MA. NMR-based serum and urine metabolomic profile reveals suppression of mitochondrial pathways in experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2021; 320:F984-F1000. [PMID: 33843271 DOI: 10.1152/ajprenal.00582.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a significant problem in the critically ill that causes increased death. Emerging understanding of this disease implicates metabolic dysfunction in its pathophysiology. This study sought to identify specific metabolic pathways amenable to potential therapeutic intervention. Using a murine model of sepsis, blood and tissue samples were collected for assessment of systemic inflammation, kidney function, and renal injury. Nuclear magnetic resonance (NMR)-based metabolomics quantified dozens of metabolites in serum and urine that were subsequently submitted to pathway analysis. Kidney tissue gene expression analysis confirmed the implicated pathways. Septic mice had elevated circulating levels of inflammatory cytokines and increased levels of blood urea nitrogen and creatinine, indicating both systemic inflammation and poor kidney function. Renal tissue showed only mild histological evidence of injury in sepsis. NMR metabolomic analysis identified the involvement of mitochondrial pathways associated with branched-chain amino acid metabolism, fatty acid oxidation, and de novo NAD+ biosynthesis in SA-AKI. Renal cortical gene expression of enzymes associated with those pathways was predominantly suppressed. Renal cortical fatty acid oxidation rates were lower in septic mice with high inflammation, and this correlated with higher serum creatinine levels. Similar to humans, septic mice demonstrated renal dysfunction without significant tissue disruption, pointing to metabolic derangement as an important contributor to SA-AKI pathophysiology. Metabolism of branched-chain amino acid and fatty acids and NAD+ synthesis, which all center on mitochondrial function, appeared to be suppressed. Developing interventions to activate these pathways may provide new therapeutic opportunities for SA-AKI.NEW & NOTEWORTHY NMR-based metabolomics revealed disruptions in branched-chain amino acid metabolism, fatty acid oxidation, and NAD+ synthesis in sepsis-associated acute kidney injury. These pathways represent essential processes for energy provision in renal tubular epithelial cells and may represent targetable mechanisms for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen W Standage
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Shenyuan Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| | - Lauren Brown
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adeleine Koterba
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.,Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| |
Collapse
|
7
|
Rudman-Melnick V, Adam M, Potter A, Chokshi SM, Ma Q, Drake KA, Schuh MP, Kofron JM, Devarajan P, Potter SS. Single-Cell Profiling of AKI in a Murine Model Reveals Novel Transcriptional Signatures, Profibrotic Phenotype, and Epithelial-to-Stromal Crosstalk. J Am Soc Nephrol 2020; 31:2793-2814. [PMID: 33115917 DOI: 10.1681/asn.2020010052] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Current management of AKI, a potentially fatal disorder that can also initiate or exacerbate CKD, is merely supportive. Therefore, deeper understanding of the molecular pathways perturbed in AKI is needed to identify targets with potential to lead to improved treatment. METHODS We performed single-cell RNA sequencing (scRNA-seq) with the clinically relevant unilateral ischemia-reperfusion murine model of AKI at days 1, 2, 4, 7, 11, and 14 after AKI onset. Using real-time quantitative PCR, immunofluorescence, Western blotting, and both chromogenic and single-molecule in situ hybridizations, we validated AKI signatures in multiple experiments. RESULTS Our findings show the time course of changing gene expression patterns for multiple AKI stages and all renal cell types. We observed elevated expression of crucial injury response factors-including kidney injury molecule-1 (Kim1), lipocalin 2 (Lcn2), and keratin 8 (Krt8)-and of several novel genes (Ahnak, Sh3bgrl3, and Col18a1) not previously examined in kidney pathologies. AKI induced proximal tubule dedifferentiation, with a pronounced nephrogenic signature represented by Sox4 and Cd24a. Moreover, AKI caused the formation of "mixed-identity cells" (expressing markers of different renal cell types) that are normally seen only during early kidney development. The injured tubules acquired a proinflammatory and profibrotic phenotype; moreover, AKI dramatically modified ligand-receptor crosstalk, with potential pathologic epithelial-to-stromal interactions. Advancing age in AKI onset was associated with maladaptive response and kidney fibrosis. CONCLUSIONS The scRNA-seq, comprehensive, cell-specific profiles provide a valuable resource for examining molecular pathways that are perturbed in AKI. The results fully define AKI-associated dedifferentiation programs, potential pathologic ligand-receptor crosstalk, novel genes, and the improved injury response in younger mice, and highlight potential targets of kidney injury.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Meredith P Schuh
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| |
Collapse
|
8
|
Abstract
Decades of pre-clinical research have revealed biologic pathways that have suggested potential therapies for acute kidney injury (AKI) in experimental models. However, translating these to human AKI has largely yielded disappointing results. Fortunately, recent discoveries in AKI molecular mechanisms are providing new opportunities for early detection and novel interventions. This review identifies technologies that are revealing the exceptionally complex nature of the normal kidney, the remarkable heterogeneity of the AKI syndrome, and the myriad responses of the kidney to AKI. Based on the current state of the art, novel approaches to improve the bench-to-bedside translation of novel discoveries are proposed. These strategies include the use of unbiased approaches to improve our understanding of human AKI, establishment of irrefutable biologic plausibility for proposed biomarkers and therapies, identification of patients at risk for AKI pre-injury using clinical scores and non-invasive biomarkers, initiation of safe, and effective preventive interventions of pre-injury in susceptible patients, identification of patients who may develop AKI post-injury using electronic triggers, clinical scores, and novel biomarkers, employment of sequential biomarkers to initiate appropriate therapies based on knowledge of the underlying pathophysiology, use of new biomarkers as criteria for enrollment in randomized clinical trials, assessing efficacy, and empowering the drug development process, and early initiation of anti-fibrotic therapies. These strategies are immediately actionable and hold tremendous promise for effective bench-to-bedside translation of novel discoveries that will change the current dismal prognosis of human AKI.
Collapse
Affiliation(s)
- Prasad Devarajan
- Department of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Petrova I, Xu S, Joesten WC, Ni S, Kennedy MA. Influence of Drying Method on NMR-Based Metabolic Profiling of Human Cell Lines. Metabolites 2019; 9:metabo9110256. [PMID: 31683565 PMCID: PMC6918379 DOI: 10.3390/metabo9110256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic profiling of cell line and tissue extracts involves sample processing that includes a drying step prior to re-dissolving the cell or tissue extracts in a buffer for analysis by GC/LC-MS or NMR. Two of the most commonly used drying techniques are centrifugal evaporation under vacuum (SpeedVac) and lyophilization. Here, NMR spectroscopy was used to determine how the metabolic profiles of hydrophilic extracts of three human pancreatic cancer cell lines, MiaPaCa-2, Panc-1 and AsPC-1, were influenced by the choice of drying technique. In each of the three cell lines, 40-50 metabolites were identified as having statistically significant differences in abundance in redissolved extract samples depending on the drying technique used during sample preparation. In addition to these differences, some metabolites were only present in the lyophilized samples, for example, n-methyl-α-aminoisobutyric acid, n-methylnicotimamide, sarcosine and 3-hydroxyisovaleric acid, whereas some metabolites were only present in SpeedVac dried samples, for example, trimethylamine. This research demonstrates that the choice of drying technique used during the preparation of samples of human cell lines or tissue extracts can significantly influence the observed metabolome, making it important to carefully consider the selection of a drying method prior to preparation of such samples for metabolic profiling.
Collapse
Affiliation(s)
- Irina Petrova
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Shenyuan Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - William C Joesten
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
10
|
Joesten WC, Kennedy MA. RANCM: a new ranking scheme for assigning confidence levels to metabolite assignments in NMR-based metabolomics studies. Metabolomics 2019; 15:5. [PMID: 30830432 DOI: 10.1007/s11306-018-1465-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The Metabolomics Standards Initiative has recommended four categories for metabolite assignments in NMR-based metabolic profiling studies. The "putatively annotated compound" category is most commonly reported by metabolomics investigators. However, there is significant ambiguity in reliability of "putatively annotated compound" assignments, which can range from low confidence made on minimal corroborating data to high confidence made on substantial corroborating data. OBJECTIVES To introduce a new ranking system, Rank and AssigN Confidence to Metabolites (RANCM), to assign confidence levels to "putatively annotated compound" assignments in NMR-based metabolic profiling studies. METHODS The ranking system was constructed with three confidence levels ranging from Rank 1 for the lowest confidence assignment level to Rank 3 for the highest confidence assignment level. A decision tree was constructed to guide rank selection for each metabolite assignment. RESULTS Examples are provided from experimental data demonstrating how to use the decision tree to make confidence level assignments to "putatively annotated compounds" in each of the three rank levels. A standard Excel sheet template is provided to facilitate decision-making, documentation and submission to data repositories. CONCLUSION RANCM is intended to reduce the ambiguity in "putatively annotated compound" assignments, to facilitate effective communication of the degree of confidence in "putatively annotated compound" assignments, and to make it easier for non-experts to evaluate the significance and reliability of NMR-based metabonomics studies. The system is straightforward to implement, based on the most common datasets collected in NMR-based metabolic profiling studies, and can be used with equal rigor and significance with any set of NMR datasets.
Collapse
Affiliation(s)
- William C Joesten
- Department of Chemistry and Biochemistry, Miami University, 106 Hughes Laboratories, Oxford, OH, 45056, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, 106 Hughes Laboratories, Oxford, OH, 45056, USA.
| |
Collapse
|
11
|
Joesten WC, Short AH, Kennedy MA. Spatial variations in gut permeability are linked to type 1 diabetes development in non-obese diabetic mice. BMJ Open Diabetes Res Care 2019; 7:e000793. [PMID: 31908796 PMCID: PMC6936454 DOI: 10.1136/bmjdrc-2019-000793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/12/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To determine if spatial variations in gut permeability play a role in regulating type 1 diabetes (T1D) progression. RESEARCH DESIGN AND METHODS Spatially resolved duodenum, jejunum, ileum, and large intestine sections from end-stage T1D non-obese diabetic (NOD) mice were probed by immunohistochemistry to quantify zonulin levels as a measure of gut permeability in early-progressor and late-progressor NOD mice in comparison with non-progressor NOD mice and healthy NOR/LtJ control mice. RESULTS Zonulin levels were elevated in the small and large intestines in early-progressor and late-progressor NOD mice in comparison with non-progressor NOD mice and healthy NOR control mice. In early-onset mice, elevated zonulin levels were maximum in the duodenum and jejunum and decreased in the ileum and large intestine. In late-progressor mice, zonulin levels were elevated almost evenly along the small and large intestines. In non-progressor NOD mice, zonulin levels were comparable with NOR control levels in both the small and large intestines. CONCLUSIONS Elevated zonulin expression levels indicated that gut permeability was increased both in the small and large intestines in NOD mice that progressed to end-stage T1D in comparison with non-progressor NOD mice and healthy NOR control mice. Highest elevations in zonulin levels were observed in the duodenum and jejunum followed by the ileum and large intestines. Spatial variations in gut permeability appeared to play a role in regulating the rate and severity of T1D progression in NOD mice indicating that spatial variations in gut permeability should be investigated as a potentially important factor in human T1D progression.
Collapse
Affiliation(s)
| | - Audrey H Short
- Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|