1
|
Lacueva-Aparicio A, Lindoso RS, Mihăilă SM, Giménez I. Role of extracellular matrix components and structure in new renal models in vitro. Front Physiol 2022; 13:1048738. [PMID: 36569770 PMCID: PMC9767975 DOI: 10.3389/fphys.2022.1048738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM's role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, Zaragoza, Spain
| | - Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain,School of Medicine, University of Zaragoza, Zaragoza, Spain,*Correspondence: Ignacio Giménez,
| |
Collapse
|
2
|
Buvall L, Menzies RI, Williams J, Woollard KJ, Kumar C, Granqvist AB, Fritsch M, Feliers D, Reznichenko A, Gianni D, Petrovski S, Bendtsen C, Bohlooly-Y M, Haefliger C, Danielson RF, Hansen PBL. Selecting the right therapeutic target for kidney disease. Front Pharmacol 2022; 13:971065. [DOI: 10.3389/fphar.2022.971065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Kidney disease is a complex disease with several different etiologies and underlying associated pathophysiology. This is reflected by the lack of effective treatment therapies in chronic kidney disease (CKD) that stop disease progression. However, novel strategies, recent scientific breakthroughs, and technological advances have revealed new possibilities for finding novel disease drivers in CKD. This review describes some of the latest advances in the field and brings them together in a more holistic framework as applied to identification and validation of disease drivers in CKD. It uses high-resolution ‘patient-centric’ omics data sets, advanced in silico tools (systems biology, connectivity mapping, and machine learning) and ‘state-of-the-art‘ experimental systems (complex 3D systems in vitro, CRISPR gene editing, and various model biological systems in vivo). Application of such a framework is expected to increase the likelihood of successful identification of novel drug candidates based on strong human target validation and a better scientific understanding of underlying mechanisms.
Collapse
|
3
|
Liu WM, Zhou X, Chen CY, Lv DD, Huang WJ, Peng Y, Wu HP, Chen Y, Tang D, Guo LN, Wang XL, Zhang HD, Liu XH, Yang LQ, Yu WF, Yan HX. Establishment of Functional Liver Spheroids From Human Hepatocyte-Derived Liver Progenitor-Like Cells for Cell Therapy. Front Bioeng Biotechnol 2021; 9:738081. [PMID: 34858956 PMCID: PMC8630579 DOI: 10.3389/fbioe.2021.738081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Globally, about two million people die from liver diseases every year. Liver transplantation is the only reliable therapy for severe end-stage liver disease, however, the shortage of organ donors is a huge limitation. Human hepatocytes derived liver progenitor-like cells (HepLPCs) have been reported as a novel source of liver cells for development of in vitro models, cell therapies, and tissue-engineering applications, but their functionality as transplantation donors is unclear. Here, a 3-dimensional (3D) co-culture system using HepLPCs and human umbilical vein endothelial cells (HUVECs) was developed. These HepLPC spheroids mimicked the cellular interactions and architecture of mature hepatocytes, as confirmed through ultrastructure morphology, gene expression profile and functional assays. HepLPCs encapsulated in alginate beads are able to mitigate liver injury in mice treated with carbon tetrachloride (CCL4), while alginate coating protects the cells from immune attack. We confirmed these phenomena due to HUVECs producing glial cell line-derived neurotrophic factor (GDNF) to promote HepLPCs maturation and enhance HepLPCs tight junction through MET phosphorylation. Our results display the efficacy and safety of the alginate microencapsulated spheroids in animal model with acute liver injury (ALF), which may suggest a new strategy for cell therapy.
Collapse
Affiliation(s)
- Wen-Ming Liu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Xu Zhou
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Dong-Dong Lv
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wei-Jian Huang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Yuan Peng
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Ping Wu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yi Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Li-Na Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiu-Li Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - Xiao-Hua Liu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.,Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China.,Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Abalymov A, Parakhonskiy B, Skirtach AG. Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering. Polymers (Basel) 2020; 12:E620. [PMID: 32182751 PMCID: PMC7182904 DOI: 10.3390/polym12030620] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, materials based on polymers and hybrids possessing both organic and inorganic contents for repairing or facilitating cell growth in tissue engineering are discussed. Pure polymer based biomaterials are predominantly used to target soft tissues. Stipulated by possibilities of tuning the composition and concentration of their inorganic content, hybrid materials allow to mimic properties of various types of harder tissues. That leads to the concept of "one-matches-all" referring to materials possessing the same polymeric base, but different inorganic content to enable tissue growth and repair, proliferation of cells, and the formation of the ECM (extra cellular matrix). Furthermore, adding drug delivery carriers to coatings and scaffolds designed with such materials brings additional functionality by encapsulating active molecules, antibacterial agents, and growth factors. We discuss here materials and methods of their assembly from a general perspective together with their applications in various tissue engineering sub-areas: interstitial, connective, vascular, nervous, visceral and musculoskeletal tissues. The overall aims of this review are two-fold: (a) to describe the needs and opportunities in the field of bio-medicine, which should be useful for material scientists, and (b) to present capabilities and resources available in the area of materials, which should be of interest for biologists and medical doctors.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | | | - Andre G. Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Kidney regeneration approaches for translation. World J Urol 2019; 38:2075-2079. [PMID: 31696256 DOI: 10.1007/s00345-019-02999-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/11/2023] Open
Abstract
The increase in the incidence of chronic kidney diseases that progress to end-stage renal disease has become a significant health problem worldwide. While dialysis can maintain and prolong survival, the only definitive treatment that can restore renal function is transplantation. Unfortunately, many of these patients die waiting for transplantable kidneys due to the severe shortage of donor organs. Tissue engineering and regenerative medicine approaches have been applied in recent years to develop viable therapies that could provide solutions to these patients. Cell-based and cell-free approaches have been proposed to address the challenges associated with chronic kidney diseases. Strategies and progress toward developing alternative therapeutic options will be reviewed.
Collapse
|
6
|
Enhancement of HGF-induced tubulogenesis by endothelial cell-derived GDNF. PLoS One 2019; 14:e0212991. [PMID: 30845150 PMCID: PMC6405134 DOI: 10.1371/journal.pone.0212991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Tubulogenesis, the organization of epithelial cells into tubular structures, is an essential step during renal organogenesis as well as during the regeneration process of renal tubules after injury. In the present study, endothelial cell-derived factors that modulate tubule formation were examined using an in vitro human tubulogenesis system. When human renal proximal tubular epithelial cells (RPTECs) were cultured in gels, tubular structures with lumens were induced in the presence of hepatocyte growth factor (HGF). Aquaporin 1 was localized in the apical membrane of these tubular structures, suggesting that these structures are morphologically equivalent to renal tubules in vivo. HGF-induced tubule formation was significantly enhanced when co-cultured with human umbilical vein endothelial cells (HUVECs) or in the presence of HUVEC-conditioned medium (HUVEC-CM). Co-culture with HUVECs did not induce tubular structures in the absence of HGF. A phospho-receptor tyrosine kinase array revealed that HUVEC-CM markedly enhanced phosphorylation of Ret, glial cell-derived neurotrophic factor (GDNF) receptor, in HGF-induced tubular structures compared to those without HUVEC-CM. HUVECs produced GDNF, and RPTECs expressed both Ret and GDNF family receptor alpha1 (co-receptor). HGF-induced tubule formation was significantly enhanced by addition of GDNF. Interestingly, not only HGF but also GDNF significantly induced phosphorylation of the HGF receptor, Met. These data indicate that endothelial cell-derived GDNF potentiates the tubulogenic properties of HGF and may play a critical role in the epithelial-endothelial crosstalk during renal tubulogenesis as well as tubular regeneration after injury.
Collapse
|
7
|
Hamzawy M, Gouda SAA, Rashed L, Morcos MA, Shoukry H, Sharawy N. 22-oxacalcitriol prevents acute kidney injury via inhibition of apoptosis and enhancement of autophagy. Clin Exp Nephrol 2018; 23:43-55. [PMID: 29968126 DOI: 10.1007/s10157-018-1614-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between tubular cell damage and regeneration. Several lines of evidences suggest a potential renoprotective effect of vitamin D. In this study, we investigated the effect of 22-oxacalcitriol (OCT), a synthetic vitamin D analogue, on renal fate in a rat model of ischemia reperfusion injury (IRI) induced acute kidney injury (AKI). METHODS 22-oxacalcitriol (OCT) was administered via intraperitoneal (IP) injection before ischemia, and continued after IRI that was performed through bilateral clamping of the renal pedicles. 96 h after reperfusion, rats were sacrificed for the evaluation of autophagy, apoptosis, and cell cycle arrest. Additionally, assessments of toll-like receptors (TLR), interferon gamma (IFN-g) and sodium-hydrogen exchanger-1 (NHE-1) were also performed to examine their relations to OCT-mediated cell response. RESULTS Treatment with OCT-attenuated functional deterioration and histological damage in IRI induced AKI, and significantly decreased cell apoptosis and fibrosis. In comparison with IRI rats, OCT + IRI rats manifested a significant exacerbation of autophagy as well as reduced cell cycle arrest. Moreover, the administration of OCT decreased IRI-induced upregulation of TLR4, IFN-g and NHE-1. CONCLUSION These results demonstrate that treatment with OCT has a renoprotective effect in ischemic AKI, possibly by suppressing cell loss. Changes in the expression of IFN-g and NHE-1 could partially link OCT to the cell survival-promoted effects.
Collapse
Affiliation(s)
- Magda Hamzawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mary Attia Morcos
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Shoukry
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt. .,Cairo University Hospitals, Cairo, Egypt.
| |
Collapse
|
8
|
Fischer D, Seifen C, Baer P, Jung M, Mertens C, Scheller B, Zacharowski K, Hofmann R, Maier TJ, Urbschat A. The Fibrin Cleavage Product Bβ 15-42 Channels Endothelial and Tubular Regeneration in the Post-acute Course During Murine Renal Ischemia Reperfusion Injury. Front Pharmacol 2018; 9:369. [PMID: 29755348 PMCID: PMC5934548 DOI: 10.3389/fphar.2018.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Early and adequate restoration of endothelial and tubular renal function is a substantial step during regeneration after ischemia reperfusion (IR) injury, occurring, e.g., in kidney transplantation, renal surgery, and sepsis. While tubular epithelial cell injury has long been of central importance, recent perception includes the renal vascular endothelium. In this regard, the fibrin cleavage product fibrinopeptide Bβ15-42 mitigate IR injury by stabilizing interendothelial junctions through its affinity to VE-cadherin. Therefore, this study focused on the effect of Bβ15-42 on post-acute physiological renal regeneration. For this, adult male C57BL/6 mice were exposed to a 30 min bilateral renal ischemia and reperfusion for 24 h or 48 h. Animals were randomized in a non-operative control group, two operative groups each treated with i.v. administration of either saline or Bβ15-42 (2.4 mg/kg) immediately prior to reperfusion. Endothelial activation and inflammatory response was attenuated in renal tissue homogenates by single application of Bβ15-42. Meanwhile, Bβ15-42 did not affect acute kidney injury markers. Regarding the angiogenetic players VEGF-A, Angiopoietin-1, Angiopoietin-2, however, we observed significant higher expressions at mRNA and trend to higher protein level in Bβ15-42 treated mice, compared to saline treated mice after 48 h of IR, thus pointing toward an increased angiogenetic activity. Similar dynamics were observed for the intermediate filament vimentin, the cytoprotective protein klotho, stathmin and the proliferation cellular nuclear antigen, which were significantly up-regulated at the same points in time. These results suggest a beneficial effect of anatomical contiguously located endothelial cells on tubular regeneration through stabilization of endothelial integrity. Therefore, it seems that Bβ15-42 represents a novel pharmacological approach in the targeted therapy of acute renal failure in everyday clinical practice.
Collapse
Affiliation(s)
- Dania Fischer
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Christopher Seifen
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Patrick Baer
- Clinic of Internal Medicine III, Division of Nephrology, University Hospital Frankfurt, Frankfurt, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Christina Mertens
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bertram Scheller
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Rainer Hofmann
- Clinic of Urology and Pediatric Urology, Philipps University of Marburg, Marburg, Germany
| | - Thorsten J Maier
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anja Urbschat
- Clinic of Urology and Pediatric Urology, Philipps University of Marburg, Marburg, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Weber HM, Tsurkan MV, Magno V, Freudenberg U, Werner C. Heparin-based hydrogels induce human renal tubulogenesis in vitro. Acta Biomater 2017; 57:59-69. [PMID: 28526628 DOI: 10.1016/j.actbio.2017.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 12/01/2022]
Abstract
Dialysis or kidney transplantation is the only therapeutic option for end stage renal disease. Accordingly, there is a large unmet clinical need for new causative therapeutic treatments. Obtaining robust models that mimic the complex nature of the human kidney is a critical step in the development of new therapeutic strategies. Here we establish a synthetic in vitro human renal tubulogenesis model based on a tunable glycosaminoglycan-hydrogel platform. In this system, renal tubulogenesis can be modulated by the adjustment of hydrogel mechanics and degradability, growth factor signaling, and the presence of insoluble adhesion cues, potentially providing new insights for regenerative therapy. Different hydrogel properties were systematically investigated for their ability to regulate renal tubulogenesis. Hydrogels based on heparin and matrix metalloproteinase cleavable peptide linker units were found to induce the morphogenesis of single human proximal tubule epithelial cells into physiologically sized tubule structures. The generated tubules display polarization markers, extracellular matrix components, and organic anion transport functions of the in vivo renal proximal tubule and respond to nephrotoxins comparable to the human clinical response. The established hydrogel-based human renal tubulogenesis model is thus considered highly valuable for renal regenerative medicine and personalized nephrotoxicity studies. STATEMENT OF SIGNIFICANCE The only cure for end stage kidney disease is kidney transplantation. Hence, there is a huge need for reliable human kidney models to study renal regeneration and establish alternative treatments. Here we show the development and application of an in vitro human renal tubulogenesis model using heparin-based hydrogels. To the best of our knowledge, this is the first system where human renal tubulogenesis can be monitored from single cells to physiologically sized tubule structures in a tunable hydrogel system. To validate the efficacy of our model as a drug toxicity platform, a chemotherapy drug was incubated with the model, resulting in a drug response similar to human clinical pathology. The established model could have wide applications in the field of nephrotoxicity and renal regenerative medicine and offer a reliable alternative to animal models.
Collapse
Affiliation(s)
- Heather M Weber
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Valentina Magno
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
10
|
Bertinat R, Silva P, Mann E, Li X, Nualart F, Yáñez AJ. In vivo sodium tungstate treatment prevents E-cadherin loss induced by diabetic serum in HK-2 cell line. J Cell Physiol 2015; 230:2437-46. [PMID: 25728412 DOI: 10.1002/jcp.24974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/24/2015] [Indexed: 01/06/2023]
Abstract
Diabetic nephropathy (DN) is characterized by interstitial inflammation and fibrosis, which is the result of chronic accumulation of extracellular matrix produced by activated fibroblasts in the renal tubulointerstitium. Renal proximal tubular epithelial cells (PTECs), through the process of epithelial-to-mesenchymal transition (EMT), are the source of fibroblasts within the interstitial space, and loss of E-cadherin has shown to be one of the earliest steps in this event. Here, we studied the effect of the anti-diabetic agent sodium tungstate (NaW) in the loss of E-cadherin induced by transforming growth factor (TGF) β-1, the best-characterized in vitro EMT promoter, and serum from untreated or NaW-treated diabetic rats in HK-2 cell line, a model of human kidney PTEC. Our results showed that both TGFβ-1 and serum from diabetic rat induced a similar reduction in E-cadherin expression. However, E-cadherin loss induced by TGFβ-1 was not reversed by NaW, whereas sera from NaW-treated rats were able to protect HK-2 cells. Searching for soluble mediators of NaW effect, we compared secretion of TGFβ isoforms and vascular endothelial growth factor (VEGF)-A, which have opposite actions on EMT. One millimolar NaW alone reduced secretion of both TGFβ-1 and -2, and stimulated secretion of VEGF-A after 48 h. However, these patterns of secretion were not observed after diabetic rat serum treatment, suggesting that protection from E-cadherin loss by serum from NaW-treated diabetic rats originates from an indirect rather than a direct effect of this salt on HK-2 cells, via a mechanism independent of TGFβ and VEGF-A functions.
Collapse
Affiliation(s)
- Romina Bertinat
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro de Microscopía Avanzada (CMA)-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Pamela Silva
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Elizabeth Mann
- Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xuhang Li
- Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Francisco Nualart
- Centro de Microscopía Avanzada (CMA)-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Alejandro J Yáñez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro de Microscopía Avanzada (CMA)-Bío Bío, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
11
|
Moon KH, Ko IK, Yoo JJ, Atala A. Kidney diseases and tissue engineering. Methods 2015; 99:112-9. [PMID: 26134528 DOI: 10.1016/j.ymeth.2015.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/12/2015] [Accepted: 06/25/2015] [Indexed: 02/08/2023] Open
Abstract
Kidney disease is a worldwide public health problem. Renal failure follows several disease stages including acute and chronic kidney symptoms. Acute kidney injury (AKI) may lead to chronic kidney disease (CKD), which can progress to end-stage renal disease (ESRD) with a mortality rate. Current treatment options are limited to dialysis and kidney transplantation; however, problems such as donor organ shortage, graft failure and numerous complications remain a concern. To address this issue, cell-based approaches using tissue engineering (TE) and regenerative medicine (RM) may provide attractive approaches to replace the damaged kidney cells with functional renal specific cells, leading to restoration of normal kidney functions. While development of renal tissue engineering is in a steady state due to the complex composition and highly regulated functionality of the kidney, cell therapy using stem cells and primary kidney cells has demonstrated promising therapeutic outcomes in terms of restoration of renal functions in AKI and CKD. In this review, basic components needed for successful renal kidney engineering are discussed, and recent TE and RM approaches to treatment of specific kidney diseases will be presented.
Collapse
Affiliation(s)
- Kyung Hyun Moon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA; Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
12
|
Diverse Cell Populations Involved in Regeneration of Renal Tubular Epithelium following Acute Kidney Injury. Stem Cells Int 2015; 2015:964849. [PMID: 26089922 PMCID: PMC4452180 DOI: 10.1155/2015/964849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/06/2014] [Indexed: 12/17/2022] Open
Abstract
Renal tubular epithelium has the capacity to regenerate, repair, and reepithelialize in response to a variety of insults. Previous studies with several kidney injury models demonstrated that various growth factors, transcription factors, and extracellular matrices are involved in this process. Surviving tubular cells actively proliferate, migrate, and differentiate in the kidney regeneration process after injury, and some cells express putative stem cell markers or possess stem cell properties. Using fate mapping techniques, bone marrow-derived cells and endothelial progenitor cells have been shown to transdifferentiate into tubular components in vivo or ex vivo. Similarly, it has been demonstrated that, during tubular cell regeneration, several inflammatory cell populations migrate, assemble around tubular cells, and interact with tubular cells during the repair of tubular epithelium. In this review, we describe recent advances in understanding the regeneration mechanisms of renal tubules, particularly the characteristics of various cell populations contributing to tubular regeneration, and highlight the targets for the development of regenerative medicine for treating kidney diseases in humans.
Collapse
|
13
|
Koyner JL, Shaw AD, Chawla LS, Hoste EAJ, Bihorac A, Kashani K, Haase M, Shi J, Kellum JA. Tissue Inhibitor Metalloproteinase-2 (TIMP-2)⋅IGF-Binding Protein-7 (IGFBP7) Levels Are Associated with Adverse Long-Term Outcomes in Patients with AKI. J Am Soc Nephrol 2014; 26:1747-54. [PMID: 25535301 DOI: 10.1681/asn.2014060556] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/26/2014] [Indexed: 01/06/2023] Open
Abstract
Tissue inhibitor metalloproteinase-2 (TIMP-2) and IGF-binding protein-7 (IGFBP7) have been validated for risk stratification in AKI. However, the association of urinary TIMP-2 and IGFBP7 with long-term outcomes is unknown. We evaluated the 9-month incidence of a composite end point of all-cause mortality or the need for RRT in a secondary analysis of a prospective observational international study of critically ill adults. Two predefined [TIMP-2]⋅[IGFBP7] cutoffs (0.3 for high sensitivity and 2.0 for high specificity) for the development of AKI were evaluated. Cox proportional hazards models were used to determine risk for the composite end point. Baseline [TIMP-2]⋅[IGFBP7] values were available for 692 subjects, of whom 382 (55.2%) subjects developed stage 1 AKI (defined by Kidney Disease Improving Global Outcomes guidelines) within 72 hours of enrollment and 217 (31.4%) subjects met the composite end point. Univariate analysis showed that [TIMP-2]⋅[IGFBP7]>2.0 was associated with increased risk of the composite end point (hazard ratio [HR], 2.11; 95% confidence interval [95% CI], 1.37 to 3.23; P<0.001). In a multivariate analysis adjusted for the clinical model, [TIMP-2]⋅[IGFBP7] levels>0.3 were associated with death or RRT only in subjects who developed AKI (compared with levels≤0.3: HR, 1.44; 95% CI, 1.00 to 2.06 for levels>0.3 to ≤2.0; P=0.05 and HR, 2.16; 95% CI, 1.32 to 3.53 for levels>2.0; P=0.002). In conclusion, [TIMP-2]⋅[IGFBP7] measured early in the setting of critical illness may identify patients with AKI at increased risk for mortality or receipt of RRT over the next 9 months.
Collapse
Affiliation(s)
- Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Andrew D Shaw
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lakhmir S Chawla
- Department of Medicine, Divisions of Intensive Care Medicine and Nephrology, Washington DC Veterans Affairs Medical Center, Washington DC
| | - Eric A J Hoste
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Azra Bihorac
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Kianoush Kashani
- Department of Medicine, Division of Nephrology and Hypertension and Division of Pulmonary Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael Haase
- Department of Nephrology, Hypertension, Diabetes and Endocrinology, Otto von Guericke University, Magdeburg, Germany
| | - Jing Shi
- Statistics at Walker BioSciences, Carlsbad, California; and
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
14
|
Levitsky J, Baker TB, Jie C, Ahya S, Levin M, Friedewald J, Al-Saden P, Salomon DR, Abecassis MM. Plasma protein biomarkers enhance the clinical prediction of kidney injury recovery in patients undergoing liver transplantation. Hepatology 2014; 60:2017-26. [PMID: 25078558 DOI: 10.1002/hep.27346] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/28/2014] [Indexed: 12/23/2022]
Abstract
UNLABELLED Biomarkers predictive of recovery from acute kidney injury (AKI) after liver transplantation (LT) could enhance decision algorithms regarding the need for liver-kidney transplantation or renal sparing regimens. Multianalyte plasma/urine kidney injury protein panels were performed immediately before and 1 month post-LT in an initial test group divided by reversible pre-LT AKI (rAKI = post-LT renal recovery) versus no AKI (nAKI). This was followed by a larger validation set that included an additional group: irreversible pre-LT AKI (iAKI = no post-LT renal recovery). In the test group (n = 16), six pre-LT plasma (not urine) kidney injury proteins (osteopontin [OPN], neutrophil gelatinase-associated lipocalin, cystatin C, trefoil factor 3, tissue inhibitor of metalloproteinase [TIMP]-1, and β-2-microglobulin) were higher in rAKI versus nAKI (P < 0.05) and returned to normal values with renal recovery post-LT. In the validation set (n = 46), a number of proteins were significantly higher in both rAKI and iAKI versus nAKI. However, only pre-LT plasma OPN (P = 0.009) and TIMP-1 (P = 0.019) levels were significantly higher in rAKI versus iAKI. Logistic regression modeling was used to correlate the probability of post-LT rAKI, factoring in both pre-LT protein markers and clinical variables. A combined model including elevated OPN and TIMP-1 levels, age <57, and absence of diabetes had the highest area under the curve of 0.82, compared to protein-only and clinical variable-only models. CONCLUSION These data suggest that plasma protein profiles might improve the prediction of pre-LT kidney injury recovery after LT. However, multicenter, prospective studies are needed to validate these findings and ultimately test the value of such protein panels in perioperative management and decision making.
Collapse
Affiliation(s)
- Josh Levitsky
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu CJ, Jones DS, Tsai PC, Venkataramana A, Cochran JR. An engineered dimeric fragment of hepatocyte growth factor is a potent c-MET agonist. FEBS Lett 2014; 588:4831-7. [PMID: 25451235 DOI: 10.1016/j.febslet.2014.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/02/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023]
Abstract
Hepatocyte growth factor (HGF), through activation of the c-MET receptor, mediates biological processes critical for tissue regeneration; however, its clinical application is limited by protein instability and poor recombinant expression. We previously engineered an HGF fragment (eNK1) that possesses increased stability and expression yield and developed a c-MET agonist by coupling eNK1 through an introduced cysteine residue. Here, we further characterize this eNK1 dimer and show it elicits significantly greater c-MET activation, cell migration, and proliferation than the eNK1 monomer. The efficacy of the eNK1 dimer was similar to HGF, suggesting its promise as a c-MET agonist.
Collapse
Affiliation(s)
- Cassie J Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States
| | - Douglas S Jones
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Ping-Chuan Tsai
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | | | - Jennifer R Cochran
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States; Department of Bioengineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
16
|
Biotechnological challenges of bioartificial kidney engineering. Biotechnol Adv 2014; 32:1317-1327. [PMID: 25135479 DOI: 10.1016/j.biotechadv.2014.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/05/2014] [Accepted: 08/09/2014] [Indexed: 12/14/2022]
Abstract
With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed.
Collapse
|
17
|
Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:595493. [PMID: 24895592 PMCID: PMC4034406 DOI: 10.1155/2014/595493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/15/2014] [Indexed: 02/08/2023]
Abstract
The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.
Collapse
|
18
|
Grabias BM, Konstantopoulos K. The physical basis of renal fibrosis: effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 2013; 306:F473-85. [PMID: 24352503 DOI: 10.1152/ajprenal.00503.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Healthy kidneys are continuously exposed to an array of physical forces as they filter the blood: shear stress along the inner lumen of the tubules, distension of the tubular walls in response to changing fluid pressures, and bending moments along both the cilia and microvilli of individual epithelial cells that comprise the tubules. Dysregulation of kidney homeostasis via underlying medical conditions such as hypertension, diabetes, or glomerulonephritis fundamentally elevates the magnitudes of each principle force in the kidney and leads to fibrotic scarring and eventual loss of organ function. The purpose of this review is to summarize the progress made characterizing the response of kidney cells to pathological levels of mechanical stimuli. In particular, we examine important, mechanically responsive signaling cascades and explore fundamental changes in renal cell homeostasis after cyclic strain or fluid shear stress exposure. Elucidating the effects of these disease-related mechanical imbalances on endogenous signaling events in kidney cells presents a unique opportunity to better understand the fibrotic process.
Collapse
Affiliation(s)
- Bryan M Grabias
- Dept. of Chemical and Biomolecular Engineering, The Johns Hopkins Univ., New Engineering Bldg. 114, 3400 N. Charles St., Baltimore, MD 21218.
| | | |
Collapse
|
19
|
Chu CY, Wang CC. Toxicity of melamine: the public health concern. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:342-386. [PMID: 24171438 DOI: 10.1080/10590501.2013.844758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Melamine contamination in food has resulted in sickness and deaths of human infants, pets, and farm animals in the past decade. The majority of the victims suffered from acute kidney injury, nephrolithiasis, and urolithiasis. Since then, animal studies have revealed the possible target organs of the melamine toxicity and the extent of the adverse effects of the contaminant. State-of-the-art analytical methods have been developed to achieve the "zero tolerance" aim for such economically motivated adulteration. These studies provide in-depth understanding of the melamine toxicity and promising analytical methods, which can help us safeguard our dairy food source.
Collapse
Affiliation(s)
- C Y Chu
- a Department of Obstetrics and Gynaecology , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | | |
Collapse
|
20
|
Performance of urinary and gene expression biomarkers in detecting the nephrotoxic effects of melamine and cyanuric acid following diverse scenarios of co-exposure. Food Chem Toxicol 2012; 51:106-13. [PMID: 23022069 DOI: 10.1016/j.fct.2012.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/28/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022]
Abstract
Although standard nephrotoxicity assessments primarily detect impaired renal function, KIM-1, clusterin, NGAL, osteopontin and TIMP-1 were recently identified biomarkers proposed to indicate earlier perturbations in renal integrity. The recent adulteration of infant and pet food with melamine (MEL) and structurally-related compounds revealed that co-ingestion of MEL and cyanuric acid (CYA) could form melamine-cyanurate crystals which obstruct renal tubules and induce acute renal failure. This study concurrently evaluated the ability of multiplexed urinary biomarker immunoassays and biomarker gene expression analysis to detect nephrotoxicity in F344 rats co-administered 60ppm each of MEL and CYA in feed or via gavage for 28days. The biomarkers were also evaluated for the ability to differentiate the effects of the compounds when co-administered using diverse dosing schedules (i.e., consecutive vs. staggered gavage) and dosing matrixes (i.e., feed vs. gavage). Our results illustrate the ability of both methods to detect and differentiate the severity of adverse effects in the staggered and consecutive gavage groups at much lower doses than previously observed in animals co-exposed to the compounds in feed. We also demonstrate that these urinary biomarkers outperform traditional diagnostic methods and represent a powerful, non-invasive indicator of chemical-induced nephrotoxicity prior to the onset of renal dysfunction.
Collapse
|
21
|
Shuai L, Li X, He Q, Dang X, Chen H, Zhou P, Yi Z, He X. Angiogenic effect of endothelial progenitor cells transfected with telomerase reverse transcriptase on peritubular microvessel in five out of six subtotal nephrectomy rats. Ren Fail 2012; 34:1270-80. [PMID: 23013219 DOI: 10.3109/0886022x.2012.723592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Renal disease is caused by tubular interstitial injury and renal interstitial fibrosis. Previous studies have shown that transplantation of endothelial progenitor cells (EPCs) may provide an appropriate treatment for repair and reversing renal pathology. However, EPCs are typically low in abundance and have poor replication ability. Therefore, the this study investigated the use of EPCs transfected with the telomerase reverse transcriptase (TERT) in rats that had undergone five out of six subtotal nephrectomy. This study determined the effects of EPC transplantation on renal function, renal interstitial fibrosis, and peritubular capillary angiogenesis. Five groups of rats were investigated: sham group, model group (five out of six subtotal nephrectomy), EPCs-N group (transplantation with EPCs), pZ-TERT-EPCs-N group (transplantation with EPCs transfected with TERT), and pZ-EPCs-N group (transplantation with EPCs transfected with empty plasmid). At weeks 4, 8, and 12 after transplantation, renal function, renal interstitial fibrosis, and peritubular microvessel density (MVD) were investigated. EPCs transfected with TERT gene showed decreased in vitro senescence, apoptosis, and proliferative ability was significantly enhanced (p < 0.05). Furthermore, rat transplanted with EPCs transfected with TERT showed significantly reduced renal interstitial fibrosis and increased endogenous creatinine clearance rate and peritubular MVD (p < 0.05). The transplantation of EPCs expressing TERT into five out of six subtotal nephrectomy rats was shown to improve renal function, reduce loss of peritubular microvessel, and inhibit progression of renal interstitial fibrosis. These studies provide the basis for a potential treatment of renal disease using genetically modified EPCs.
Collapse
Affiliation(s)
- Lanjun Shuai
- Laboratory of Pediatric Nephrology, The Second Xiangya Hospital, Central South University & Hunan Province Clinical Center of Pediatric Nephrology, Changsha, PR China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tasnim F, Zink D. Cross talk between primary human renal tubular cells and endothelial cells in cocultures. Am J Physiol Renal Physiol 2012; 302:F1055-62. [DOI: 10.1152/ajprenal.00621.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| |
Collapse
|
23
|
Current world literature. Curr Opin Pediatr 2012; 24:277-84. [PMID: 22414891 DOI: 10.1097/mop.0b013e328351e459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Matrix metalloproteinases and their tissue inhibitors in hypertension-related pregnancy complications. J Hum Hypertens 2012; 27:72-8. [DOI: 10.1038/jhh.2012.8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|