1
|
Sun H, Paudel O, Sham JSK. Increased intracellular Cl - concentration in pulmonary arterial myocytes is associated with chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 2021; 321:C297-C307. [PMID: 34161154 DOI: 10.1152/ajpcell.00172.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloride channels play an important role in regulating smooth muscle contraction and proliferation, and contribute to the enhanced constriction of pulmonary arteries (PAs) in pulmonary hypertension (PH). The intracellular Cl- concentration ([Cl-]i), tightly regulated by various Cl- transporters, determines the driving force for Cl- conductance, thereby the functional outcome of Cl- channel activation. This study characterizes for the first time the expression profile of Cl- transporters/exchangers in PA smooth muscle and provides the first evidence that the intracellular Cl- homeostasis is altered in PA smooth muscle cells (PASMCs) associated with chronic hypoxic PH (CHPH). Quantitative RT-PCR revealed that the endothelium-denuded intralobar PA of rats expressed Slc12a gene family-encoded Na-K-2Cl cotransporter 1 (NKCC1), K-Cl cotransporters (KCC) 1, 3, and 4, and Slc4a gene family-encoded Na+-independent and Na+-dependent Cl-/HCO3- exchangers. Exposure of rats to chronic hypoxia (10% O2, 3 wk) caused CHPH and selectively increased the expression of Cl--accumulating NKCC1 and reduced the Cl--extruding KCC4. The intracellular Cl- concentration ([Cl-]i) averaged at 45 mM and 47 mM in normoxic PASMCs as determined by fluorescent indicator MEQ and by gramicidin-perforated patch-clamp technique, respectively. The ([Cl-]i was increased by ∼10 mM in PASMCs of rats with CHPH. Future studies are warranted to further establish the hypothesis that the altered intracellular Cl- homeostasis contributes to the pathogenesis of CHPH.
Collapse
Affiliation(s)
- Hui Sun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Wang Y, Wang X, Chen S, Tian X, Zhang L, Huang Y, Tang C, Du J, Jin H. Sulfur Dioxide Activates Cl -/HCO 3 - Exchanger via Sulphenylating AE2 to Reduce Intracellular pH in Vascular Smooth Muscle Cells. Front Pharmacol 2019; 10:313. [PMID: 30971931 PMCID: PMC6446831 DOI: 10.3389/fphar.2019.00313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Sulfur dioxide (SO2) is a colorless and irritating gas. Recent studies indicate that SO2 acts as the gas signal molecule and inhibits vascular smooth muscle cell (VSMC) proliferation. Cell proliferation depends on intracellular pH (pHi). Transmembrane cystein mutation of Na+- independent Cl-/HCO3 - exchanger (anion exchanger, AE) affects pHi. However, whether SO2 inhibits VSMC proliferation by reducing pHi is still unknown. Here, we investigated whether SO2 reduced pHi to inhibit the proliferation of VSMCs and explore its molecular mechanisms. Within a range of 50-200 μM, SO2 was found to lower the pHi in VSMCs. Concurrently, NH4Cl pre-perfusion showed that SO2 significantly activated AE, whereas the AE inhibitor 4,4'-diisothiocyanatostilbene- 2,20-disulfonic acid (DIDS) significantly attenuated the effect of SO2 on pHi in VSMCs. While 200 μM SO2 sulphenylated AE2, while dithiothreitol (DTT) blocked the sulphenylation of AE2 and subsequent AE activation by SO2, thereby restoring the pHi in VSMCs. Furthermore, DIDS pretreatment eliminated SO2-induced inhibition of PDGF-BB-stimulated VSMC proliferation. We report for the first time that SO2 inhibits VSMC proliferation in part by direct activation of the AE via posttranslational sulphenylation and induction of intracellular acidification.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Yao B, Liu DW, Chai WZ, Wang XT, Zhang HM. Microcirculation dysfunction in endotoxic shock rabbits is associated with impaired S-nitrosohemoglobin-mediated nitric oxide release from red blood cells: a preliminary study. Intensive Care Med Exp 2019; 7:1. [PMID: 30617929 PMCID: PMC6323059 DOI: 10.1186/s40635-018-0215-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/25/2018] [Indexed: 12/27/2022] Open
Abstract
Background Microcirculation dysfunction with blood flow heterogeneity is an important characteristic in sepsis shock. We hypothesized that impaired ability of red blood cells to release nitric oxide resulted in microcirculation dysfunction in sepsis shock. Methods 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS), an inhibitor of band3 protein, was used to inhibit S-nitrosohemoglobin-mediated nitric oxide release. Rabbits were randomly divided into four groups: control (n = 6), lipopolysaccharide (LPS) (n = 6), LPS + DIDS (n = 6), and control + DIDS group (n = 6). Macrocirculation (cardiac output and mean arterial pressure) and microcirculation (microvascular flow index and flow heterogeneity index) parameters were recorded. At 2-h time point, arterial and venous S-nitrosohemoglobin concentrations were measured. Results The arterial–venous difference for S-nitrosohemoglobin in the LPS group was lower than the control group (27.3 ± 5.0 nmmol/L vs. 40.9 ± 6.2 nmmol/L, P < 0.05) but was higher than the LPS + DIDS group, with a statistically significant difference (27.3 ± 5.0 nmmol/L vs. 16.0 ± 4.2 nmmol/L, P < 0.05). Microvascular flow index for the LPS group at 2 h was lower than the control group (1.13 ± 0.16 vs. 2.82 ± 0.08, P < 0.001) and higher than the LPS + DIDS group (1.13 ± 0.16 vs. 0.84 ± 0.14, P < 0.05). Flow heterogeneity index for the LPS group at 2 h was higher than the control group (1.03 ± 0.27 vs. 0.16 ± 0.06, P < 0.001) and lower than the LPS + DIDS group (1.03 ± 0.27 vs. 1.78 ± 0.46, P < 0.001). Conclusions In endotoxic shock rabbits, the ability of S-nitrosohemoglobin-mediated nitric oxide release from RBC was impaired, and there was an association between the ability and microcirculation dysfunction especially increased blood flow heterogeneity. Electronic supplementary material The online version of this article (10.1186/s40635-018-0215-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Yao
- Department of Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Da-Wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Wen-Zhao Chai
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao-Ting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hong-Min Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
4
|
Boedtkjer E. Acid-base regulation and sensing: Accelerators and brakes in metabolic regulation of cerebrovascular tone. J Cereb Blood Flow Metab 2018; 38:588-602. [PMID: 28984162 PMCID: PMC5888856 DOI: 10.1177/0271678x17733868] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022]
Abstract
Metabolic regulation of cerebrovascular tone directs blood flow to areas of increased neuronal activity and during disease states partially compensates for insufficient perfusion by enhancing blood flow in collateral blood vessels. Acid-base disturbances frequently occur as result of enhanced metabolism or insufficient blood supply, but despite definitive evidence that acid-base disturbances alter arterial tone, effects of individual acid-base equivalents and the underlying signaling mechanisms are still being debated. H+ is an important intra- and extracellular messenger that modifies cerebrovascular tone. In addition, low extracellular [HCO3-] promotes cerebrovascular contraction through an endothelium-dependent mechanism. CO2 alters arterial tone development via changes in intra- and extracellular pH but it is still controversial whether CO2 also has direct vasomotor effects. Vasocontractile responses to low extracellular [HCO3-] and acute CO2-induced decreases in intracellular pH can counteract H+-mediated vasorelaxation during metabolic and respiratory acidosis, respectively, and may thereby reduce the risk of capillary damage and cerebral edema that could be consequences of unopposed vasodilation. In this review, the signaling mechanisms for acid-base equivalents in cerebral arteries and the mechanisms of intracellular pH control in the arterial wall are discussed in the context of metabolic regulation of cerebrovascular tone and local perfusion.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Boedtkjer E, Matchkov VV, Boedtkjer DMB, Aalkjaer C. Negative News: Cl− and HCO3− in the Vascular Wall. Physiology (Bethesda) 2016; 31:370-83. [DOI: 10.1152/physiol.00001.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cl− and HCO3− are the most prevalent membrane-permeable anions in the intra- and extracellular spaces of the vascular wall. Outwardly directed electrochemical gradients for Cl− and HCO3− permit anion channel opening to depolarize vascular smooth muscle and endothelial cells. Transporters and channels for Cl− and HCO3− also modify vascular contractility and structure independently of membrane potential. Transport of HCO3− regulates intracellular pH and thereby modifies the activity of enzymes, ion channels, and receptors. There is also evidence that Cl− and HCO3− transport proteins affect gene expression and protein trafficking. Considering the extensive implications of Cl− and HCO3− in the vascular wall, it is critical to understand how these ions are transported under physiological conditions and how disturbances in their transport can contribute to disease development. Recently, sensing mechanisms for Cl− and HCO3− have been identified in the vascular wall where they modify ion transport and vasomotor function, for instance, during metabolic disturbances. This review discusses current evidence that transport (e.g., via NKCC1, NBCn1, Ca2+-activated Cl− channels, volume-regulated anion channels, and CFTR) and sensing (e.g., via WNK and RPTPγ) of Cl− and HCO3− influence cardiovascular health and disease.
Collapse
Affiliation(s)
| | | | - Donna M. B. Boedtkjer
- Department of Biomedicine, Aarhus University, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark; and
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO₃⁻) transporters. Mol Aspects Med 2013; 34:159-82. [PMID: 23506864 DOI: 10.1016/j.mam.2012.10.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023]
Abstract
The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
7
|
Boedtkjer E, Kim S, Aalkjaer C. Endothelial alkalinisation inhibits gap junction communication and endothelium-derived hyperpolarisations in mouse mesenteric arteries. J Physiol 2013; 591:1447-61. [PMID: 23297309 DOI: 10.1113/jphysiol.2012.247478] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract Gap junctions mediate intercellular signalling in arteries and contribute to endothelium-dependent vasorelaxation, conducted vascular responses and vasomotion. Considering its putative role in vascular dysfunction, mechanistic insights regarding the control of gap junction conductivity are required. Here, we investigated the consequences of endothelial alkalinisation for gap junction communication and endothelium-dependent vasorelaxation in resistance arteries. We studied mesenteric arteries from NMRI mice by myography, confocal fluorescence microscopy and electrophysiological techniques. Removing CO2/HCO3(-), reducing extracellular [Cl(-)] or adding 4,4-diisothiocyanatostilbene-2,2-disulphonic acid inhibited or reversed Cl(-)/HCO3(-) exchange, alkalinised the endothelium by 0.2-0.3 pH units and inhibited acetylcholine-induced vasorelaxation. NO-synthase-dependent vasorelaxation was unaffected by endothelial alkalinisation whereas vasorelaxation dependent on small- and intermediate-conductance Ca(2+)-activated K(+) channels was attenuated by ∼75%. The difference in vasorelaxation between arteries with normal and elevated endothelial intracellular pH (pHi) was abolished by the gap junction inhibitors 18β-glycyrrhetinic acid and carbenoxolone while other putative modulators of endothelium-derived hyperpolarisations - Ba(2+), ouabain, iberiotoxin, 8Br-cAMP and polyethylene glycol catalase - had no effect. In the absence of CO2/HCO3(-), addition of the Na(+)/H(+)-exchange inhibitor cariporide normalised endothelial pHi and restored vasorelaxation to acetylcholine. Endothelial hyperpolarisations and Ca(2+) responses to acetylcholine were unaffected by omission of CO2/HCO3(-). By contrast, dye transfer between endothelial cells and endothelium-derived hyperpolarisations of vascular smooth muscle cells stimulated by acetylcholine or the proteinase-activated receptor 2 agonist SLIGRL-amide were inhibited in the absence of CO2/HCO3(-). We conclude that intracellular alkalinisation of endothelial cells attenuates endothelium-derived hyperpolarisations in resistance arteries due to inhibition of gap junction communication. These findings highlight the role of pHi in modulating vascular function.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- E. Boedtkjer: Department of Biomedicine, Aarhus University, Ole Worms Allé 6, Building 1180, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
8
|
Liu YH, Bian JS. Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in rat aortic rings. Am J Physiol Cell Physiol 2010; 299:C866-72. [DOI: 10.1152/ajpcell.00105.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous mediator, produces both vasorelaxation and vasoconstriction at different concentrations. We found in the present study that NaHS, an H2S donor, produced stronger vasorelaxant and weaker vasoconstrictive effects in HEPES solution compared with those achieved in Krebs solution. We further screened the buffer components and found that bicarbonate (HCO3−) was the ion to influence the effect of H2S. After examining the vasorelaxant effects of acetylcholine, a vasodilator by releasing nitric oxide, and isoprenaline, a β-adrenoceptor agonist, in HEPES and Krebs buffers, we found the HCO3−-dependent effect was specific to H2S. Blockade of anion exchanger-2 activity with 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) or with HCO3−-free solution abolished the vasoconstrictive effect of NaHS. Moreover, NaHS decreased nitric oxide level in the rat aorta in HCO3−-containing buffer, but this effect was abolished by HCO3−-free buffer or DIDS. In summary, we found for the first time that H2S stimulates anion exchanger to transport extracellular HCO3− in exchange for intracellular superoxide anions, which may further inactivate nitric oxide and induces vasoconstriction.
Collapse
Affiliation(s)
- Yi-Hong Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
9
|
Komlosi P, Frische S, Fuson AL, Fintha A, Zsembery A, Peti-Peterdi J, Bell PD. Characterization of basolateral chloride/bicarbonate exchange in macula densa cells. Am J Physiol Renal Physiol 2004; 288:F380-6. [PMID: 15479854 DOI: 10.1152/ajprenal.00285.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional and immunohistological studies were performed to identify basolateral chloride/bicarbonate exchange in macula densa cells. Using the isolated, perfused thick ascending limb with attached glomerulus preparation dissected from rabbit kidney, macula densa intracellular pH (pH(i)) was measured with fluorescence microscopy and BCECF. For these experiments, basolateral chloride was reduced, resulting in reversible macula densa cell alkalinization. Anion exchange activity was assessed by measuring the maximal net base efflux on readdition of bath chloride. Anion exchange activity required the presence of bicarbonate, was independent of changes in membrane potential, did not require the presence of sodium, and was inhibited by high concentrations of DIDS. Inhibition of macula densa anion exchange activity by basolateral DIDS increased luminal NaCl concentration-induced elevations in pH(i). Immunohistochemical studies using antibodies against AE2 demonstrated expression of AE2 along the basolateral membrane of macula densa cells of rabbit kidney. These results suggest that macula densa cells functionally and immunologically express a chloride/bicarbonate exchanger at the basolateral membrane. This transporter likely participates in the regulation of pH(i) and might be involved in macula densa signaling.
Collapse
Affiliation(s)
- Peter Komlosi
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Frische S, Zolotarev AS, Kim YH, Praetorius J, Alper S, Nielsen S, Wall SM. AE2 isoforms in rat kidney: immunohistochemical localization and regulation in response to chronic NH4Cl loading. Am J Physiol Renal Physiol 2004; 286:F1163-70. [PMID: 14749257 DOI: 10.1152/ajprenal.00409.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three splice variants of anion exchanger (AE)2 (AE2a, b, and c) have been described in the rat, but their relative distribution in rat kidney is not known. The purpose of this study was to describe the segmental and cellular distribution of the AE2 isoforms in the rat kidney and to evaluate whether the expression levels of these AE2 isoforms are regulated independently in response to chronic NH(4)Cl loading. Two polyclonal antibodies were generated, respectively, recognizing a NH(2)-terminal peptide unique to AE2a and an amino acid sequence common to AE2a and AE2b. Antibody specificities were tested using cells transfected separately with the AE2a, AE2b, and AE2c isoforms. Immunohistochemistry on sections of paraffin-embedded rat kidneys showed a distribution of AE2a/AE2b labeling in the kidney similar to the distribution of AE2 in the rat kidney reported previously. AE2 is highly expressed in the medullary thick ascending limb, cortical thick ascending limb (cTAL), and macula densa. The pattern of AE2a-specific labeling differed from the pattern of AE2a/AE2b labeling in that relatively more of the total immunolabel was observed in the terminal inner medullary collecting duct. NH(4)Cl loading (0.033 mmol NH(4)Cl/g body wt for 7 days) did not change the labeling of AE2 isoforms in the medulla, whereas the labeling in the cortex was intensified and included more distal parts of the cTAL. Immunoblotting confirmed upregulation of AE2a/b expression in the cortex. These results indicate that AE2a and AE2b are differentially expressed and regulated in the rat kidney. The regulation following NH(4)Cl loading of AE2b in the cTAL suggests a role for AE2 in transepithelial bicarbonate reabsorption in this segment.
Collapse
Affiliation(s)
- Sebastian Frische
- The Water and Salt Research Center, Bldg. 233/234, Univ. of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
11
|
Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO 3 - transporters. Pflugers Arch 2004; 447:495-509. [PMID: 14722772 DOI: 10.1007/s00424-003-1180-2] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 09/05/2003] [Indexed: 12/21/2022]
Abstract
The SLC4 family consists of ten genes. All appear to encode integral membrane proteins with very similar hydropathy plots-consistent with the presence of 10-14 transmembrane segments. At least eight SLC4 members encode proteins that transport HCO(3)(-) (or a related species, such as CO(3)(2-)) across the plasma membrane. Functionally, these eight proteins fall into two major groups: three Cl-HCO(3) exchangers (AE1-3) and five Na(+)-coupled HCO(3)(-) transporters (NBCe1, NBCe2, NBCn1, NDCBE, NCBE). Two of the Na(+)-coupled HCO(3)(- )transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO(3)(-) transporters and all three AEs are electroneutral. At least NDCBE transports Cl(-) in addition to Na(+) and HCO(3)(-). Whether NCBE transports Cl(-)-in addition to Na(+) and HCO(3)(-)-is unsettled. In addition, two other SLC4 members (AE4 and BTR1) do not yet have a firmly established function; on the basis of homology, they fall between the two major groups. A characteristic of many, though not all, SLC4 members is inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 gene products play important roles in the carriage of CO(2) by erythrocytes, the absorption or secretion of H(+) or HCO(3)(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Departments of Physiology and Biophysics and Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.
| | | | | |
Collapse
|
12
|
Ghio AJ, Nozik-Grayck E, Turi J, Jaspers I, Mercatante DR, Kole R, Piantadosi CA. Superoxide-dependent iron uptake: a new role for anion exchange protein 2. Am J Respir Cell Mol Biol 2003; 29:653-60. [PMID: 12791678 DOI: 10.1165/rcmb.2003-0070oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involving anion exchange protein 2 (AE2) and extracellular bicarbonate (HCO3-). HBE cells that constitutively express AE2 mRNA by reverse transcriptase-polymerase chain reaction and AE2 protein by Western analysis avidly transported NTBI after exposure to either Fe2+ or Fe3+, but reduction of Fe3+ to Fe2+ was first required. The ability of HBE cells to reduce Fe3+ and transport Fe2+ was inhibited by active extracellular superoxide dismutase (SOD). Similarly, HBE cells that overexpress Cu,Zn SOD after adenoviral infection with AdSOD1 showed diminished iron uptake. The role of AE2 in iron uptake was indicated by three lines of evidence: (i) lack of both iron reduction and iron transport in bicarbonate-free buffer at controlled pH, (ii) failure of HBE cells treated with stilbene AE inhibitors to reduce Fe3+ or transport iron, and (iii) inhibition of iron uptake in HBE cells by inhibition of AE2 protein expression with antisense oligonucleotides. We thus disclose a novel ferri-reductase mechanism of NTBI uptake by human lung cells that employs superoxide exchange for HCO3- by AE2 protein in the plasma membrane.
Collapse
Affiliation(s)
- Andrew J Ghio
- P.O. Box 3315, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Anion currents contribute to vascular smooth muscle (VSM) membrane potential. The substitution of extracellular chloride (Cl) with iodide (I) or bromide (Br) initially inhibited and then potentiated isometric contractile responses of rat aortic rings to norepinephrine. Anion substitution alone produced a small relaxation, which occurred despite a lack of active tone and minimal subsequent contraction of endothelium-intact rings (4.2 +/- 1.2% of the response to 90 mM KCl). Endothelium-denuded rings underwent a similar initial relaxation but then contracted vigorously (I > Br). Responses to 130 mM I (93.7 +/- 1.9% of 90 mM KCl) were inhibited by nifedipine (10(-6) M), niflumic acid (10(-5) M), tamoxifen (10(-5) M), DIDS (10(-4) M), and HCO(-)(3)-free buffer (HEPES 10 mM) but not by bumetanide (10(-5) M). Intact rings treated with N(omega)-nitro-L-arginine (10(-4) M) responded weakly to I (15.5 +/- 2.1% of 90 mM KCl), whereas hemoglobin (10(-5) M), indomethacin (10(-6) M), 17-octadecynoic acid (10(-5) M), and 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one (10(-6) M) all failed to augment the response of intact rings to I. We hypothesize that VSM takes up I primarily via an anion exchanger. Subsequent I efflux through anion channels having a selectivity of I > Br > Cl produces depolarization. In endothelium-denuded or agonist-stimulated vessels, this current is sufficient to activate voltage-dependent calcium channels and cause contraction. Neither nitric oxide nor prostaglandins are the primary endothelial modulator of these anion channels. If they are regulated by an endothelium-dependent hyperpolarizing factor it is not a cytochrome P-450 metabolite.
Collapse
Affiliation(s)
- F S Lamb
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|