1
|
Polidoro JZ, Luchi WM, Seguro AC, Malnic G, Girardi ACC. Paracrine and endocrine regulation of renal potassium secretion. Am J Physiol Renal Physiol 2022; 322:F360-F377. [DOI: 10.1152/ajprenal.00251.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The seminal studies conducted by Giebisch and colleagues in the 1960s paved the way for understanding the renal mechanisms involved in K+ homeostasis. It was demonstrated that differential handling of K+ in the distal segments of the nephron is crucial for proper K+ balance. Although aldosterone had been classically ascribed as the major ion transport regulator in the distal nephron, thereby contributing to K+ homeostasis, it became clear that aldosterone per se could not explain the kidney's ability to modulate kaliuresis in both acute and chronic settings. The existence of alternative kaliuretic and antikaliuretic mechanisms was suggested by physiological studies in the 1980s but only gained form and shape with the advent of molecular biology. It is now established that the kidneys recruit several endocrine and paracrine mechanisms for adequate kaliuretic response. These mechanisms include the direct effects of peritubular K+, a gut-kidney regulatory axis sensing dietary K+ levels, the kidney secretion of kallikrein during postprandial periods, the upregulation of angiotensin II receptors in the distal nephron during chronic changes in the K+ diet, and the local increase of prostaglandins by low K+ diet. This review discusses recent advances in the understanding of endocrine and paracrine mechanisms underlying the modulation of K+ secretion and how these mechanisms impact kaliuresis and K+ balance. We also highlight important unknowns about the regulation of renal K+ excretion under physiological circumstances.
Collapse
Affiliation(s)
- Juliano Z. Polidoro
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Weverton Machado Luchi
- Department of Internal Medicine, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Antonio Carlos Seguro
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
2
|
Asmar A, Mohandas R, Wingo CS. A physiologic-based approach to the treatment of a patient with hypokalemia. Am J Kidney Dis 2012; 60:492-7. [PMID: 22901631 DOI: 10.1053/j.ajkd.2012.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/31/2012] [Indexed: 01/15/2023]
Abstract
Hypokalemia is common and can be associated with serious adverse consequences, including paralysis, ileus, cardiac arrhythmias, and death. As a result, the body maintains serum potassium concentration within very narrow limits by tightly regulated feedback and feed-forward systems. Whereas the consequences of symptomatic hypokalemia and severe potassium depletion are well appreciated, chronic mild hypokalemia can accelerate the progression of chronic kidney disease, exacerbate systemic hypertension, and increase mortality. Persistent hypokalemia may reflect total-body potassium depletion or increased renal potassium clearance. In a patient with simple potassium depletion, potassium replacement therapy should correct serum potassium concentration, but may have little effect when renal potassium clearance is abnormally increased from potassium wasting. In such cases, the addition of potassium-sparing diuretics might be helpful. Serum potassium concentration is an inaccurate marker of total-body potassium deficit. Mild hypokalemia may be associated with significant total-body potassium deficits and conversely, total-body potassium stores can be normal in patients with hypokalemia due to redistribution. The speed and extent of potassium replacement should be dictated by the clinical picture and guided by frequent reassessment of serum potassium concentration(.) The goals of therapy should be to correct a potassium deficit, if present, without provoking hyperkalemia. Oral replacement is preferred except when there is no functioning bowel or in the setting of electrocardiogram changes, neurologic symptoms, cardiac ischemia, or digitalis therapy.
Collapse
Affiliation(s)
- Abdo Asmar
- Division of Nephrology, Hypertension, and Transplantation, University of Florida, College of Medicine, Gainesville, FL 32610-0224, USA
| | | | | |
Collapse
|
3
|
Fisher KD, Codina J, Petrovic S, DuBose TD. Pyk2 regulates H+-ATPase-mediated proton secretion in the outer medullary collecting duct via an ERK1/2 signaling pathway. Am J Physiol Renal Physiol 2012; 303:F1353-62. [PMID: 22811489 DOI: 10.1152/ajprenal.00008.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acid-secreting intercalated cells respond to changes in systemic pH through regulation of apical H(+) transporters. Little is known about the mechanism by which these cells sense changes in extracellular pH (pH(o)). Pyk2 is a nonreceptor tyrosine kinase activated by autophosphorylation at Tyr402 by cell-specific stimuli, including decreased pH, and is involved in the regulation of MAPK signaling pathways and transporter activity. We examined whether the Pyk2 and MAPK signaling pathway mediates the response of transport proteins to decreased pH in outer medullary collecting duct cells. Immunoblot analysis of phosphorylated Pyk2 (Tyr402), ERK1/2 (Thr202/Tyr204), and p38 (Thr180/Tyr182) was used to assay protein activation. To examine specificity of kinase activation and its effects, we used Pyk2 small interfering RNA to knockdown Pyk2 expression levels, the Src kinase inhibitor 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP 1) to inhibit Pyk2 phosphorylation, and the MEK inhibitor U0126 to inhibit ERK1/2 phosphorylation. The pH-sensitive fluorescent probe 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl ester (BCECF-AM) was used to assay H(+) transporter activity. The activity of H(+) transporters was measured as the rate of intracellular pH (pH(i)) recovery after an NH(4)Cl prepulse. We show that Pyk2 is endogenously expressed and activated by acid pH in mouse-derived outer medullary collecting duct (mOMCD1) cells. Incubation of mOMCD1 cells in acid media [extracellular pH (pH(o)) 6.7] increased the phosphorylation of Pyk2, ERK1/2, and p38. Reduction in pH(i) induced by an NH(4)Cl prepulse also increased the phosphorylation of Pyk2, ERK1/2, and p38. Consistent with our previous studies, we found that mOMCD1 cells exhibit H(+)-ATPase and H(+),K(+)-ATPase activity. Pyk2 inhibition by Pyk2 siRNA and PP 1 prevented Pyk2 phosphorylation as well as H(+)-ATPase-mediated recovery in mOMCD1 cells. In addition, ERK1/2 inhibition by U0126 prevented acid-induced ERK1/2 phosphorylation and H(+)-ATPase-mediated pH(i) recovery but not phosphorylation of p38. We conclude that Pyk2 and ERK1/2 are required for increasing H(+)-ATPase, but not H(+),K(+)-ATPase, activity at decreased pH(i) in mOMCD1 cells.
Collapse
Affiliation(s)
- Kimberly D Fisher
- Sections on Nephrology and Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
4
|
Nguyen MTX, Yang LE, Fletcher NK, Lee DH, Kocinsky H, Bachmann S, Delpire E, McDonough AA. Effects of K+-deficient diets with and without NaCl supplementation on Na+, K+, and H2O transporters' abundance along the nephron. Am J Physiol Renal Physiol 2012; 303:F92-104. [PMID: 22496411 DOI: 10.1152/ajprenal.00032.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dietary potassium (K(+)) restriction and hypokalemia have been reported to change the abundance of most renal Na(+) and K(+) transporters and aquaporin-2 isoform, but results have not been consistent. The aim of this study was to reexamine Na(+), K(+) and H(2)O transporters' pool size regulation in response to removing K(+) from a diet containing 0.74% NaCl, as well as from a diet containing 2% NaCl (as found in American diets) to blunt reducing total diet electrolytes. Sprague-Dawley rats (n = 5-6) were fed for 6 days with one of these diets: 2% KCl, 0.74% NaCl (2K1Na, control chow) compared with 0.03% KCl, 0.74% NaCl (0K1Na); or 2% KCl, 2%NaCl (2K2Na) compared with 0.03% KCl, 2% NaCl (0K2Na, Na(+) replete). In both 0K1Na and 0K2Na there were significant decreases in: 1) plasma [K(+)] (<2.5 mM); 2) urinary K(+) excretion (<5% of control); 3) urine osmolality and plasma [aldosterone], as well as 4) an increase in urine volume and medullary hypertrophy. The 0K2Na group had the lowest [aldosterone] (172.0 ± 17.4 pg/ml) and lower blood pressure (93.2 ± 4.9 vs. 112.0 ± 3.1 mmHg in 2K2Na). Transporter pool size regulation was determined by quantitative immunoblotting of renal cortex and medulla homogenates. The only differences measured in both 0K1Na and 0K2Na groups were a 20-30% decrease in cortical β-ENaC, 30-40% increases in kidney-specific Ste20/SPS1-related proline/alanine-rich kinase, and a 40% increase in medullary sodium pump abundance. The following proteins were not significantly changed in both the 0 K groups: Na(+)/H(+) exchanger isoform 3; Na(+)-K(+)-Cl(-) cotransporter; Na(+)-Cl(-) cotransporter, oxidative stress response kinase-1; renal outer medullary K(+) channel; autosomal recessive hypercholesterolemia; c-Src, aquaporin 2 isoform; or renin. Thus, despite profound hypokalemia and renal K(+) conservation, we did not confirm many of the changes that were previously reported. We predict that changes in transporter distribution and activity are likely more important for conserving K(+) than changes in total abundance.
Collapse
Affiliation(s)
- Mien T X Nguyen
- Department of Cell and Neurobiology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Codina J, Opyd TS, Powell ZB, Furdui CM, Petrovic S, Penn RB, DuBose TD. pH-dependent regulation of the α-subunit of H+-K+-ATPase (HKα2). Am J Physiol Renal Physiol 2011; 301:F536-43. [PMID: 21653633 PMCID: PMC3174558 DOI: 10.1152/ajprenal.00220.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/03/2011] [Indexed: 11/22/2022] Open
Abstract
The H(+)-K(+)-ATPase α-subunit (HKα(2)) participates importantly in systemic acid-base homeostasis and defends against metabolic acidosis. We have previously shown that HKα(2) plasma membrane expression is regulated by PKA (Codina J, Liu J, Bleyer AJ, Penn RB, DuBose TD Jr. J Am Soc Nephrol 17: 1833-1840, 2006) and in a separate study demonstrated that genetic ablation of the proton-sensing G(s)-coupled receptor GPR4 results in spontaneous metabolic acidosis (Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, Petrovic S. J Am Soc Nephrol 21: 1745-1755, 2010). In the present study, we investigated the ability of chronic acidosis and GPR4 to regulate HKα(2) expression in HEK-293 cells. Chronic acidosis was modeled in vitro by using multiple methods: reducing media pH by adjusting bicarbonate concentration, adding HCl, or by increasing the ambient concentration of CO(2). PKA activity and HKα(2) protein were monitored by immunoblot analysis, and HKα(2) mRNA, by real-time PCR. Chronic acidosis did not alter the expression of HKα(2) mRNA; however, PKA activity and HKα(2) protein abundance increased when media pH decreased from 7.4 to 6.8. Furthermore, this increase was independent of the method used to create chronic acidosis. Heterologous expression of GPR4 was sufficient to increase both basal and acid-stimulated PKA activity and similarly increase basal and acid-stimulated HKα(2) expression. Collectively, these results suggest that chronic acidosis and GPR4 increase HKα(2) protein by increasing PKA activity without altering HKα(2) mRNA abundance, implicating a regulatory role of pH-activated GPR4 in homeostatic regulation of HKα(2) and acid-base balance.
Collapse
Affiliation(s)
- Juan Codina
- Sections on Nephrology and Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Greenlee MM, Lynch IJ, Gumz ML, Cain BD, Wingo CS. Mineralocorticoids stimulate the activity and expression of renal H+,K+-ATPases. J Am Soc Nephrol 2010; 22:49-58. [PMID: 21164026 DOI: 10.1681/asn.2010030311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the renal collecting duct, mineralocorticoids drive Na(+) reabsorption, K(+) secretion, and H(+) secretion through coordinated actions on apical and basolateral transporters. Whether mineralocorticoids act through H(+),K(+)-ATPases to maintain K(+) and acid-base homeostasis is unknown. Here, treatment of mice with the mineralocorticoid desoxycorticosterone pivalate (DOCP) resulted in weight gain, a decrease in blood [K(+)] and [Cl(-)], and an increase in blood [Na(+)] and [HCO(3)(-)]. DOCP treatment increased the rate of H(+),K(+)-ATPase-mediated H(+) secretion in intercalated cells of the inner cortical collecting duct. mRNA expression of the catalytic subunit HKα(1) did not significantly change, whereas HKα(2) mRNA expression dramatically increased in the outer and inner medulla of DOCP-treated mice. A high-K(+) diet abrogated this increase in renal HKα(2) expression, showing that DOCP-mediated stimulation of HKα(2) expression depends on dietary K(+) intake. DOCP treatment of mice lacking HKα(1) (HKα(1)(-/-)) resulted in greater urinary Na(+) retention than observed in either wild-type mice or mice lacking both HKα(1) and HKα(2) (HKα(1,2)(-/-)). DOCP-treated HKα(1,2)(-/-) mice exhibited a lower blood [HCO(3)(-)] and less Na(+) and K(+) retention than either wild-type or HKα(1)(-/-) mice. Taken together, these results indicate that H(+),K(+)-ATPases-especially the HKα(2)-containing H(+),K(+)-ATPases-play an important role in the effects of mineralocorticoids on K(+), acid-base, and Na(+) balance.
Collapse
Affiliation(s)
- Megan M Greenlee
- Research Service, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
| | | | | | | | | |
Collapse
|
7
|
Shao J, Gumz ML, Cain BD, Xia SL, Shull GE, van Driel IR, Wingo CS. Pharmacological profiles of the murine gastric and colonic H,K-ATPases. Biochim Biophys Acta Gen Subj 2010; 1800:906-11. [PMID: 20594946 DOI: 10.1016/j.bbagen.2010.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/23/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND The H,K-ATPase, consisting of α and ß subunits, belongs to the P-type ATPase family. There are two isoforms of the α subunit, HKα₁ and HKα₂ encoded by different genes. The ouabain-resistant gastric HKα₁-H,K-ATPase is Sch28080-sensitive. However, the colonic HKα₂-H,K-ATPase from different species shows poor primary structure conservation of the HKα₂ subunit between species and diverse pharmacological sensitivity to ouabain and Sch28080. This study sought to determine the contribution of each gene to functional activity and its pharmacological profile using mouse models with targeted disruption of HKα₁, HKα₂, or HKbeta genes. METHODS Membrane vesicles from gastric mucosa and distal colon in wild-type (WT), HKα₁, HKα₂, or HKß knockout (KO) mice were extracted. K-ATPase activity and pharmacological profiles were examined. RESULTS The colonic H,K-ATPase demonstrated slightly greater affinity for K(+) than the gastric H,K-ATPase. This K-ATPase activity was not detected in the colon of HKα₂ KO but was observed in HKß KO with properties indistinguishable from WT. Neither ouabain nor Sch28080 had a significant effect on the WT colonic K-ATPase activity, but orthovanadate abolished this activity. Amiloride and its analogs benzamil and 5-N-ethyl-N-isopropylamiloride inhibited K-ATPase activity of HKα₁-containing H,K-ATPase; the dose dependence of inhibition was similar for all three inhibitors. In contrast, the colonic HKα₂-H,K-ATPase was not inhibited by these compounds. CONCLUSIONS These data demonstrate that the mouse colonic H,K-ATPase exhibits a ouabain- and Sch28080-insensitive, orthovanadate-sensitive K-ATPase activity. Interestingly, pharmacological studies suggested that the mouse gastric H,K-ATPase is sensitive to amiloride. GENERAL SIGNIFICANCE Characterization of the pharmacological profiles of the H,K-ATPases is important for understanding the relevant knockout animals and for considering the specificity of the inhibitors.
Collapse
Affiliation(s)
- Jiahong Shao
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+-K+-ATPases: physiology, regulation, and structure. Am J Physiol Renal Physiol 2009; 298:F12-21. [PMID: 19640897 DOI: 10.1152/ajprenal.90723.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The H(+)-K(+)-ATPases are ion pumps that use the energy of ATP hydrolysis to transport protons (H(+)) in exchange for potassium ions (K(+)). These enzymes consist of a catalytic alpha-subunit and a regulatory beta-subunit. There are two catalytic subunits present in the kidney, the gastric or HKalpha(1) isoform and the colonic or HKalpha(2) isoform. In this review we discuss new information on the physiological function, regulation, and structure of the renal H(+)-K(+)-ATPases. Evaluation of enzymatic functions along the nephron and collecting duct and studies in HKalpha(1) and HKalpha(2) knockout mice suggest that the H(+)-K(+)-ATPases may function to transport ions other than protons and potassium. These reports and recent studies in mice lacking both HKalpha(1) and HKalpha(2) suggest important roles for the renal H(+)-K(+)-ATPases in acid/base balance as well as potassium and sodium homeostasis. Molecular modeling studies based on the crystal structure of a related enzyme have made it possible to evaluate the structures of HKalpha(1) and HKalpha(2) and provide a means to study the specific cation transport properties of H(+)-K(+)-ATPases. Studies to characterize the cation specificity of these enzymes under different physiological conditions are necessary to fully understand the role of the H(+)-K(+) ATPases in renal physiology.
Collapse
Affiliation(s)
- Michelle L Gumz
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
9
|
Lynch IJ, Rudin A, Xia SL, Stow LR, Shull GE, Weiner ID, Cain BD, Wingo CS. Impaired acid secretion in cortical collecting duct intercalated cells from H-K-ATPase-deficient mice: role of HKalpha isoforms. Am J Physiol Renal Physiol 2007; 294:F621-7. [PMID: 18057185 DOI: 10.1152/ajprenal.00412.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two classes of H pumps, H-K-ATPase and H-ATPase, contribute to luminal acidification and HCO(3) transport in the collecting duct (CD). At least two H-K-ATPase alpha-subunits are expressed in the CD: HKalpha(1) and HKalpha(2). Both exhibit K dependence but have different inhibitor sensitivities. The HKalpha(1) H-K-ATPase is Sch-28080 sensitive, whereas the pharmacological profile of the HKalpha(2) H-K-ATPase is not completely understood. The present study used a nonpharmacological, genetic approach to determine the contribution of HKalpha(1) and HKalpha(2) to cortical CD (CCD) intercalated cell (IC) proton transport in mice fed a normal diet. Intracellular pH (pH(i)) recovery was determined in ICs using in vitro microperfusion of CCD after an acute intracellular acid load in wild-type mice and mice of the same strain lacking expression of HKalpha(1), HKalpha(2), or both H-K-ATPases (HKalpha(1,2)). A-type and B-type ICs were differentiated by luminal loading with BCECF-AM and peritubular chloride removal from CO(2)/HCO(3)-buffered solutions to identify the membrane locations of Cl/HCO(3) exchange activity. H-ATPase- and Na/H exchange-mediated H transport were inhibited with bafilomycin A(1) (100 nM) and EIPA (10 microM), respectively. Here, we report 1) initial pH(i) and buffering capacity were not significantly altered in the ICs of HKalpha-deficient mice, 2) either HKalpha(1) or HKalpha(2) deficiency resulted in slower acid extrusion, and 3) A-type ICs from HKalpha(1,2)-deficient mice had significantly slower acid extrusion compared with A-type ICs from HKalpha(1)-deficient mice alone. These studies are the first nonpharmacological demonstration that both HKalpha(1) and HKalpha(2) contribute to H secretion in both A-type and B-type ICs in animals fed a normal diet.
Collapse
Affiliation(s)
- I Jeanette Lynch
- North Florida/South Georgia Veterans Health System, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pestov NB, Korneenko TV, Shakhparonov MI, Shull GE, Modyanov NN. Loss of acidification of anterior prostate fluids in Atp12a-null mutant mice indicates that nongastric H-K-ATPase functions as proton pump in vivo. Am J Physiol Cell Physiol 2006; 291:C366-74. [PMID: 16525125 DOI: 10.1152/ajpcell.00042.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological functions of nongastric (colonic) H-K-ATPase (gene symbol Atp12a), unlike those of Na-K-ATPase and gastric H-K-ATPase, are poorly understood. It has been suggested that it pumps Na+ more efficiently than H+; however, so far, there is no direct evidence that it pumps H+ in vivo. Previously, we found that the nongastric H-K-ATPase alpha-subunit is expressed in apical membranes of rodent anterior prostate epithelium, in a complex with the Na-K-ATPase beta1-subunit. Here we report the effects of Atp12a gene ablation on polarization of the beta1-subunit and secretory function of the anterior prostate. In nongastric H-K-ATPase-deficient prostate, the Na-K-ATPase alpha-subunit resided exclusively in basolateral membranes; however, the beta1-subunit disappeared from apical membranes, demonstrating that beta1 is an authentic subunit of nongastric H-K-ATPase in vivo and that apical localization of beta1 in the prostate is completely dependent on its association with the nongastric H-K-ATPase alpha-subunit. A remarkable reduction in acidification of anterior prostate fluids was observed: pH 6.38 +/- 0.14 for wild-type mice and 6.96 +/- 0.10 for homozygous mutants. These results show that nongastric H-K-ATPase is required for acidification of luminal prostate fluids, thereby providing a strong in vivo correlate of previous functional expression studies demonstrating that it operates as a proton pump.
Collapse
Affiliation(s)
- Nikolay B Pestov
- Dept. of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, Med. Univ. of Ohio, 3035 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
11
|
Codina J, Li J, DuBose TD. CD63 interacts with the carboxy terminus of the colonic H+-K+-ATPase to decrease [corrected] plasma membrane localization and 86Rb+ uptake. Am J Physiol Cell Physiol 2005; 288:C1279-86. [PMID: 15647390 PMCID: PMC1868892 DOI: 10.1152/ajpcell.00463.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carboxy terminus (CT) of the colonic H(+)-K(+)-ATPase is required for stable assembly with the beta-subunit, translocation to the plasma membrane, and efficient function of the transporter. To identify protein-protein interactions involved in the localization and function of HKalpha(2), we selected 84 amino acids in the CT of the alpha-subunit of mouse colonic H(+)-K(+)-ATPase (CT-HKalpha(2)) as the bait in a yeast two-hybrid screen of a mouse kidney cDNA library. The longest identified clone was CD63. To characterize the interaction of CT-HKalpha(2) with CD63, recombinant CT-HKalpha(2) and CD63 were synthesized in vitro and incubated, and complexes were immunoprecipitated. CT-HKalpha(2) protein (but not CT-HKalpha(1)) coprecipitated with CD63, confirming stable assembly of HKalpha(2) with CD63. In HEK-293 transfected with HKalpha(2) plus beta(1)-Na(+)-K(+)-ATPase, suppression of CD63 by RNA interference increased cell surface expression of HKalpha(2)/NKbeta(1) and (86)Rb(+) uptake. These studies demonstrate that CD63 participates in the regulation of the abundance of the HKalpha(2)-NKbeta(1) complex in the cell membrane.
Collapse
Affiliation(s)
| | | | - Thomas D. DuBose
- Corresponding author: Thomas D. DuBose, Jr., M.D., Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, Tel. (336)-716-2715, Fax. (336)-716-2273, e-mail:
| |
Collapse
|
12
|
Zhang W, Xia X, Zou L, Xu X, LeSage GD, Kone BC. In vivo expression profile of a H+-K+-ATPase alpha2-subunit promoter-reporter transgene. Am J Physiol Renal Physiol 2004; 286:F1171-7. [PMID: 14871878 DOI: 10.1152/ajprenal.00043.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because little is known about the molecular basis of transcriptional regulation of the murine H(+)-K(+)-ATPase alpha(2) (HKalpha(2)) gene or other genes whose expression is restricted in part to the collecting duct, especially in vivo, we developed transgenic mice carrying an insertional HKalpha(2) promoter-reporter gene construct. In these mice, the region -7,264/+253 of the HKalpha(2) 5'-flanking region controls expression of the reporter gene enhanced green fluorescent protein (EGFP). Patterns of HKalpha(2)/EGFP transgene expression were examined by fluorescence microscopy and immunoblotting. Of 10 major organs examined, EGFP immunoreactivity was detected abundantly in the kidney, and to a far lesser extent, in the brain and lung. Within the kidney, EGFP fluorescence was detected exclusively in the collecting ducts of transgenic mice and colocalized with the cellular distribution of both endogenous HKalpha(2) and aquaporin-2, consistent with the known expression pattern of endogenous HKalpha(2) in principal cells. Surprisingly, no transgene expression was evident by immunoblotting or fluorescence microscopy in the distal colon, the site of the highest endogenous HKalpha(2) expression. Although previous studies of steady-state mRNA levels suggested differences in HKalpha(2) gene regulation in the kidney and colon, our results provide the first direct evidence of differential transcriptional control of the HKalpha(2) gene in these organs and suggest that regions outside the 5'-flanking region or other regulatory factors play a role in HKalpha(2) expression in the distal colon.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Depts. of Internal Medicine, The Univ. of Texas Medical School at Houston, 6431 Fannin, MSB 4.148, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
13
|
Pestov NB, Korneenko TV, Adams G, Tillekeratne M, Shakhparonov MI, Modyanov NN. Nongastric H-K-ATPase in rodent prostate: lobe-specific expression and apical localization. Am J Physiol Cell Physiol 2002; 282:C907-16. [PMID: 11880279 DOI: 10.1152/ajpcell.00258.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular basis of active ion transport in secretory glands such as the prostate is not well characterized. Rat nongastric H-K-ATPase is expressed at high levels in distal colon surface cell apical membranes and thus is referred to as "colonic." Here we show that the ATPase is expressed in rodent prostate complex in a lobe-specific manner. RT-PCR and Western blot analyses indicate that rat nongastric H-K-ATPase alpha-subunit (alpha(ng)) mRNA and protein are present in coagulating gland (anterior prostate) and lateral and dorsal prostate and absent from ventral lobe, whereas Na-K-ATPase alpha-subunit is present in all lobes. RT-PCR analysis shows that Na-K-ATPase alpha(4) and alpha(3) and gastric H-K-ATPase alpha-subunit are not present in significant amounts in all prostate lobes. Relatively low levels of Na-K-ATPase alpha(2) were found in lateral, dorsal, and anterior lobes. alpha(ng) protein expression is anteriodorsolateral: highest in coagulating gland, somewhat lower in dorsal lobe, and even lower in lateral lobe. Na-K-ATPase protein abundance has the reverse order: expression in ventral lobe is higher than in coagulating gland. alpha(ng) protein abundance is higher in coagulating gland than distal colon membranes. Immunohistochemistry shows that in rat and mouse coagulating gland epithelium alpha(ng) protein has an apical polarization and Na-K-ATPase alpha(1) is localized in basolateral membranes. The presence of nongastric H-K-ATPase in rodent prostate apical membranes may indicate its involvement in potassium concentration regulation in secretions of these glands.
Collapse
Affiliation(s)
- Nikolay B Pestov
- Department of Pharmacology, Medical College of Ohio, 3035 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
14
|
Spicer Z, Clarke LL, Gawenis LR, Shull GE. Colonic H(+)-K(+)-ATPase in K(+) conservation and electrogenic Na(+) absorption during Na(+) restriction. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1369-77. [PMID: 11705741 DOI: 10.1152/ajpgi.2001.281.6.g1369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upregulation of the colonic H(+)-K(+)- ATPase (cHKA) during hyperaldosteronism suggests that it functions in both K(+) conservation and electrogenic Na(+) absorption in the colon when Na(+)-conserving mechanisms are activated. To test this hypothesis, wild-type (cHKA(+/+)) and cHKA-deficient (cHKA(-/-)) mice were fed Na(+)-replete and Na(+)-restricted diets and their responses were analyzed. In both genotypes, Na(+) restriction led to reduced plasma Na(+) and increased serum aldosterone, and mRNAs for the epithelial Na(+) channel (ENaC) beta- and gamma-subunits, channel-inducing factor, and cHKA were increased in distal colon. Relative to wild-type controls, cHKA(-/-) mice on a Na(+)-replete diet had elevated fecal K(+) excretion. Dietary Na(+) restriction led to increased K(+) excretion in knockout but not in wild-type mice. The amiloride-sensitive, ENaC-mediated short-circuit current in distal colon was significantly reduced in knockout mice maintained on either the Na(+)-replete or Na(+)-restricted diet. These results demonstrate that cHKA plays an important role in K(+) conservation during dietary Na(+) restriction and suggest that cHKA-mediated K(+) recycling across the apical membrane is required for maximum electrogenic Na(+) absorption.
Collapse
Affiliation(s)
- Z Spicer
- Department of Molecular Genetics, Biochemistry and Microbiology, The University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
15
|
Kraut JA, Helander KG, Helander HF, Iroezi ND, Marcus EA, Sachs G. Detection and localization of H+-K+-ATPase isoforms in human kidney. Am J Physiol Renal Physiol 2001; 281:F763-8. [PMID: 11553523 DOI: 10.1152/ajprenal.2001.281.4.f763] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An H+-K+-ATPase contributes to hydrogen secretion and potassium reabsorption by the rat and rabbit collecting ducts. Transport of these ions appears to be accomplished by one or both of two isoforms of the H+-K+-ATPase, HKalpha(1) and HKalpha(2,) because both isoforms are found in the collecting ducts and transport of hydrogen and potassium is attenuated by exposure to inhibitors of these transport proteins. To evaluate whether an H+-K+-ATPase is present in the human kidney, immunohistochemical studies were performed using normal human renal tissue probed with antibodies directed against epitopes of three of the known isoforms of the H+-K+-ATPase , HKalpha(1), HKalpha(2), and HKalpha(4), and the V-type H+-ATPase. Cortical and medullary tissue probed with antibodies against HKalpha(1) showed cytoplasmic staining of intercalated cells that was less intense than that observed in the parietal cells of normal rat stomach stained with the same antibody. Also, weak immunoreactivity was detected in principal cells of the human collecting ducts. Cortical and medullary tissue probed with antibodies directed against HKalpha(4) revealed weak, diffuse staining of intercalated cells of the collecting ducts and occasional light staining of principal cells. Cortical and medullary tissue probed with antibodies directed against the H+-ATPase revealed staining of intercalated cells of the collecting ducts and some cells of the proximal convoluted tubules. By contrast, no discernible staining was noted with the use of the antibody against HKalpha(2). These data indicate that HKalpha(1) and HKalpha(4) are present in the collecting ducts of the human kidney. In this location, these isoforms might contribute to hydrogen and potassium transport by the kidney.
Collapse
Affiliation(s)
- J A Kraut
- Division of Nephrology, Research Service and Department of Medicine, Veterans Affairs Greater Los Angeles Health Care System, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Fejes-Tóth G, Náray-Fejes-Tóth A. Immunohistochemical localization of colonic H-K-ATPase to the apical membrane of connecting tubule cells. Am J Physiol Renal Physiol 2001; 281:F318-25. [PMID: 11457724 DOI: 10.1152/ajprenal.2001.281.2.f318] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies indicate that the colonic H-K-ATPase mRNA is expressed as the distal nephron. However, the exact intrarenal localization of the colonic H-K-ATPase protein is still unclear. The goal of the present study was to determine the cellular and subcellular localization of the colonic H-K-ATPase protein in the rabbit kidney. We used three monoclonal antibodies (MAbs) directed against different epitopes of the rabbit colonic H-K-ATPase alpha-subunit (HKalpha(2)) to localize HKalpha(2) protein by immunofluorescence labeling of kidney sections and laser-scanning confocal microscopy. The specificity of the MAbs was confirmed by reaction with a single ~100-kDa band on Western blots of distal colon. Specific immunohistochemical reaction with the apical membrane of surface epithelial cells was observed with all three MAbs on distal colon sections. In rabbit kidney, immunofluorescence was detected only on the apical membrane of connecting tubule cells. Immunofluorescence was not detected in the cortical-, outer-, and inner-medullary collecting ducts. Furthermore, costaining with principal- and intercalated cell-specific MAbs and a MAb against the thick ascending limb suggests that these cell types express HKalpha(2) protein at levels that are below the detection limit with this method. We conclude that in the rabbit kidney, under normal dietary conditions, the HKalpha(2) protein is expressed in the apical membrane of connecting tubule cells.
Collapse
Affiliation(s)
- G Fejes-Tóth
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | |
Collapse
|
17
|
Simpson AM, Schwartz GJ. Distal renal tubular acidosis with severe hypokalaemia, probably caused by colonic H(+)-K(+)-ATPase deficiency. Arch Dis Child 2001; 84:504-7. [PMID: 11369570 PMCID: PMC1718815 DOI: 10.1136/adc.84.6.504] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We describe a 21 month old male infant who presented with failure to thrive associated with severe hypokalaemia and metabolic acidosis, together with hypomagnesaemia. Evaluation revealed marked renal and probable faecal potassium wasting, distal renal tubular acidosis, mild urinary magnesium wasting, and a normal gastric pH (gastric H(+)-K(+)-ATPase). Hypokalaemic forms of metabolic acidosis, such as diabetic ketoacidosis and proximal renal tubular acidosis were ruled out from the clinical picture. The hypokalaemia of distal renal tubular acidosis usually improves with alkali therapy, but this was not observed: despite correction of acidosis with 5 mmol/kg potassium citrate per day, an additional 5 mmol/kg potassium chloride was required to bring serum potassium to 3.5 mmol/l. At 3 years of age potassium was provided in the absence of potential alkali and acidosis ensued; serum bicarbonate fell to 10 mmol/l. Although a specific genetic analysis is not yet possible, the abnormalities are consistent with a novel form of distal renal tubular acidosis. The pathophysiology probably does not stem from defects in the vacuolar H(+)-ATPase but more likely from deficient activity of the colonic isoform of H(+)-K(+)-ATPase that is resident in the medullary collecting duct and mediates potassium absorption and proton secretion.
Collapse
Affiliation(s)
- A M Simpson
- Department of Pediatrics, Division of Nephrology, Box 777, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
18
|
Abstract
The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.
Collapse
Affiliation(s)
- S Muto
- Department of Nephrology, Jichi Medical School, Minamikawachi, Tochigi, Japan.
| |
Collapse
|
19
|
Codina J, Cardwell J, Gitomer JJ, Cui Y, Kone BC, Dubose TD. Sch-28080 depletes intracellular ATP selectively in mIMCD-3 cells. Am J Physiol Cell Physiol 2000; 279:C1319-26. [PMID: 11029278 DOI: 10.1152/ajpcell.2000.279.5.c1319] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two H(+)-K(+)-ATPase isoforms are present in kidney: the gastric, highly sensitive to Sch-28080, and the colonic, partially sensitive to ouabain. Upregulation of Sch-28080-sensitive H(+)-K(+)-ATPase, or "gastric" H(+)-K(+)-ATPase, has been demonstrated in hypokalemic rat inner medullary collecting duct cells (IMCDs). Nevertheless, only colonic H(+)-K(+)-ATPase mRNA and protein abundance increase in this condition. This study was designed to determine whether Sch-28080 inhibits transporters other than the gastric H(+)-K(+)-ATPase. In the presence of bumetanide, Sch-28080 (200 microM) and ouabain (2 mM) inhibited (86)Rb(+) uptake (>90%). That (86)Rb(+) uptake was almost completely abolished by Sch-28080 indicates an effect of this agent on the Na(+)-K(+)-ATPase. ATPase assays in membranes, or lysed cells, demonstrated sensitivity to ouabain but not Sch-28080. Thus the inhibitory effect of Sch-28080 was dependent on cell integrity. (86)Rb(+)-uptake studies without bumetanide demonstrated that ouabain inhibited activity by only 50%. Addition of Sch-28080 (200 microM) blocked all residual activity. Intracellular ATP declined after Sch-28080 (200 microM) but recovered after removal of this agent. In conclusion, high concentrations of Sch-28080 inhibit K(+)-ATPase activity in mouse IMCD-3 (mIMCD-3) cells as a result of ATP depletion.
Collapse
Affiliation(s)
- J Codina
- Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, Kansas 66160-7350, USA
| | | | | | | | | | | |
Collapse
|