1
|
Zhang T, Widdop RE, Ricardo SD. Transition from acute kidney injury to chronic kidney disease: mechanisms, models, and biomarkers. Am J Physiol Renal Physiol 2024; 327:F788-F805. [PMID: 39298548 DOI: 10.1152/ajprenal.00184.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly recognized as interconnected conditions with overlapping pathophysiological mechanisms. This review examines the transition from AKI to CKD, focusing on the molecular mechanisms, animal models, and biomarkers essential for understanding and managing this progression. AKI often progresses to CKD due to maladaptive repair processes, persistent inflammation, and fibrosis, with both conditions sharing common pathways involving cell death, inflammation, and extracellular matrix (ECM) deposition. Current animal models, including ischemia-reperfusion injury (IRI) and nephrotoxic damage, help elucidate these mechanisms but have limitations in replicating the complexity of human disease. Emerging biomarkers such as kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and soluble tumor necrosis factor receptors (TNFRs) show promise in early detection and monitoring of disease progression. This review highlights the need for improved animal models and biomarker validation to better mimic human disease and enhance clinical translation. Advancing our understanding of the AKI-to-CKD transition through targeted therapies and refined research approaches holds the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Shirazi M, Cianfarini C, Ismail A, Wysocki J, Wang JJ, Ye M, Zhang ZJ, Batlle D. Altered kidney distribution and loss of ACE2 into the urine in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F412-F425. [PMID: 38961845 PMCID: PMC11460339 DOI: 10.1152/ajprenal.00237.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin-angiotensin system (RAS) has been described. Angiotensin-converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of angiotensin II, this study aimed to characterize kidney and urinary ACE2 in a mouse model of AKI. Ischemia-reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 h after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and the presence of ACE2-positive luminal casts in the medulla. In cortical membranes, ACE2 protein and enzymatic activity were both markedly reduced (37 ± 4 vs. 100 ± 6 ACE2/β-actin, P = 0.0004, and 96 ± 14 vs. 152 ± 6 RFU/μg protein/h, P = 0.006). In urine, full-length membrane-bound ACE2 protein (100 kDa) was markedly increased (1,120 ± 405 vs. 100 ± 46 ACE2/µg creatinine, P = 0.04), and casts stained for ACE2 were recovered in the urine sediment. In conclusion, in AKI caused by IRI, there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2-positive material in the medulla and increased urinary excretion of full-length membrane-bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.NEW & NOTEWORTHY This study provides novel insights into the distribution of kidney ACE2 in a model of AKI by IRI showing a striking detachment of apical ACE2 from proximal tubules and its loss in urine and urine sediment. The observed deficiency of kidney ACE2 protein and enzymatic activity in severe AKI suggests that administration of forms of this enzyme may mitigate AKI and that urinary ACE2 may serve as a potential biomarker for tubular injury.
Collapse
Affiliation(s)
- Mina Shirazi
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cosimo Cianfarini
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed Ismail
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jan Wysocki
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jiao-Jing Wang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Minghao Ye
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Zheng Jenny Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Daniel Batlle
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
3
|
Choi GW, Kang DW, Kim JH, Cho SJ, Lee YB, Kwon IH, Cho HY. Sex, age, and species differences of perfluorooctanoic acid modeled by flow- versus permeability-limited physiologically-based pharmacokinetic models. Toxicology 2024; 505:153806. [PMID: 38642821 DOI: 10.1016/j.tox.2024.153806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate sex, age, and species differences of perfluorooctanoic acid (PFOA) using physiologically-based pharmacokinetic (PBPK) models in rats and humans. PBPK models were generally developed as either flow- or permeability-limited models. The flow-limited model is cost-effective and allows for human PK prediction through simple allometric scaling, while the permeability-limited model can incorporate detailed information on the disposition process through in vitro-in vivo extrapolation (IVIVE). PFOA was administered via oral or intravenous administration with 5 mg/kg in male and female rats of different ages and the data was used to develop the PBPK models. Our results showed that both models successfully captured sex differences in rats, while only the flow-limited model with male rats and the permeability-limited model with both male and female rats provided comparable predictions in the human clinical study. More than the flow-limited model, the permeability-limited model effectively explained sex differences in rats and species differences through IVIVE. Additionally, the ontogeny-based mechanistic description of PFOA disposition enabled the interpretation of age- and sex-dependent pharmacokinetics. Although the flow-limited PBPK model lacked mechanistic interpretability compared to the permeability-limited model, it demonstrated reliable human prediction through simple allometric scaling. In conclusion, the permeability PBPK model could interpret age, sex, and species differences and it could improve the accuracy of human prediction.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Seok-Jin Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong‑ro, Buk‑Gu, Gwangju 61186, Republic of Korea
| | - In-Ho Kwon
- College of Pharmacy, Chonnam National University, 77 Yongbong‑ro, Buk‑Gu, Gwangju 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
4
|
Asfaw KG, Gizaw ST, Gnanasekaran N. Evaluation of Renal Function Profile in Human Visceral Leishmaniasis (Kala-Azar) Patients: A Case of Western Tigray, Ethiopia. Res Rep Trop Med 2023; 14:21-33. [PMID: 37404482 PMCID: PMC10315324 DOI: 10.2147/rrtm.s410137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Background Leishmaniasis is a vector-borne protozoan infection that has a wide clinical spectrum in the tropics and subtropics. Kidney damage is frequently associated with increased morbidity and mortality in visceral leishmaniasis (VL) patients. However, up to date, there is a very limited report on the effect of visceral leishmaniasis on kidney function profiling in Ethiopia. Objective To evaluate the renal function profile in human visceral leishmaniasis (kala-azar) patients. Materials and Methods Human blood was taken from VL patients (n = 100) and healthy controls (n = 100) attending Kahsay Abera and Mearg Hospitals, Western Tigray of Ethiopia. Serum was separated according to the conventional protocol and kidney function profiling (creatinine, urea, and uric acid) was analyzed by Mindray 200E automated chemistry analyzer. The estimated glomerular filtration rate (eGFR) was also assessed in this study. The obtained data were processed using SPSS Version 23.0. Descriptive statistics, independent-test, and bivariate correlations were used for data analysis. P values <0.05 were considered statistically significant at a 95% confidence level. Results The mean serum creatinine level was found significantly higher, while respective serum urea and eGFR were significantly lower in VL patients compared to healthy controls. Specifically, from 100 VL cases, an increased level of serum creatinine, urea, and uric acid was found in 10%, 9% and 15% VL cases, respectively; meanwhile, a decreased serum urea and eGFR have been reported from 33% to 44% VL cases, respectively. Conclusion The finding of this study asserted that visceral leishmaniasis causes derangement in kidney activities characterized by alteration of renal function profile. This may indicate that VL is the determinant factor for developing kidney dysfunction. This study encourages researchers to engage in visceral leishmaniasis and its effect on other organ function profiles in humans and identify potential markers for both prevention and intervention.
Collapse
Affiliation(s)
- Kibrom Gerezgiher Asfaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Natesan Gnanasekaran
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Regan Institute of Metabolic Therapy, Rasipuram Tk, Namakkal Dt, Tamilnadu, India
| |
Collapse
|
5
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
6
|
de Morais DG, Sanches TRC, Santinho MAR, Yada EY, Segura GC, Lowe D, Navarro G, Seabra VF, Taniguchi LU, Malbouisson LMS, de André CDS, Andrade L, Rodrigues CE. Urinary sodium excretion is low prior to acute kidney injury in patients in the intensive care unit. FRONTIERS IN NEPHROLOGY 2022; 2:929743. [PMID: 37675036 PMCID: PMC10479577 DOI: 10.3389/fneph.2022.929743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 09/08/2023]
Abstract
Background The incidence of acute kidney injury (AKI) is high in intensive care units (ICUs), and a better understanding of AKI is needed. Early chronic kidney disease is associated with urinary concentration inability and AKI recovery with increased urinary solutes in humans. Whether the inability of the kidneys to concentrate urine and excrete solutes at appropriate levels could occur prior to the diagnosis of AKI is still uncertain, and the associated mechanisms have not been studied. Methods In this single-center prospective observational study, high AKI risk in ICU patients was followed up for 7 days or until ICU discharge. They were grouped as "AKI" or "No AKI" according to their AKI status throughout admission. We collected daily urine samples to measure solute concentrations and osmolality. Data were analyzed 1 day before AKI, or from the first to the fifth day of admission in the "No AKI" group. We used logistic regression models to evaluate the influence of the variables on future AKI diagnosis. The expression of kidney transporters in urine was evaluated by Western blotting. Results We identified 29 patients as "No AKI" and 23 patients as "AKI," the latter being mostly low severity AKI. Urinary sodium excretion was lower in "AKI" patients prior to AKI diagnosis, particularly in septic patients. The expression of Na+/H+ exchanger (NHE3), a urinary sodium transporter, was higher in "AKI" patients. Conclusions Urinary sodium excretion is low before an AKI episode in ICU patients, and high expressions of proximal tubule sodium transporters might contribute to this.
Collapse
Affiliation(s)
- David Gomes de Morais
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Talita Rojas Cunha Sanches
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mirela Aparecida Rodrigues Santinho
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Yuki Yada
- Centro de Estatística Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriela Cardoso Segura
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Diogo Lowe
- Centro de Estatística Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Navarro
- Centro de Estatística Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Victor Faria Seabra
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro Utino Taniguchi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Marcelo Sá Malbouisson
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Carmen Diva Saldiva de André
- Centro de Estatística Aplicada, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia Andrade
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Eleuterio Rodrigues
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Disciplina de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Scattered Tubular Cells Markers in Macula Densa of Normal Human Adult Kidney. Int J Mol Sci 2022; 23:ijms231810504. [PMID: 36142420 PMCID: PMC9500602 DOI: 10.3390/ijms231810504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The scattered tubular cells (STCs) are a population of resident progenitor tubular cells with expansion, self-renewal and epithelial differentiation abilities. Although these cells are localized within the proximal (PTs) and distal (DTs) tubules in a normal adult kidney, their presence has never been demonstrated in human macula densa (MD). The purpose of the present study is to describe the presence of STCs in MD using specific markers such as prominin-1 (CD133), cytokeratin 7 (KRT7) and vimentin (VIM). Methods: We analyzed two sets of three consecutive serial sections for each sample. The first sections of each set were immunostained for nNOS to identify MD, the second sections were immune-stained for CD133 (specific STCs marker) while the third sections were analyzed for KRT7 (another STCs specific marker) and VIM (that stains the basal pole of the STCs) in the first and second sets, respectively, in order to study the co-expression of KRT7 and VIM with the CD133 marker. Results: CD133 was localized in some MD cells and in the adjacent DT cells. Moreover, CD133 was detected in the parietal epithelial cells of Bowman’s capsule and in some proximal tubules (PT). KRT7-positive cells were identified in MD and adjacent DT cells, while KRT7 positivity was mostly confined in both DT and collecting ducts (CD) in the other areas of the renal parenchyma. CD133 and KRT7 were co-expressed in some MD and adjacent DT cells. Some of the latter cells were positive both for CD133 and VIM. CD133 was always localized in the apical part of the cells, whereas the VIM expression was evident only in the cellular basal pole. Although some cells of MD expressed VIM or CD133, none of them co-expressed VIM and CD133. Conclusions: The presence of STCs was demonstrated in human adult MD, suggesting that this structure has expansion, self-renewal and epithelial differentiation abilities, similar to all other parts of renal tubules.
Collapse
|
8
|
Varghese V, Rivera MS, Alalwan A, Alghamdi AM, Ramanand A, Khan SM, Najul-Seda JE, Velez JCQ. Concomitant Identification of Muddy Brown Granular Casts and Low Fractional Excretion of Urinary Sodium in AKI. KIDNEY360 2022; 3:627-635. [PMID: 35721603 DOI: 10.34067/kid.0005692021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/19/2022] [Indexed: 01/29/2023]
Abstract
Background Fractional excretion of urinary sodium (FENa) is a widely utilized clinical test to evaluate acute kidney injury (AKI). A low FENa (<1%) is deemed consistent with prerenal azotemia and inconsistent with acute tubular injury (ATI). Muddy brown granular casts (MBGC) on microscopic examination of urinary sediment (MicrExUrSed) are highly suggestive of ATI. We hypothesized that there is poor concordance between the presence of MBGC and FENa in ATI. Methods We conducted a prospective observational study in patients with AKI seen during inpatient consultation. We extracted patients who underwent assessment of percentage of low power fields (LPFs) with MBGC by MicrExUrSed and concomitant measurement of FENa. Diagnostic concordance between MBGC and FENa and their individual prognostic value were examined. Results Our cohort included 270 patients, 111 (41%) of whom were women. Median age was 61 years (range 27-92 years), and median serum creatinine was 3.7 mg/dl ( range1.2-22.0 mg/dl). MBGC were found in 49% (133/270). FENa <1% (inconsistent with ATI) was found in 50/133 (38%), 38/115 (33%), and 16/45 (36%) of those with >0%, ≥10%, and ≥50% LPFs with MBGC, respectively. Concordance between FENa and MBGC for ATI diagnosis was deemed fair (estimated κ-coefficient=0.2), and poor (κ=-0.11) within a subgroup of patients with preexisting chronic kidney disease (n=139). In patients with biopsy-proven ATI (n=49), MBGC had 100% specificity and 100% positive predictive value for ATI. MBGC were associated with greater risk for ≥50% increase in creatinine from baseline at discharge (acute kidney disease [AKD]). Conclusions About two of five patients with MBGC identified by MicrExUrSed presented with FENa <1%. Presence of MBGC was consistent with ATI, as verified by biopsy, and were predictive of AKD. These data suggest that the sole reliance in low FENa to exclude ATI should be abandoned, and MicrExUrSed should be pursued for AKI diagnosis.
Collapse
Affiliation(s)
- Vipin Varghese
- Ochsner Clinical School, The University of Queensland, New Orleans, Louisiana.,Department of Nephrology, Ochsner Health, New Orleans, Louisiana
| | - Maria S Rivera
- Ochsner Clinical School, The University of Queensland, New Orleans, Louisiana
| | - Ali Alalwan
- Department of Nephrology, Ochsner Health, New Orleans, Louisiana
| | - Ayman M Alghamdi
- Department of Nephrology, Ochsner Health, New Orleans, Louisiana
| | - Akanksh Ramanand
- Ochsner Clinical School, The University of Queensland, New Orleans, Louisiana
| | - Sumayyah M Khan
- Ochsner Clinical School, The University of Queensland, New Orleans, Louisiana
| | | | - Juan Carlos Q Velez
- Ochsner Clinical School, The University of Queensland, New Orleans, Louisiana.,Department of Nephrology, Ochsner Health, New Orleans, Louisiana
| |
Collapse
|
9
|
γ-Tocotrienol Protects against Mitochondrial Dysfunction, Energy Deficits, Morphological Damage, and Decreases in Renal Functions after Renal Ischemia. Int J Mol Sci 2021; 22:ijms222312674. [PMID: 34884479 PMCID: PMC8657889 DOI: 10.3390/ijms222312674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemia-induced mitochondrial dysfunction and ATP depletion in the kidney result in disruption of primary functions and acute injury of the kidney. This study tested whether γ-tocotrienol (GTT), a member of the vitamin E family, protects mitochondrial function, reduces ATP deficits, and improves renal functions and survival after ischemia/reperfusion injury. Vehicle or GTT (200 mg/kg) were administered to mice 12 h before bilateral kidney ischemia, and endpoints were assessed at different timepoints of reperfusion. GTT treatment reduced decreases in state 3 respiration and accelerated recovery of this function after ischemia. GTT prevented decreases in activities of complexes I and III of the respiratory chain, and blocked ischemia-induced decreases in F0F1-ATPase activity and ATP content in renal cortical tissue. GTT improved renal morphology at 72 h after ischemia, reduced numbers of necrotic proximal tubular and inflammatory cells, and enhanced tubular regeneration. GTT treatment ameliorated increases in plasma creatinine levels and accelerated recovery of creatinine levels after ischemia. Lastly, 89% of mice receiving GTT and 70% of those receiving vehicle survived ischemia. Conclusions: Our data show novel observations that GTT administration improves mitochondrial respiration, prevents ATP deficits, promotes tubular regeneration, ameliorates decreases in renal functions, and increases survival after acute kidney injury in mice.
Collapse
|
10
|
Hu X, Ma Z, Wen L, Li S, Dong Z. Autophagy in Cisplatin Nephrotoxicity during Cancer Therapy. Cancers (Basel) 2021; 13:5618. [PMID: 34830772 PMCID: PMC8616020 DOI: 10.3390/cancers13225618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent but its clinical use is often limited by nephrotoxicity. Autophagy is a lysosomal degradation pathway that removes protein aggregates and damaged or dysfunctional cellular organelles for maintaining cell homeostasis. Upon cisplatin exposure, autophagy is rapidly activated in renal tubule cells to protect against acute cisplatin nephrotoxicity. Mechanistically, the protective effect is mainly related to the clearance of damaged mitochondria via mitophagy. The role and regulation of autophagy in chronic kidney problems after cisplatin treatment are currently unclear, despite the significance of research in this area. In cancers, autophagy may prevent tumorigenesis, but autophagy may reduce the efficacy of chemotherapy by protecting cancer cells. Future research should focus on developing drugs that enhance the anti-tumor effects of cisplatin while protecting kidneys during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Lee PW, Wu BS, Yang CY, Lee OKS. Molecular Mechanisms of Mesenchymal Stem Cell-Based Therapy in Acute Kidney Injury. Int J Mol Sci 2021; 22:11406. [PMID: 34768837 PMCID: PMC8583897 DOI: 10.3390/ijms222111406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) causes a lot of harm to human health but is treated by only supportive therapy in most cases. Recent evidence shows that mesenchymal stem cells (MSCs) benefit kidney regeneration through releasing paracrine factors and extracellular vesicles (EVs) to the recipient kidney cells and are considered to be promising cellular therapy for AKI. To develop more efficient, precise therapies for AKI, we review the therapeutic mechanism of MSCs and MSC-derived EVs in AKI and look for a better understanding of molecular signaling and cellular communication between donor MSCs and recipient kidney cells. We also review recent clinical trials of MSC-EVs in AKI. This review summarizes the molecular mechanisms of MSCs' therapeutic effects on kidney regeneration, expecting to comprehensively facilitate future clinical application for treating AKI.
Collapse
Grants
- Yin Yen-Liang Foundation Development and Construction Plan (107F-M01-0504) National Yang-Ming University
- MOST 108-2923-B-010-002-MY3, MOST 109-2314-B-010-053-MY3, MOST 109-2811-B-010-532, MOST 109-2926-I-010-502, MOST 109-2823-8-010-003-CV, MOST 109-2622-B-010-006, MOST 109-2321-B-010-006, MOST 110-2923-B-A49A-501-MY3, and MOST 110-2321-B-A49-003 Ministry of Science and Technology, Taiwan
- V106D25-003-MY3, VGHUST107-G5-3-3, VGHUST109-V5-1-2, and V110C-194 Taipei Veterans General Hospital
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B) Ministry of Education
Collapse
Affiliation(s)
- Pei-Wen Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Hong Deh Clinic, Taipei 11251, Taiwan
| | - Bo-Sheng Wu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medicine, Division of Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
12
|
Tubular Cell Cycle Response upon AKI: Revising Old and New Paradigms to Identify Novel Targets for CKD Prevention. Int J Mol Sci 2021; 22:ijms222011093. [PMID: 34681750 PMCID: PMC8537394 DOI: 10.3390/ijms222011093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid deterioration of kidney function, representing a global healthcare concern. In addition, AKI survivors frequently develop chronic kidney disease (CKD), contributing to a substantial proportion of disease burden globally. Yet, over the past 30 years, the burden of CKD has not declined to the same extent as many other important non-communicable diseases, implying a substantial deficit in the understanding of the disease progression. The assumption that the kidney response to AKI is based on a high proliferative potential of proximal tubular cells (PTC) caused a critical confounding factor, which has led to a limited development of strategies to prevent AKI and halt progression toward CKD. In this review, we discuss the latest findings on multiple mechanisms of response related to cell cycle behavior of PTC upon AKI, with a specific focus on their biological relevance. Collectively, we aim to (1) provide a new perspective on interpreting cell cycle progression of PTC in response to damage and (2) discuss how this knowledge can be used to choose the right therapeutic window of treatment for preserving kidney function while avoiding CKD progression.
Collapse
|
13
|
Systematic Scoring of Tubular Injury Patterns Reveals Interplay between Distinct Tubular and Glomerular Lesions in ANCA-Associated Glomerulonephritis. J Clin Med 2021; 10:jcm10122682. [PMID: 34207078 PMCID: PMC8235178 DOI: 10.3390/jcm10122682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a small vessel vasculitis, most frequently presenting as microscopic polyangiitis (MPA) or granulomatosis with polyangiitis (GPA). Acute tubular injury with the presence of tubulitis was previously reported to be of prognostic value in ANCA glomerulonephritis (GN). In particular, distinct tubular injury lesions were associated with the deterioration of kidney function at AAV disease onset, as well as renal resistance to treatment, and higher risk of progression to composite outcome in patients with AAV. To expand our knowledge regarding distinct tubular lesions in AAV, we aimed to describe acute tubular injury patterns in association with glomerular lesions in ANCA GN by systematic histological scoring. Methods: A total number of 48 renal biopsies with confirmed renal involvement of AAV admitted to the University Medical Center Göttingen from 2015 to 2020 were retrospectively examined. By systematic scoring of tubular injury lesions, the association between clinical parameters, laboratory markers, and histopathological findings was explored. Results: We have shown that cellular casts in renal biopsies were frequently observed in the majority of cases with ANCA GN. Furthermore, we showed that tubular epithelial simplification with dilatation correlated with MPA and MPO subtypes, C3c hypocomplementemia, severe renal involvement, and uACR. Red blood cell (RBC) casts were associated with increased levels of C-reactive protein (CRP), leukocyturia, and hematuria. Finally, we found that hyaline casts were associated with an increased fraction of glomeruli with global glomerular sclerosis. Conclusions: Acute tubular injury patterns were correlated with active ANCA GN, whereas tubular injury lesions reflecting the later stages of kidney disease correlated with chronic glomerular lesions. These results suggest an interplay between different renal compartments.
Collapse
|
14
|
Bai L, Xie Q, Xia M, Gong K, Wang N, Chen Y, Zhao M. The importance of sialic acid, pH and ion concentration on the interaction of uromodulin and complement factor H. J Cell Mol Med 2021; 25:4316-4325. [PMID: 33788378 PMCID: PMC8093974 DOI: 10.1111/jcmm.16492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Uromodulin (UMOD) can bind complement factor H (cFH) and inhibit the activation of complement alternative pathway (AP) by enhancing the cofactor activity of cFH on degeneration of C3b. UMOD, an N-glycans-rich glycoprotein, is expressed in thick ascending limb of Henle's loop where the epithelia need to adapt to gradient change of pH and ion concentration. ELISA-based cofactor activity of cFH and erythrocytes haemolytic assay was used to measure the impact of native and de-glycosylated UMOD on the functions of cFH. The binding assay was performed under different pH and ion concentrations, using ELISA. The levels of sialic acid on UMOD, from healthy controls and patients with chronic kidney disease (CKD), were also detected by lectin-ELISA. It was shown that removal of glycans decreased the binding between UMOD and cFH and abolished the ability of enhancing C3b degradation. In acidic condition, the binding became stronger, but it reduced as sodium concentration increased. A significant decrease of α-2,3 sialic acids on UMOD was observed in CKD patients compared with that of healthy individuals. The sialic acids on UMOD, local pH and sodium concentration could impact the binding capacity between UMOD and cFH and thus regulate the activation of complement AP.
Collapse
Affiliation(s)
- Lufeng Bai
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Qiuyu Xie
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Min Xia
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Kunjing Gong
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Na Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yuqing Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
15
|
Renal Protective Effect of Beluga Lentil Pretreatment for Ischemia-Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6890679. [PMID: 33604384 PMCID: PMC7868138 DOI: 10.1155/2021/6890679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/24/2020] [Accepted: 01/12/2021] [Indexed: 11/18/2022]
Abstract
Materials and Methods Mice were divided into four groups: normal, untreated, low- (2 mg), and high-dose (8 mg) beluga lentil treatment groups. Beluga lentil was orally administered for 2 weeks, followed by bilateral renal ischemia for 20 min and reperfusion for 30 min. Blood samples and kidney tissues were collected and analyzed to investigate renal function, histopathology, epithelial and endothelial cell damage, apoptosis, oxidative stress, and inflammatory responses. Results The pretreated groups maintained renal function, with significantly lower blood urea nitrogen (BUN) and creatinine levels, compared with the other groups. The histopathological analysis showed reduced proximal tubule injury and decreased injury-related molecule (kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)) secretion in the pretreated groups compared with the other groups. Terminal deoxynucleotidyl transferase dUTP nick-end labeling- (TUNEL-) positive cells and the secretion of apoptosis-related molecules (Fas and caspase 3) were significantly reduced in the pretreated groups compared with the other groups. The pretreated groups showed positive microvessel-associated gene (cluster of differentiation (CD31)) expression and negative adhesion molecule (intracellular adhesion molecule 1 (ICAM-1)) expression. An antioxidant effect was observed in the pretreatment groups, with reduced malonaldehyde (MDA) expression and increased antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx)) secretion. In the pretreated groups, F4/80+ macrophages and CD4+ T cell infiltration were inhibited and proinflammatory cytokine (interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α) levels decreased; however, the levels of anti-inflammatory cytokines (transforming growth factor- (TGF-) β, IL-10, and IL-22) increased. Conclusions Beluga lentil pretreatment demonstrated protective effects against I/R-induced renal damage, via antiapoptotic, anti-inflammatory, and antioxidant activities.
Collapse
|
16
|
Wen Y, Yang C, Menez SP, Rosenberg AZ, Parikh CR. A Systematic Review of Clinical Characteristics and Histologic Descriptions of Acute Tubular Injury. Kidney Int Rep 2020; 5:1993-2001. [PMID: 33163720 PMCID: PMC7609907 DOI: 10.1016/j.ekir.2020.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The term "acute tubular injury" (ATI) represents histopathologic renal tubular injury and often manifests clinically as acute kidney injury (AKI). Studies systematically summarizing the clinical presentation and histological changes in human ATI are limited. METHODS We used a comprehensive search strategy to search human studies of ATI from 1936 to July 2019. We extracted study characteristics, clinical characteristics, and histologic descriptions of ATI by bright field, immunofluorescence, electron microscopy, and immunohistochemistry. We compared ATI histology as a function of tissue procurement type, timing, and etiologies. RESULTS We included 292 studies comprising a total of 1987 patients. The majority of studies (222 of 292, 76%) were single-center case reports. The mean age of included patients was 47 years. In native kidney biopsy cases, baseline, peak, and latest creatinine were 1.3 mg/dl, 7.19 mg/dl, and 1.85 mg/dl respectively, and biopsy was performed mostly after peak creatinine (86.7%, 391 of 451). We identified 16 histologic descriptions of tubular injury, including tubular cell sloughing (115 of 292, 39.4%), tubular epithelial flattening/simplification (110 of 292, 37.7%), tubular dilatation (109 of 292, 37.3%), and tubular cell necrosis (93 of 292, 31.8%). There was no difference in tubular injury histology among different tissue procurement types (native kidney biopsy, transplant kidney biopsy, and autopsy), among different etiologies, or between different tissue procurement timing (before or after creatinine peaks in native kidneys). Electron microscopy and immunohistochemistry were used in a minority of studies. CONCLUSION ATI manifests with diverse histologic changes. Efforts to establish protocols to harmonize biopsy practices, to handle kidney biopsy for tissue interrogation, and to report results across clinical practice are needed to improve our understanding of this complex disease.
Collapse
Affiliation(s)
- Yumeng Wen
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven P. Menez
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Correspondence: Chirag R. Parikh, Division of Nephrology, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, Maryland 21287, USA.
| |
Collapse
|
17
|
Yamamoto S, Yamamoto M, Nakamura J, Mii A, Yamamoto S, Takahashi M, Kaneko K, Uchino E, Sato Y, Fukuma S, Imamura H, Matsuda M, Yanagita M. Spatiotemporal ATP Dynamics during AKI Predict Renal Prognosis. J Am Soc Nephrol 2020; 31:2855-2869. [PMID: 33046532 DOI: 10.1681/asn.2020050580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Depletion of ATP in renal tubular cells plays the central role in the pathogenesis of kidney diseases. Nevertheless, inability to visualize spatiotemporal in vivo ATP distribution and dynamics has hindered further analysis. METHODS A novel mouse line systemically expressing an ATP biosensor (an ATP synthase subunit and two fluorophores) revealed spatiotemporal ATP dynamics at single-cell resolution during warm and cold ischemic reperfusion (IR) with two-photon microscopy. This experimental system enabled quantification of fibrosis 2 weeks after IR and assessment of the relationship between the ATP recovery in acute phase and fibrosis in chronic phase. RESULTS Upon ischemia induction, the ATP levels of proximal tubule (PT) cells decreased to the nadir within a few minutes, whereas those of distal tubule (DT) cells decreased gradually up to 1 hour. Upon reperfusion, the recovery rate of ATP in PTs was slower with longer ischemia. In stark contrast, ATP in DTs was quickly rebounded irrespective of ischemia duration. Morphologic changes of mitochondria in the acute phase support the observation of different ATP dynamics in the two segments. Furthermore, slow and incomplete ATP recovery of PTs in the acute phase inversely correlated with fibrosis in the chronic phase. Ischemia under conditions of hypothermia resulted in more rapid and complete ATP recovery with less fibrosis, providing a proof of concept for use of hypothermia to protect kidney tissues. CONCLUSIONS Visualizing spatiotemporal ATP dynamics during IR injury revealed higher sensitivity of PT cells to ischemia compared with DT cells in terms of energy metabolism. The ATP dynamics of PTs in AKI might provide prognostic information.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Advanced Scientific Research Leaders Development Unit, Gunma University Graduate School of Medicine, Maebashi, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Jin Nakamura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Mii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigenori Yamamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Takahashi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiichi Kaneko
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Uchino
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Medical Innovation Center TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shingo Fukuma
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan .,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Wetzel MD, Stanley K, Wang WW, Maity S, Madesh M, Reeves WB, Awad AS. Selective inhibition of arginase-2 in endothelial cells but not proximal tubules reduces renal fibrosis. JCI Insight 2020; 5:142187. [PMID: 32956070 PMCID: PMC7566719 DOI: 10.1172/jci.insight.142187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Fibrosis is the final common pathway in the pathophysiology of most forms of chronic kidney disease (CKD). As treatment of renal fibrosis still remains largely supportive, a refined understanding of the cellular and molecular mechanisms of kidney fibrosis and the development of novel compounds are urgently needed. Whether arginases play a role in the development of fibrosis in CKD is unclear. We hypothesized that endothelial arginase-2 (Arg2) promotes the development of kidney fibrosis induced by unilateral ureteral obstruction (UUO). Arg2 expression and arginase activity significantly increased following renal fibrosis. Pharmacologic blockade or genetic deficiency of Arg2 conferred kidney protection following renal fibrosis, as reflected by a reduction in kidney interstitial fibrosis and fibrotic markers. Selective deletion of Arg2 in endothelial cells (Tie2Cre/Arg2fl/fl) reduced the level of fibrosis after UUO. In contrast, selective deletion of Arg2 specifically in proximal tubular cells (Ggt1Cre/Arg2fl/fl) failed to reduce renal fibrosis after UUO. Furthermore, arginase inhibition restored kidney nitric oxide (NO) levels, oxidative stress, and mitochondrial function following UUO. These findings indicate that endothelial Arg2 plays a major role in renal fibrosis via its action on NO and mitochondrial function. Blocking Arg2 activity or expression could be a novel therapeutic approach for prevention of CKD.
Collapse
|
19
|
Wang Z, Belghasem M, Salih E, Henderson J, Igwebuike C, Havasi A, Borkan SC. T95 nucleophosmin phosphorylation as a novel mediator and marker of regulated cell death in acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F552-F561. [PMID: 32686519 PMCID: PMC7509286 DOI: 10.1152/ajprenal.00230.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
The function of site-specific phosphorylation of nucleophosmin (NPM), an essential Bax chaperone, in stress-induced cell death is unknown. We hypothesized that NPM threonine 95 (T95) phosphorylation both signals and promotes cell death. In resting cells, NPM exclusively resides in the nucleus and T95 is nonphosphorylated. In contrast, phosphorylated T95 NPM (pNPM T95) accumulates in the cytosol after metabolic stress, in multiple human cancer cell lines following γ-radiation, and in postischemic human kidney tissue. Based on the T95 phosphorylation consensus sequence, we hypothesized that glycogen synthase kinase-3β (GSK-3β) regulates cytosolic NPM translocation by phosphorylating T95 NPM. In a cell-free system, GSK-3β phosphorylated a synthetic NPM peptide containing T95. In vitro, bidirectional manipulation of GSK-3β activity substantially altered T95 phosphorylation, cytosolic NPM translocation, and cell survival during stress, mechanistically linking these lethal events. Furthermore, GSK-3β inhibition in vivo decreased cytosolic pNPM T95 accumulation in kidney tissue after experimental ischemia. In patients with acute kidney injury, both cytosolic NPM accumulation in proximal tubule cells and NPM-rich intratubular casts were detected in frozen renal biopsy tissue. These observations show, for the first time, that GSK-3β promotes cell death partly by phosphorylating NPM at T95, to promote cytosolic NPM accumulation. T95 NPM is also a rational therapeutic target to ameliorate ischemic renal cell injury and may be a universal injury marker in mammalian cells.
Collapse
Affiliation(s)
- Zhiyong Wang
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Mostafa Belghasem
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Erdjan Salih
- Goldman School of Dentistry, Boston University, Boston, Massachusetts
| | - Joel Henderson
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Chinaemere Igwebuike
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Andrea Havasi
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Steven C Borkan
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| |
Collapse
|
20
|
Herath S, Dai H, Erlich J, Au AYM, Taylor K, Succar L, Endre ZH. Selection and validation of reference genes for normalisation of gene expression in ischaemic and toxicological studies in kidney disease. PLoS One 2020; 15:e0233109. [PMID: 32437461 PMCID: PMC7241806 DOI: 10.1371/journal.pone.0233109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Normalisation to standard reference gene(s) is essential for quantitative real-time polymerase chain reaction (RT-qPCR) to obtain reproducible and comparable results of a gene of interest (GOI) between subjects and under varying experimental conditions. There is limited evidence to support selection of the commonly used reference genes in rat ischaemic and toxicological kidney models. Employing these models, we determined the most stable reference genes by comparing 4 standard methods (NormFinder, qBase+, BestKeeper and comparative ΔCq) and developed a new 3-way linear mixed-effects model for evaluation of reference gene stability. This new technique utilises the intra-class correlation coefficient as the stability measure for multiple continuous and categorical covariates when determining the optimum normalisation factor. The model also determines confidence intervals for each candidate normalisation gene to facilitate selection and allow sample size calculation for designing experiments to identify reference genes. Of the 10 candidate reference genes tested, the geometric mean of polyadenylate-binding nuclear protein 1 (PABPN1) and beta-actin (ACTB) was the most stable reference combination. In contrast, commonly used ribosomal 18S and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were the most unstable. We compared the use of PABPN1×ACTB and 2 commonly used genes 18S and GAPDH on the expression of 4 genes of interest know to vary after renal injury and expressed by different kidney cell types (KIM-1, HIF1α, TGFβ1 and PECAM1). The less stable reference genes gave varying patterns of GOI expression in contrast to the use of the least unstable reference PABPN1×ACTB combination; this improved detection of differences in gene expression between experimental groups. Reduced within-group variation of the now more accurately normalised GOI may allow for reduced experimental group size particularly for comparison between various models. This objective selection of stable reference genes increased the reliability of comparisons within and between experimental groups.
Collapse
Affiliation(s)
- Sanjeeva Herath
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Hongying Dai
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jonathan Erlich
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- * E-mail:
| | - Amy YM Au
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Department of Nephrology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Kylie Taylor
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Lena Succar
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
| | - Zoltán H. Endre
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia
- Department of Nephrology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
21
|
The Mechanisms of the Herbal Components of CRSAS on HK-2 Cells in a Hypoxia/Reoxygenation Model Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5352490. [PMID: 32351597 PMCID: PMC7174917 DOI: 10.1155/2020/5352490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 01/22/2023]
Abstract
Background Acute kidney injury is a global problem, which brings a great burden to the society and family. The component of rhubarb, Salvia miltiorrhiza, Astragalus membranaceus, and safflower (CRSAS) has been proved as an useful agent to treat acute kidney injury (AKI) patients in China. Objective To assess the effect of CRSAS on human renal tubular epithelial cells (HK-2) after the hypoxia/reoxygenation (H/R) and investigate the potential mechanisms. Methods Network pharmacology was used to predict the potential pathways shared by CRSAS and AKI. Cell counting kit-8 (CCK-8) was used to assess the HK-2 vitality. Apoptosis of HK-2 cells was detected by carboxyfluorescein succinimidyl ester/propidium iodide (CFSF/PI) staining. Expression of GRP78, CHOP, caspase-3, and Bax was detected by western blot and quantitative real-time RT-PCR. Result CRSAS and AKI shared the endoplasmic reticulum stress (ERS) pathway based on network pharmacology analysis. CRSAS increases the vitality of HK-2 cells and reduces the apoptosis of HK-2 cells induced by H/R injury. The expression of GRP78 and CHOP in CRSAS groups was lower than that of control groups. Conclusions H/R can induce HK-2 cell apoptosis and ERS. CRSAS can reduce HK-2 cell apoptosis by inhibiting the ERS. Therefore, CRSAS might be able to treat kidney disease due to I/R injury. Animal experiment should be done to further prove our finding.
Collapse
|
22
|
Deletion of VDAC1 Hinders Recovery of Mitochondrial and Renal Functions After Acute Kidney Injury. Biomolecules 2020; 10:biom10040585. [PMID: 32290153 PMCID: PMC7226369 DOI: 10.3390/biom10040585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) constitute major transporters mediating bidirectional movement of solutes between cytoplasm and mitochondria. We aimed to determine if VDAC1 plays a role in recovery of mitochondrial and kidney functions after ischemia-induced acute kidney injury (AKI). Kidney function decreased after ischemia and recovered in wild-type (WT), but not in VDAC1-deficient mice. Mitochondrial maximum respiration, activities of respiratory complexes and FoF1-ATPase, and ATP content in renal cortex decreased after ischemia and recovered in WT mice. VDAC1 deletion reduced respiration and ATP content in non-injured kidneys. Further, VDAC1 deletion blocked return of activities of respiratory complexes and FoF1-ATPase, and recovery of respiration and ATP content after ischemia. Deletion of VDAC1 exacerbated ischemia-induced mitochondrial fission, but did not aggravate morphological damage to proximal tubules after ischemia. However, VDAC1 deficiency impaired recovery of kidney morphology and increased renal interstitial collagen accumulation. Thus, our data show a novel role for VDAC1 in regulating renal mitochondrial dynamics and recovery of mitochondrial function and ATP levels after AKI. We conclude that the presence of VDAC1 (1) stimulates capacity of renal mitochondria for respiration and ATP production, (2) reduces mitochondrial fission, (3) promotes recovery of mitochondrial function and dynamics, renal morphology, and kidney functions, and (4) increases survival after AKI.
Collapse
|
23
|
Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB. Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. Int J Mol Sci 2019; 20:ijms20246326. [PMID: 31847447 PMCID: PMC6941132 DOI: 10.3390/ijms20246326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a “progenitor phenotype” during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina I. Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
24
|
Desanti De Oliveira B, Xu K, Shen TH, Callahan M, Kiryluk K, D'Agati VD, Tatonetti NP, Barasch J, Devarajan P. Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 2019; 15:599-612. [PMID: 31439924 PMCID: PMC7303545 DOI: 10.1038/s41581-019-0184-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Abstract
The acute loss of kidney function has been diagnosed for many decades using the serum concentration of creatinine - a muscle metabolite that is an insensitive and non-specific marker of kidney function, but is now used for the very definition of acute kidney injury (AKI). Fortunately, myriad new tools have now been developed to better understand the relationship between acute tubular injury and elevation in serum creatinine (SCr). These tools include unbiased gene and protein expression analyses in kidney, urine and blood, the localization of specific gene transcripts in pathological biopsy samples by rapid in-situ RNA technology and single-cell RNA-sequencing analyses. However, this molecular approach to AKI has produced a series of unexpected problems, because the expression of specific kidney-derived molecules that are indicative of injury often do not correlate with SCr levels. This discrepancy between kidney injury markers and SCr level can be reconciled by the recognition that many separate subtypes of AKI exist, each with distinct patterning of molecular markers of tubular injury and SCr data. In this Review, we describe the weaknesses of isolated SCr-based diagnoses, the clinical and molecular subtyping of acute tubular injury, and the role of non-invasive biomarkers in clinical phenotyping. We propose a conceptual model that synthesizes molecular and physiological data along a time course spanning from acute cellular injury to organ failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Prasad Devarajan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
25
|
Capolongo G, Suzumoto Y, D'Acierno M, Simeoni M, Capasso G, Zacchia M. ERK1,2 Signalling Pathway along the Nephron and Its Role in Acid-base and Electrolytes Balance. Int J Mol Sci 2019; 20:E4153. [PMID: 31450703 PMCID: PMC6747339 DOI: 10.3390/ijms20174153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are intracellular molecules regulating a wide range of cellular functions, including proliferation, differentiation, apoptosis, cytoskeleton remodeling and cytokine production. MAPK activity has been shown in normal kidney, and its over-activation has been demonstrated in several renal diseases. The extracellular signal-regulated protein kinases (ERK 1,2) signalling pathway is the first described MAPK signaling. Intensive investigations have demonstrated that it participates in the regulation of ureteric bud branching, a fundamental process in establishing final nephron number; in addition, it is also involved in the differentiation of the nephrogenic mesenchyme, indicating a key role in mammalian kidney embryonic development. In the present manuscript, we show that ERK1,2 signalling mediates several cellular functions also in mature kidney, describing its role along the nephron and demonstrating whether it contributes to the regulation of ion channels and transporters implicated in acid-base and electrolytes homeostasis.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | | | | | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Biogem Scarl, 83031 Ariano Irpino, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| |
Collapse
|
26
|
Bartucci R, Salvati A, Olinga P, Boersma YL. Vanin 1: Its Physiological Function and Role in Diseases. Int J Mol Sci 2019; 20:E3891. [PMID: 31404995 PMCID: PMC6719204 DOI: 10.3390/ijms20163891] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
The enzyme vascular non-inflammatory molecule-1 (vanin 1) is highly expressed at gene and protein level in many organs, such as the liver, intestine, and kidney. Its major function is related to its pantetheinase activity; vanin 1 breaks down pantetheine in cysteamine and pantothenic acid, a precursor of coenzyme A. Indeed, its physiological role seems strictly related to coenzyme A metabolism, lipid metabolism, and energy production. In recent years, many studies have elucidated the role of vanin 1 under physiological conditions in relation to oxidative stress and inflammation. Vanin's enzymatic activity was found to be of key importance in certain diseases, either for its protective effect or as a sensitizer, depending on the diseased organ. In this review, we discuss the role of vanin 1 in the liver, kidney, intestine, and lung under physiological as well as pathophysiological conditions. Thus, we provide a more complete understanding and overview of its complex function and contribution to some specific pathologies.
Collapse
Affiliation(s)
- Roberta Bartucci
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Division of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ykelien L Boersma
- Division of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
27
|
Gcm1 is involved in cell proliferation and fibrosis during kidney regeneration after ischemia-reperfusion injury. Sci Rep 2019; 9:7883. [PMID: 31133638 PMCID: PMC6536531 DOI: 10.1038/s41598-019-44161-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/10/2019] [Indexed: 12/27/2022] Open
Abstract
In acute kidney injury (AKI), the S3 segment of the proximal tubule is particularly damaged, as it is most vulnerable to ischemia. However, this region is also involved in renal tubular regeneration. To deeply understand the mechanism of the repair process after ischemic injury in AKI, we focused on glial cells missing 1 (Gcm1), which is one of the genes expressed in the S3 segment. Gcm1 is essential for the development of the placenta, and Gcm1 knockout (KO) is embryonically lethal. Thus, the function of Gcm1 in the kidney has not been analyzed yet. We analyzed the function of Gcm1 in the kidney by specifically knocking out Gcm1 in the kidney. We created an ischemia-reperfusion injury (IRI) model to observe the repair process after AKI. We found that Gcm1 expression was transiently increased during the recovery phase of IRI. In Gcm1 conditional KO mice, during the recovery phase of IRI, tubular cell proliferation reduced and transforming growth factor-β1 expression was downregulated resulting in a reduction in fibrosis. In vitro, Gcm1 overexpression promoted cell proliferation and upregulated TGF-β1 expression. These findings indicate that Gcm1 is involved in the mechanisms of fibrosis and cell proliferation after ischemic injury of the kidney.
Collapse
|
28
|
Cell Death Patterns Due to Warm Ischemia or Reperfusion in Renal Tubular Epithelial Cells Originating from Human, Mouse, or the Native Hibernator Hamster. BIOLOGY 2018; 7:biology7040048. [PMID: 30445750 PMCID: PMC6316155 DOI: 10.3390/biology7040048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Ischemia–reperfusion injury contributes to the pathogenesis of many diseases, with acute kidney injury included. Hibernating mammals survive prolonged bouts of deep torpor with a dramatic drop in blood pressure, heart, and breathing rates, interspersed with short periods of arousal and, consequently, ischemia–reperfusion injury. Clarifying the differences under warm anoxia or reoxygenation between human cells and cells from a native hibernator may reveal interventions for rendering human cells resistant to ischemia–reperfusion injury. Human and hamster renal proximal tubular epithelial cells (RPTECs) were cultured under warm anoxia or reoxygenation. Mouse RPTECs were used as a phylogenetic control for hamster cells. Cell death was assessed by both cell imaging and lactate dehydrogenase (LDH) release assay, apoptosis by cleaved caspase-3, autophagy by microtubule-associated protein 1-light chain 3 B II (LC3B-II) to LC3B-I ratio, necroptosis by phosphorylated mixed-lineage kinase domain-like pseudokinase, reactive oxygen species (ROS) fluorometrically, and lipid peroxidation, the end-point of ferroptosis, by malondialdehyde. Human cells died after short periods of warm anoxia or reoxygenation, whereas hamster cells were extremely resistant. In human cells, apoptosis contributed to cell death under both anoxia and reoxygenation. Although under reoxygenation, ROS increased in both human and hamster RPTECs, lipid peroxidation-induced cell death was detected only in human cells. Autophagy was observed only in human cells under both conditions. Necroptosis was not detected in any of the evaluated cells. Clarifying the ways that are responsible for hamster RPTECs escaping from apoptosis and lipid peroxidation-induced cell death may reveal interventions for preventing ischemia–reperfusion-induced acute kidney injury in humans.
Collapse
|
29
|
Eleftheriadis T, Pissas G, Antoniadi G, Golfinopoulos S, Liakopoulos V, Stefanidis I. Energy handling in renal tubular epithelial cells of the hamster, a native hibernator, under warm anoxia or reoxygenation. Biomed Rep 2018; 9:503-510. [PMID: 30546878 DOI: 10.3892/br.2018.1157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (I-R) injury causes several diseases, including acute kidney injury. Hibernating mammals survive periods of torpor with a marked drop in tissue perfusion, interspersed with periods of arousal, and consequently I-R injury. In the present study, sensitivity to anoxia and/or reoxygenation and alterations in cellular ATP and homeostasis of the two most energy consuming processes, protein translation and Na+-K+-ATPase function, were evaluated in renal proximal tubular epithelial cells of mouse or native hibernator hamster origin. Compared with the mouse cells, the hamster cells were less sensitive to anoxia and reoxygenation and ATP was preserved under anoxia. Anoxia triggered mechanisms that suppress protein translation in both species. However, under anoxia, the activity of ATPase, which is mostly attributed to Na+-K+-ATPase function, remained stable in the hamster cells but decreased in the mouse cells. In normoxia, ATPase activity in hamster cells was considerably lower than that in mouse cells. As the Na+-K+-ATPase pump preserves the ion gradient against passive leakage through ion channels, the lower energy demand for the function of this pump in hamster cells may indicate less ion leakage due to fewer ion channels. In accordance with this hypothesis, ouabain-treated hamster cells had a higher survival rate than mouse cells, indicating fewer ion channels and consequently slower deregulation of intracellular ion concentration and cell death due to Na+-K+-ATPase inhibition. Therefore, it is likely that the conserved energy from the suppression of protein translation is adequate enough to support the lower energy demand for Na+-K+-ATPase function and cell survival of hamster cells under anoxia. Clarifying how cells of a native hibernator manage energy under warm I-R may reveal novel and possible clinically applicable pathways for preventing I-R injury.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Spyridon Golfinopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
30
|
Yu SMW, Bonventre JV. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:166-180. [PMID: 29580581 DOI: 10.1053/j.ackd.2017.12.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Diabetic kidney disease, commonly termed diabetic nephropathy (DN), is the most common cause of end-stage kidney disease (ESKD) worldwide. The characteristic histopathology of DN includes glomerular basement membrane thickening, mesangial expansion, nodular glomerular sclerosis, and tubulointerstitial fibrosis. Diabetes is associated with a number of metabolic derangements, such as reactive oxygen species overproduction, hypoxic state, mitochondrial dysfunction, and inflammation. In the past few decades, our knowledge of DN has advanced considerably although much needs to be learned. The traditional paradigm of glomerulus-centered pathophysiology has expanded to the tubule-interstitium, the immune response and inflammation. Biomarkers of proximal tubule injury have been shown to correlate with DN progression, independent of traditional glomerular injury biomarkers such as albuminuria. In this review, we summarize mechanisms of increased susceptibility to acute kidney injury in diabetes mellitus and the roles played by many kidney cell types to facilitate maladaptive responses leading to chronic and end-stage kidney disease.
Collapse
|
31
|
Pino CJ, Westover AJ, Buffington DA, Humes HD. Bioengineered Renal Cell Therapy Device for Clinical Translation. ASAIO J 2018; 63:305-315. [PMID: 27922886 PMCID: PMC5411310 DOI: 10.1097/mat.0000000000000485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The bioartificial renal epithelial cell system (BRECS) is a cell-based device to treat acute kidney injury through renal cell therapy from an extracorporeal circuit. To enable widespread implementation of cell therapy, the BRECS was designed to be cryopreserved as a complete device, cryostored, cryoshipped to an end-use site, thawed as a complete device, and employed in a therapeutic extracorporeal hemofiltration circuit. This strategy overcomes storage and distribution issues that have been previous barriers to cell therapy. Previous BRECS housings produced by computer numerical control (CNC) machining, a slow process taking hours to produce one bioreactor, was also prohibitively expensive (>$600/CNC-BRECS); major obstacles to mass production. The goal of this study was to produce a BRECS to be mass produced by injection-molded BRECS (IM-BRECS), decreasing cost (<$20/unit), and improving manufacturing speed (hundreds of units/h), while maintaining the same cell therapy function as the previous CNC-BRECS, first evaluated through prototypes produced by stereolithography BRECS (SLA-BRECS). The finalized IM-BRECS design had a significantly lower fill volume (10 ml), mass (49 g), and footprint (8.5 cm × 8.5 cm × 1.5 cm), and was demonstrated to outperform the previous BRECS designs with respect to heat transfer, significantly improving control of cooling during cryopreservation and reducing thaw times during warming. During in vitro culture, IM-BRECS performed similarly to previous CNC-BRECS with respect to cell metabolic activity (lactate production, oxygen consumption, and glutathione metabolism) and amount of cells supported.
Collapse
Affiliation(s)
- Christopher J Pino
- From the *Innovative BioTherapies, Inc., Ann Arbor, Michigan; and †Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
32
|
Cortes AL, Gonsalez SR, Rioja LS, Oliveira SSC, Santos ALS, Prieto MC, Melo PA, Lara LS. Protective outcomes of low-dose doxycycline on renal function of Wistar rats subjected to acute ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2017; 1864:102-114. [PMID: 28987762 DOI: 10.1016/j.bbadis.2017.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 08/08/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute renal failure. Doxycycline (Dc) belongs to the tetracycline-class of antibiotics with demonstrated beneficial molecular effects in the brain and heart, mainly through matrix metalloproteinases inhibition (MMP). However, Dc protection of renal function has not been demonstrated. We determined whether low doses of Dc would prevent decreases in glomerular filtration rate (GFR) and maintain tubular Na+ handling in Wistar rats subjected to kidney I/R. Male Wistar rats underwent bilateral kidney ischemia for 30min followed by 24h reperfusion (I/R). Doxycycline (1, 3, and 10mg/kg, i.p.) was administered 2h before surgery. Untreated I/R rats showed a 250% increase in urine volume and proteinuria, a 60% reduction in GFR, accumulation of urea-nitrogen in the blood, and a 60% decrease in the fractional Na+ excretion due to unbalanced Na+ transporter activity. Treatment with Dc 3mg/kg maintained control levels of urine volume, proteinuria, GFR, blood urea-nitrogen, fractional Na+ excretion, and equilibrated Na+ transporter activities. The Dc protection effects on renal function were associated with kidney structure preservation and prevention of TGFβ and fibronectin deposition. In vitro, total MMP activity was augmented in I/R and inhibited by 25 and 50μM Dc. In vivo, I/R augmented MMP-2 and -9 protein content without changing their activities. Doxycycline treatment downregulated total MMP activity and MMP-2 and -9 protein content. Our results suggest that treatment with low dose Dc protects from IRI, thereby preserving kidney function.
Collapse
Affiliation(s)
- Aline L Cortes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina R Gonsalez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilimar S Rioja
- Departamento de Patologia e Laboratórios, Universidade do Estado do Rio de Janeiro, Brazil
| | - Simone S C Oliveira
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA, USA
| | - Paulo A Melo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Raup-Konsavage WM, Gao T, Cooper TK, Morris SM, Reeves WB, Awad AS. Arginase-2 mediates renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2017; 313:F522-F534. [PMID: 28515179 PMCID: PMC5582893 DOI: 10.1152/ajprenal.00620.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
Novel therapeutic interventions for preventing or attenuating kidney injury following ischemia-reperfusion injury (IRI) remain a focus of significant interest. Currently, there are no definitive therapeutic or preventive approaches available for ischemic acute kidney injury (AKI). Our objective is to determine 1) whether renal arginase activity or expression is increased in renal IRI, and 2) whether arginase plays a role in development of renal IRI. The impact of arginase activity and expression on renal damage was evaluated in male C57BL/6J (wild type) and arginase-2 (ARG2)-deficient (Arg2-/- ) mice subjected to bilateral renal ischemia for 28 min, followed by reperfusion for 24 h. ARG2 expression and arginase activity significantly increased following renal IRI, paralleling the increase in kidney injury. Pharmacological blockade or genetic deficiency of Arg2 conferred kidney protection in renal IRI. Arg2-/- mice had significantly attenuated kidney injury and lower plasma creatinine and blood urea nitrogen levels after renal IRI. Blocking arginases using S-(2-boronoethyl)-l-cysteine (BEC) 18 h before ischemia mimicked arginase deficiency by reducing kidney injury, histopathological changes and kidney injury marker-1 expression, renal apoptosis, kidney inflammatory cell recruitment and inflammatory cytokines, and kidney oxidative stress; increasing kidney nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation, kidney peroxisome proliferator-activated receptor-γ coactivator-1α expression, and mitochondrial ATP; and preserving kidney mitochondrial ultrastructure compared with vehicle-treated IRI mice. Importantly, BEC-treated eNOS-knockout mice failed to reduce blood urea nitrogen and creatinine following renal IRI. These findings indicate that ARG2 plays a major role in renal IRI, via an eNOS-dependent mechanism, and that blocking ARG2 activity or expression could be a novel therapeutic approach for prevention of AKI.
Collapse
Affiliation(s)
- Wesley M Raup-Konsavage
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Ting Gao
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Sidney M Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - W Brian Reeves
- Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Alaa S Awad
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania; .,Department of C&M Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
34
|
Preconditioning of primary human renal proximal tubular epithelial cells without tryptophan increases survival under hypoxia by inducing autophagy. Int Urol Nephrol 2017; 49:1297-1307. [PMID: 28417340 DOI: 10.1007/s11255-017-1596-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Hypoxia plays a significant role in the pathogenesis of acute kidney injury (AKI). Autophagy protects from AKI. Amino acid deprivation induces autophagy. The effect of L-tryptophan depletion on survival and autophagy in cultures of renal proximal tubular epithelial cells (RPTECs) under hypoxia was evaluated. METHODS RPTECs were preconditioned in a medium containing or not tryptophan, following culture under hypoxia and treatment with or without the autophagy inhibitor chloroquine. Cell survival was assessed by cell imaging, the level of certain proteins by western blotting and cellular ATP fluorometrically. RESULTS Preconditioning of RPTECs in a medium without tryptophan activated general control nonderepressible 2 kinase and induced changes that favored autophagy and cell survival under hypoxic conditions. Additionally, it increased cellular ATP, while it inhibited apoptosis. Inhibition of autophagy nullified the induced increase in cellular ATP and cell survival by the absence of tryptophan. The absence of tryptophan increased p53, although its effect on p53's transcriptional targets was heterogeneous. In accordance with the decreased apoptosis, expression of p21 increased, while expression of Bax decreased. The expression of BNIP3L, which may be pro-apoptotic or pro-autophagic, increased. Considering the decreased apoptosis, it is likely that tryptophan depletion enhances autophagy through a p53-mediated increase of BNIP3L. CONCLUSION Preconditioning of primary human RPTECs in a medium without tryptophan increases their survival under hypoxia by inducing autophagy. Identifying new molecular mechanisms that protect renal tissue from hypoxia could be proved clinically important in the prevention of AKI.
Collapse
|
35
|
Nowak G, Takacsova-Bakajsova D, Megyesi J. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury. Am J Physiol Renal Physiol 2016; 312:F109-F120. [PMID: 27760765 DOI: 10.1152/ajprenal.00115.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023] Open
Abstract
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia.
Collapse
Affiliation(s)
- Grazyna Nowak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Diana Takacsova-Bakajsova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Judit Megyesi
- Division of Nephrology, Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
36
|
Abstract
SIGNIFICANCE Peroxisomes are organelles present in most eukaryotic cells. The organs with the highest density of peroxisomes are the liver and kidneys. Peroxisomes possess more than fifty enzymes and fulfill a multitude of biological tasks. They actively participate in apoptosis, innate immunity, and inflammation. In recent years, a considerable amount of evidence has been collected to support the involvement of peroxisomes in the pathogenesis of kidney injury. RECENT ADVANCES The nature of the two most important peroxisomal tasks, beta-oxidation of fatty acids and hydrogen peroxide turnover, functionally relates peroxisomes to mitochondria. Further support for their communication and cooperation is furnished by the evidence that both organelles share the components of their division machinery. Until recently, the majority of studies on the molecular mechanisms of kidney injury focused primarily on mitochondria and neglected peroxisomes. CRITICAL ISSUES The aim of this concise review is to introduce the reader to the field of peroxisome biology and to provide an overview of the evidence about the contribution of peroxisomes to the development and progression of kidney injury. The topics of renal ischemia-reperfusion injury, endotoxin-induced kidney injury, diabetic nephropathy, and tubulointerstitial fibrosis, as well as the potential therapeutic implications of peroxisome activation, are addressed in this review. FUTURE DIRECTIONS Despite recent progress, further studies are needed to elucidate the molecular mechanisms induced by dysfunctional peroxisomes and the role of the dysregulated mitochondria-peroxisome axis in the pathogenesis of renal injury. Antioxid. Redox Signal. 25, 217-231.
Collapse
Affiliation(s)
- Radovan Vasko
- Department of Nephrology and Rheumatology, University Medical Center Göttingen , Göttingen, Germany
| |
Collapse
|
37
|
Song H, Yoon SP, Kim J. Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells. Anat Cell Biol 2016; 49:79-87. [PMID: 27382509 PMCID: PMC4927434 DOI: 10.5115/acb.2016.49.2.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
Abstract
After renal injury, selective damage occurs in the proximal tubules as a result of inhibition of glycolysis. The molecular mechanism of damage is not known. Poly(ADP-ribose) polymerase (PARP) activation plays a critical role of proximal tubular cell death in several renal disorders. Here, we studied the role of PARP on glycolytic flux in pig kidney proximal tubule epithelial LLC-PK1 cells using XFp extracellular flux analysis. Poly(ADP-ribosyl)ation by PARP activation was increased approximately 2-fold by incubation of the cells in 10 mM glucose for 30 minutes, but treatment with the PARP inhibitor 3-aminobenzamide (3-AB) does-dependently prevented the glucose-induced PARP activation (approximately 14.4% decrease in 0.1 mM 3-AB–treated group and 36.7% decrease in 1 mM 3-AB–treated group). Treatment with 1 mM 3-AB significantly enhanced the glucose-mediated increase in the extracellular acidification rate (61.1±4.3 mpH/min vs. 126.8±6.2 mpH/min or approximately 2-fold) compared with treatment with vehicle, indicating that PARP inhibition increases only glycolytic activity during glycolytic flux including basal glycolysis, glycolytic activity, and glycolytic capacity in kidney proximal tubule epithelial cells. Glucose increased the activities of glycolytic enzymes including hexokinase, phosphoglucose isomerase, phosphofructokinase-1, glyceraldehyde-3-phosphate dehydrogenase, enolase, and pyruvate kinase in LLC-PK1 cells. Furthermore, PARP inhibition selectively augmented the activities of hexokinase (approximately 1.4-fold over vehicle group), phosphofructokinase-1 (approximately 1.6-fold over vehicle group), and glyceraldehyde-3-phosphate dehydrogenase (approximately 2.2-fold over vehicle group). In conclusion, these data suggest that PARP activation may regulate glycolytic activity via poly(ADP-ribosyl)ation of hexokinase, phosphofructokinase-1, and glyceraldehyde-3-phosphate dehydrogenase in kidney proximal tubule epithelial cells.
Collapse
Affiliation(s)
- Hana Song
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea.; Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
38
|
Patschan D, Kribben A, Müller GA. Postischemic microvasculopathy and endothelial progenitor cell-based therapy in ischemic AKI: update and perspectives. Am J Physiol Renal Physiol 2016; 311:F382-94. [PMID: 27194716 DOI: 10.1152/ajprenal.00232.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) dramatically increases mortality of hospitalized patients. Incidences have been increased in recent years. The most frequent cause is transient renal hypoperfusion or ischemia which induces significant tubular cell dysfunction/damage. In addition, two further events take place: interstitial inflammation and microvasculopathy (MV). The latter evolves within minutes to hours postischemia and may result in permanent deterioration of the peritubular capillary network, ultimately increasing the risk for chronic kidney disease (CKD) in the long term. In recent years, our understanding of the molecular/cellular processes responsible for acute and sustained microvasculopathy has increasingly been expanded. The methodical approaches for visualizing impaired peritubular blood flow and increased vascular permeability have been optimized, even allowing the depiction of tissue abnormalities in a three-dimensional manner. In addition, endothelial dysfunction, a hallmark of MV, has increasingly been recognized as an inductor of both vascular malfunction and interstitial inflammation. In this regard, so-called regulated necrosis of the endothelium could potentially play a role in postischemic inflammation. Endothelial progenitor cells (EPCs), represented by at least two major subpopulations, have been shown to promote vascular repair in experimental AKI, not only in the short but also in the long term. The discussion about the true biology of the cells continues. It has been proposed that early EPCs are most likely myelomonocytic in nature, and thus they may simply be termed proangiogenic cells (PACs). Nevertheless, they reliably protect certain types of tissues/organs from ischemia-induced damage, mostly by modulating the perivascular microenvironment in an indirect manner. The aim of the present review is to summarize the current knowledge on postischemic MV and EPC-mediated renal repair.
Collapse
Affiliation(s)
- D Patschan
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Georg-August-University, Göttingen, Germany; and
| | - A Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen, Georg-August-University, Göttingen, Germany; and
| |
Collapse
|
39
|
An RNA interference screen identifies new avenues for nephroprotection. Cell Death Differ 2015; 23:608-15. [PMID: 26564400 DOI: 10.1038/cdd.2015.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 01/28/2023] Open
Abstract
Acute kidney injury is a major public health problem, which is commonly caused by renal ischemia and is associated with a high risk of mortality and long-term disability. Efforts to develop a treatment for this condition have met with very limited success. We used an RNA interference screen to identify genes (BCL2L14, BLOC1S2, C2ORF42, CPT1A, FBP1, GCNT3, RHOB, SCIN, TACR1, and TNFAIP6) whose suppression improves survival of kidney epithelial cells in in vitro models of oxygen and glucose deprivation. Some of the genes also modulate the toxicity of cisplatin, an anticancer agent whose use is currently limited by nephrotoxicity. Furthermore, pharmacological inhibition of TACR1 product NK1R was protective in a model of mouse renal ischemia, attesting to the in vivo relevance of our findings. These data shed new light on the mechanisms of stress response in mammalian cells, and open new avenues to reduce the morbidity and mortality associated with renal injury.
Collapse
|
40
|
Ishida R, Kami D, Kusaba T, Kirita Y, Kishida T, Mazda O, Adachi T, Gojo S. Kidney-specific Sonoporation-mediated Gene Transfer. Mol Ther 2015; 24:125-34. [PMID: 26419704 PMCID: PMC4754547 DOI: 10.1038/mt.2015.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sonoporation can deliver agents to target local organs by systemic administration, while decreasing the associated risk of adverse effects. Sonoporation has been used for a variety of materials and in a variety of organs. Herein, we demonstrated that local sonoporation to the kidney can offer highly efficient transfer of oligonucleotides, which were systemically administrated to the tubular epithelium with high specificity. Ultrasonic wave irradiation to the kidney collapsed the microbubbles and transiently affected the glomerular filtration barrier and increased glomerular permeability. Oligonucleotides were passed through the barrier all at once and were absorbed throughout the tubular epithelium. Tumor necrosis factor alpha (TNFα), which plays a central role in renal ischemia-reperfusion injury, was targeted using small interfering RNA (siRNA) with renal sonoporation in a murine model. The reduction of TNFα expression after single gene transfer significantly inhibited the expression of kidney injury markers, suggesting that systemic administration of siRNA under temporary and local sonoporation could be applicable in the clinical setting of ischemic acute kidney injury.
Collapse
Affiliation(s)
- Ryo Ishida
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Kusaba
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuhei Kirita
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaomi Adachi
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science Kyoto Prefectural University of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
41
|
Abstract
OBJECTIVES The aim of this study was a comparison of contrast-enhanced sonography (CEUS) and power Doppler ultrasound (US) findings in renal grafts within 30 days posttransplantation. METHODS A total of 39 kidney recipients underwent CEUS (SonoVue bolus injection) and US examinations at 5 (T0), 15 (T1), and 30 (T2) days after grafting. The results were correlated with clinical findings and functional evolution. Fourteen patients displayed early acute kidney dysfunction: 10 had acute tubular necrosis (acute tubular necrosis [ATN] group); four acute rejection episodes (ARE group); 25 with normal evolution (as control, C group). Renal biopsies were performed to obtain a diagnosis in the four ATN cases and in all ARE patients. Creatinine and estimated glomerular filtration rate were used as kidney function parameters. CEUS analysis was performed both on cortical and medullary regions while US resistivity indexes (RI) were obtained on main, infrarenal, and arcuate arteries. From an analysis of CEUS time-intensity curves, we computed peak enhancement (PEAK), time to peak (TTP), mean transit time (MTT), regional blood flow (RBF) and volume (RBV), and cortical to medullary ratio of these indies (RATIO). RESULTS An increased RI was present in the ATN and ARE groups as well as a reduced PEAK and RBF. RATIO-RBV and RATIO-MTT were lower than C among ATN cases, while TTP was higher compared to C in ARE. No statistical difference was evidence for RI between ATN and ARE groups. MTT (T0) was significantly related to creatinine at follow-up (T2). CONCLUSIONS US and CEUS identified grafts with early dysfunction, but only some CEUS-derived parameters distinguished ATN from ARE, adding prognostic information.
Collapse
|
42
|
El-Achkar TM, Dagher PC. Tubular cross talk in acute kidney injury: a story of sense and sensibility. Am J Physiol Renal Physiol 2015; 308:F1317-23. [PMID: 25877507 DOI: 10.1152/ajprenal.00030.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/10/2015] [Indexed: 01/20/2023] Open
Abstract
The mammalian kidney is an organ composed of numerous functional units or nephrons. Beyond the filtering glomerulus of each nephron, various tubular segments with distinct populations of epithelial cells sequentially span the kidney from cortex to medulla. The highly organized folding of the tubules results in a spatial distribution that allows intimate contact between various tubular subsegments. This unique arrangement can promote a newly recognized type of horizontal epithelial-to-epithelial cross talk. In this review, we discuss the importance of this tubular cross talk in shaping the response of the kidney to acute injury in a sense and sensibility model. We propose that injury-resistant tubules such as S1 proximal segments and thick ascending limbs (TAL) can act as "sensors" and thus modulate the responsiveness or "sensibility" of the S2-S3 proximal segments to injury. We also discuss new findings that highlight the importance of tubular cross talk in regulating homeostasis and inflammation not only in the kidney, but also systemically.
Collapse
Affiliation(s)
- Tarek M El-Achkar
- Indiana University School of Medicine, Indianapolis, Indiana; and Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Pierre C Dagher
- Indiana University School of Medicine, Indianapolis, Indiana; and
| |
Collapse
|
43
|
Kim J, Devalaraja-Narashimha K, Padanilam BJ. TIGAR regulates glycolysis in ischemic kidney proximal tubules. Am J Physiol Renal Physiol 2014; 308:F298-308. [PMID: 25503731 DOI: 10.1152/ajprenal.00459.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tp53-induced glycolysis and apoptosis regulator (TIGAR) activation blocks glycolytic ATP synthesis by inhibiting phosphofructokinase-1 activity. Our data indicate that TIGAR is selectively induced and activated in renal outermedullary proximal straight tubules (PSTs) after ischemia-reperfusion injury in a p53-dependent manner. Under severe ischemic conditions, TIGAR expression persisted through 48 h postinjury and induced loss of renal function and histological damage. Furthermore, TIGAR upregulation inhibited phosphofructokinase-1 activity, glucose 6-phosphate dehydrogenase (G6PD) activity, and induced ATP depletion, oxidative stress, autophagy, and apoptosis. Small interfering RNA-mediated TIGAR inhibition prevented the aforementioned malevolent effects and protected the kidneys from functional and histological damage. After mild ischemia, but not severe ischemia, G6PD activity and NADPH levels were restored, suggesting that TIGAR activation may redirect the glycolytic pathway into gluconeogenesis or the pentose phosphate pathway to produce NADPH. The increased level of NADPH maintained the level of GSH to scavenge ROS, resulting in a lower sensitivity of PST cells to injury. Under severe ischemia, G6PD activity and NADPH levels were reduced during reperfusion; however, blockade of TIGAR enhanced their levels and reduced oxidative stress and apoptosis. Collectively, these results demonstrate that inhibition of TIGAR may protect PST cells from energy depletion and apoptotic cell death in the setting of severe ischemia-reperfusion injury. However, under low ischemic burden, TIGAR activation induces the pentose phosphate pathway and autophagy as a protective mechanism.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Republic of Korea; and
| | | | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Section of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
44
|
Kramann R, Kusaba T, Humphreys BD. Who regenerates the kidney tubule? Nephrol Dial Transplant 2014; 30:903-10. [PMID: 25155054 DOI: 10.1093/ndt/gfu281] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/27/2014] [Indexed: 12/21/2022] Open
Abstract
The kidney possesses profound regenerative potential and in some cases can recover completely 'restitutio at integrum' following an acute kidney injury (AKI). Emerging evidence strongly suggests that sometimes repair is incomplete, however, and, in this situation, an episode of AKI leads to future chronic kidney disease (CKD). Understanding the tubular response after AKI will shed light on the relationship between incomplete repair and future risk of CKD. The first repair phase after AKI is characterized by robust proliferation of epithelial cells in the proximal tubule. The exact source of these proliferating cells has been a source of controversy for the last decade. While nearly everyone now agrees that reparative cells arise within the proximal tubule, there is disagreement about whether all surviving cells possess an equivalent repair capacity through dedifferentiation, or alternatively whether a pre-existing intratubular stem cell population [so-called scattered tubular cells (STC)] is responsible for repair. This review will summarize the evidence on both sides of this issue and will discuss very recent genetic fate-tracing data that strongly points against the existence of intratubular stem cells but rather indicates that terminally differentiated proximal tubule epithelial cells undergo dedifferentiation upon injury to replace lost neighboring tubular epithelial cells through proliferative self-duplication. This new evidence includes data clearly indicating that STC are not committed tubular stem cells but instead represent individual dedifferentiated tubular epithelial cells that transiently express putative stem cell markers.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Tetsuro Kusaba
- Brigham and Women's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | - Benjamin D Humphreys
- Brigham and Women's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
45
|
Kusaba T, Humphreys BD. Controversies on the origin of proliferating epithelial cells after kidney injury. Pediatr Nephrol 2014; 29:673-9. [PMID: 24322596 PMCID: PMC3944107 DOI: 10.1007/s00467-013-2669-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
Abstract
The kidney possesses the capacity to repair after an acute insult, even one that causes complete organ failure. This regenerative response is characterized by robust proliferation of epithelial cells, principally those located in the proximal tubule. Because defining the origin of these reparative cells has important consequences for stem cell and regenerative approaches to treating kidney injury, this area has been the subject of intense investigation and debate. While progress has been made in narrowing the possible origin of these cells to an intratubular source, there has been no consensus between the possibility of a pre-existing intratubular stem or progenitor cell versus the possibility that fully differentiated epithelial cells re-enter the cell cycle after injury and generate new proximal tubule cells through self-duplication. This review will summarize the evidence on both sides of this active controversy and provide support for the notion that no pre-existing proximal tubule stem cell population exists, but rather all differentiated proximal tubule epithelia have the capacity to proliferate during repair by a mechanism of dedifferentiation and self-duplication.
Collapse
Affiliation(s)
- Tetsuro Kusaba
- Renal Division, Brigham and Women’s Hospital, Boston, MA,Harvard Medical School, Boston, Massachusetts
| | - Benjamin D. Humphreys
- Renal Division, Brigham and Women’s Hospital, Boston, MA,Harvard Medical School, Boston, Massachusetts,Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
46
|
Kaucsár T, Révész C, Godó M, Krenács T, Albert M, Szalay CI, Rosivall L, Benyó Z, Bátkai S, Thum T, Szénási G, Hamar P. Activation of the miR-17 family and miR-21 during murine kidney ischemia-reperfusion injury. Nucleic Acid Ther 2014; 23:344-54. [PMID: 23988020 DOI: 10.1089/nat.2013.0438] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) is the main cause of acute kidney injury (AKI) in patients. We investigated renal microRNA (miRNA) expression profiles and the time course of changes in selected miRNA expressions after renal I/R to characterize the miRNA network activated during development and recovery from AKI. METHODS AND RESULTS One day after lethal (30 minutes) and sublethal (20 minutes) renal ischemia, AKI was verified by renal histology (tubular necrosis, regeneration), blood urea nitrogen (BUN) level, renal mRNA expression, and plasma concentration of neutrophil gelatinase-associated lipocalin (NGAL) in C57BL/6J mice. On the first day after 30-minute, lethal I/R miR-21, miR-17-5p, and miR-106a were elevated out of the 21 miRNAs successfully profiled on the Luminex multiplex assay. After 20-minute, sublethal I/R, renal miR-17-5p and miR-106a expressions were elevated on the first and second days of reperfusion, while miR-21 expression increased later and lasted longer. Renal miR-17-5p and miR-21 expressions correlated with each other. Renal function returned to normal on the fourth day after sublethal I/R. CONCLUSIONS Our results demonstrate that besides miR-21, miR-17-5p, and miR-106a are additionally activated during the maintenance and recovery phases of renal I/R injury. Furthermore, a correlation between renal miR-17-5p and miR-21 expressions warrants further investigation of how they may influence each other and the outcome of renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tamás Kaucsár
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Acute kidney injury is a major kidney disease associated with poor clinical outcomes. The pathogenesis of acute kidney injury is multifactorial and is characterized by tubular cell injury and death. Recent studies have shown autophagy induction in proximal tubular cells during acute kidney injury. The regulatory mechanisms of tubular cell autophagy are poorly understood; however, some recent findings have set up a foundation for further investigation. Although autophagy may promote cell death under certain experimental conditions, pharmacologic and autophagy-related gene knockout studies have established a renoprotective role for autophagy in acute kidney injury. The mechanisms by which autophagy protects cells from injury and how, possibly, its pro-survival role switches to pro-death under certain conditions are discussed. Further research is expected to help us understand the regulatory network of tubular cell autophagy, define its precise roles in the specific context of acute kidney injury, and identify autophagy-targeting strategies for the prevention and treatment of acute kidney injury.
Collapse
Affiliation(s)
- Man J Livingston
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, GA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, GA.
| |
Collapse
|
48
|
Kim JE, Lee JS, Kim MK, Kim SH, Kim JY. Nicardipine infusion for hypotensive anesthesia during orthognathic surgery has protective effect on renal function. J Oral Maxillofac Surg 2013; 72:41-6. [PMID: 24071376 DOI: 10.1016/j.joms.2013.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE Hypotensive anesthesia may adversely affect renal function. The purpose of this study was to evaluate the renoprotective effect of nicardipine in patients undergoing orthognathic surgery under hypotensive anesthesia. MATERIALS AND METHODS In this double-blinded randomized controlled study, healthy patients undergoing orthognathic surgery were enrolled to evaluate renal function during and after hypotensive anesthesia. The predictor variable was the agent, nicardipine vs remifentanil, used to maintain mean arterial pressure at 50 to 65 mm Hg. Primary outcome variables were renal function markers and secondary outcome variables were hemodynamic data, which were measured before hypotension, 2 hours after hypotension, 1 hour postoperatively (t3), and 24 hours postoperatively. Linear mixed model was used to analyze repeatedly measured data. RESULTS Forty-six patients were randomly allocated to receive remifentanil (R group; n = 23) or nicardipine (N group; n = 23). The renal tubular function marker, urinary N-acetyl-1-β-D-glucosaminidase (NAG), was lower at t3 in the N group than in the R group (P = .014). In the N group, fractional excretion of sodium was significantly higher at t3 compared with baseline (P < .0001). The 2 groups did not show any differences in estimated creatinine clearance and serum cystatin C. CONCLUSION Subclinical and reversible renal dysfunction appears during hypotensive anesthesia in patients undergoing orthognathic surgery. Continuous infusion of nicardipine attenuated the increase in NAG, which is a marker of renal tubular injury, during hypotensive anesthesia with desflurane and remifentanil.
Collapse
Affiliation(s)
- Ji Eun Kim
- Clinical Assistant Professor, Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Seok Lee
- Professor, Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Kyeong Kim
- Assistant Professor, Department of Anesthesiology and Pain Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Seung Hyun Kim
- Resident, Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Assistant Professor, Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
49
|
Parekh DJ, Weinberg JM, Ercole B, Torkko KC, Hilton W, Bennett M, Devarajan P, Venkatachalam MA. Tolerance of the human kidney to isolated controlled ischemia. J Am Soc Nephrol 2013; 24:506-17. [PMID: 23411786 DOI: 10.1681/asn.2012080786] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tolerance of the human kidney to ischemia is controversial. Here, we prospectively studied the renal response to clamp ischemia and reperfusion in humans, including changes in putative biomarkers of AKI. We performed renal biopsies before, during, and after surgically induced renal clamp ischemia in 40 patients undergoing partial nephrectomy. Ischemia duration was >30 minutes in 82.5% of patients. There was a mild, transient increase in serum creatinine, but serum cystatin C remained stable. Renal functional changes did not correlate with ischemia duration. Renal structural changes were much less severe than observed in animal models that used similar durations of ischemia. Other biomarkers were only mildly elevated and did not correlate with renal function or ischemia duration. In summary, these data suggest that human kidneys can safely tolerate 30-60 minutes of controlled clamp ischemia with only mild structural changes and no acute functional loss.
Collapse
Affiliation(s)
- Dipen J Parekh
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Parajuli N, MacMillan-Crow LA. Role of reduced manganese superoxide dismutase in ischemia-reperfusion injury: a possible trigger for autophagy and mitochondrial biogenesis? Am J Physiol Renal Physiol 2012. [PMID: 23195678 DOI: 10.1152/ajprenal.00435.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Excessive generation of superoxide and mitochondrial dysfunction has been described as being important events during ischemia-reperfusion (I/R) injury. Our laboratory has demonstrated that manganese superoxide dismutase (MnSOD), a major mitochondrial antioxidant that eliminates superoxide, is inactivated during renal transplantation and renal I/R and precedes development of renal failure. We hypothesized that MnSOD knockdown in the kidney augments renal damage during renal I/R. Using newly characterized kidney-specific MnSOD knockout (KO) mice the extent of renal damage and oxidant production after I/R was evaluated. These KO mice (without I/R) exhibited low expression and activity of MnSOD in the distal nephrons, had altered renal morphology, increased oxidant production, but surprisingly showed no alteration in renal function. After I/R the MnSOD KO mice showed similar levels of injury to the distal nephrons when compared with wild-type mice. Moreover, renal function, MnSOD activity, and tubular cell death were not significantly altered between the two genotypes after I/R. Interestingly, MnSOD KO alone increased autophagosome formation, mitochondrial biogenesis, and DNA replication/repair within the distal nephrons. These findings suggest that the chronic oxidative stress as a result of MnSOD knockdown induced multiple coordinated cell survival signals including autophagy and mitochondrial biogenesis, which protected the kidney against the acute oxidative stress following I/R.
Collapse
Affiliation(s)
- Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|