1
|
Min HY, Lee HJ, Suh YA, Pei H, Kwon H, Jang HJ, Yun HJ, Moon HG, Lee HY. Targeting epidermal growth factor receptor in paclitaxel-resistant human breast and lung cancer cells with upregulated glucose-6-phosphate dehydrogenase. Br J Cancer 2022; 127:661-674. [PMID: 35597872 DOI: 10.1038/s41416-022-01843-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/17/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chemoresistance is a major obstacle to the successful treatment of triple-negative breast cancer (TNBC) and non-small-cell lung cancer (NSCLC). Therapeutic strategies to overcome chemoresistance are necessary to improve the prognosis of patients with these cancers. METHODS Paclitaxel-resistant TNBC and NSCLC sublines were generated through continuous paclitaxel treatment over 6 months. The mechanistic investigation was conducted using MTT assay, LC/MS-based metabolite analysis, flow cytometry, western blot analysis, real-time PCR and tumour xenograft experiments. RESULTS Glucose-6-phosphate dehydrogenase (G6PD) expression along with an increase in 3-phosphoglycerates and ribulose-5-phosphate production was upregulated in paclitaxel-resistant cells. Blockade of G6PD decreased viability of paclitaxel-resistant cells in vitro and the growth of paclitaxel-resistant MDA/R xenograft tumours in vivo. Mechanistically, activation of the epidermal growth factor receptor (EGFR)/Akt pathway mediates G6PD expression and G6PD-induced cell survival. Blockade of the EGFR pathway inhibited G6PD expression and sensitised those paclitaxel-resistant cells to paclitaxel treatment in vitro and in vivo. Analysis of publicly available datasets revealed an association between G6PD and unfavourable clinical outcomes in patients with breast or lung cancer. CONCLUSIONS EGFR signaling-mediated G6PD expression plays a pivotal role in paclitaxel resistance, highlighting the potential of targeting EGFR to overcome paclitaxel resistance in TNBC and NSCLC cells overexpressing G6PD.
Collapse
Affiliation(s)
- Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Jin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Ah Suh
- Institute for Innovative Cancer Research, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Honglan Pei
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyukjin Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Ji Jang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Jeong Yun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Antioxidant and Biological Properties of Mesenchymal Cells Used for Therapy in Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:antiox9100983. [PMID: 33066211 PMCID: PMC7602011 DOI: 10.3390/antiox9100983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Both tissue repair and regeneration are a priority in regenerative medicine. Retinitis pigmentosa (RP), a complex retinal disease characterized by the progressive loss of impaired photoreceptors, is currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Although this inherited retinal dystrophy is still an incurable genetic disease, the oxidative damage is an important pathogenetic element that may represent a viable target of therapy. In this review, we summarize the current neuroscientific evidence regarding the effectiveness of cell therapies in RP, especially those based on mesenchymal cells, and we focus on their therapeutic action: limitation of both oxidative stress and apoptotic processes triggered by the disease and promotion of cell survival. Cell therapy could therefore represent a feasible therapeutic option in RP.
Collapse
|
3
|
Maria Vingolo E, Contento L, Florido A, Avogaro F, Giuseppe Limoli P. Regenerative Medicine and Eye Diseases. Regen Med 2020. [DOI: 10.5772/intechopen.92749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
4
|
Limoli PG, Vingolo EM, Limoli C, Nebbioso M. Stem Cell Surgery and Growth Factors in Retinitis Pigmentosa Patients: Pilot Study after Literature Review. Biomedicines 2019; 7:biomedicines7040094. [PMID: 31801246 PMCID: PMC6966474 DOI: 10.3390/biomedicines7040094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
To evaluate whether grafting of autologous mesenchymal cells, adipose-derived stem cells, and platelet-rich plasma into the supracoroideal space by surgical treatment with the Limoli retinal restoration technique (LRRT) can exert a beneficial effect in retinitis pigmentosa (RP) patients. Twenty-one eyes underwent surgery and were divided based on retinal foveal thickness (FT) ≤ 190 or > 190 µm into group A-FT and group B-FT, respectively. The specific LRRT triad was grafted in a deep scleral pocket above the choroid of each eye. At 6-month follow-up, group B showed a non-significant improvement in residual close-up visus and sensitivity at microperimetry compared to group A. After an in-depth review of molecular biology studies concerning degenerative phenomena underlying the etiopathogenesis of retinitis pigmentosa (RP), it was concluded that further research is needed on tapeto-retinal degenerations, both from a clinical and molecular point of view, to obtain better functional results. In particular, it is necessary to increase the number of patients, extend observation timeframes, and treat subjects in the presence of still trophic retinal tissue to allow adequate biochemical and functional catering.
Collapse
Affiliation(s)
- Paolo Giuseppe Limoli
- Low Vision Research Centre of Milan, p.zza Sempione 3, 20145 Milan, Italy; (P.G.L.); (C.L.)
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Celeste Limoli
- Low Vision Research Centre of Milan, p.zza Sempione 3, 20145 Milan, Italy; (P.G.L.); (C.L.)
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-06-49975422; Fax: +39-06-49975425
| |
Collapse
|
5
|
Harguindey S, Polo Orozco J, Alfarouk KO, Devesa J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. Int J Mol Sci 2019; 20:ijms20174278. [PMID: 31480530 PMCID: PMC6747469 DOI: 10.3390/ijms20174278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
The treatment of cancer has been slowly but steadily progressing during the last fifty years. Some tumors with a high mortality in the past are curable nowadays. However, there is one striking exception: glioblastoma multiforme. No real breakthrough has been hitherto achieved with this tumor with ominous prognosis and very short survival. Glioblastomas, being highly glycolytic malignancies are strongly pH-dependent and driven by the sodium hydrogen exchanger 1 (NHE1) and other proton (H+) transporters. Therefore, this is one of those pathologies where the lessons recently learnt from the new pH-centered anticancer paradigm may soon bring a promising change to treatment. This contribution will discuss how the pH-centric molecular, biochemical and metabolic perspective may introduce some urgently needed and integral novel treatments. Such a prospective therapeutic approach for malignant brain tumors is developed here, either to be used alone or in combination with more standard therapies.
Collapse
Affiliation(s)
| | | | - Khalid O Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia
- Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain
| |
Collapse
|
6
|
Liu Q, Leng Y, Huang S, Liu C, Yang X, Ren A, Min C. The Fluorescent Properties of pH‐Independent Cypridina Oxyluciferin Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201901761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qing‐Bo Liu
- School of Materials Science and EngineeringKunming University of Science and Technology Kunming 650093 P. R. China
- Research Center for Analysis and MeasurementKunming University of Science and Technology Kunming 650093 P. R. China
- Analysis and Test Center of Yunnan Province Kunming 650093 P. R. China
| | - Yan Leng
- Faculty of Chemical EngineeringKunming University of Science and Technology Kunming 650093 P. R. China
| | - Shao‐Jun Huang
- Research Center for Analysis and MeasurementKunming University of Science and Technology Kunming 650093 P. R. China
- Analysis and Test Center of Yunnan Province Kunming 650093 P. R. China
| | - Chun‐Xia Liu
- Research Center for Analysis and MeasurementKunming University of Science and Technology Kunming 650093 P. R. China
- Analysis and Test Center of Yunnan Province Kunming 650093 P. R. China
| | - Xi‐Kun Yang
- Research Center for Analysis and MeasurementKunming University of Science and Technology Kunming 650093 P. R. China
- Analysis and Test Center of Yunnan Province Kunming 650093 P. R. China
| | - Ai‐Min Ren
- Institute of Theoretical ChemistryJilin University Changchun 130023 P. R. China
| | - Chun‐Gang Min
- School of Materials Science and EngineeringKunming University of Science and Technology Kunming 650093 P. R. China
- Research Center for Analysis and MeasurementKunming University of Science and Technology Kunming 650093 P. R. China
- Analysis and Test Center of Yunnan Province Kunming 650093 P. R. China
| |
Collapse
|
7
|
Niemuth NJ, Thompson AF, Crowe ME, Lieven CJ, Levin LA. Intracellular disulfide reduction by phosphine-borane complexes: Mechanism of action for neuroprotection. Neurochem Int 2016; 99:24-32. [PMID: 27264910 DOI: 10.1016/j.neuint.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 01/02/2023]
Abstract
Phosphine-borane complexes are novel cell-permeable drugs that protect neurons from axonal injury in vitro and in vivo. These drugs activate the extracellular signal-regulated kinases 1/2 (ERK1/2) cell survival pathway and are therefore neuroprotective, but do not scavenge superoxide. In order to understand the interaction between superoxide signaling of neuronal death and the action of phosphine-borane complexes, their biochemical activity in cell-free and in vitro assays was studied by electron paramagnetic resonance (EPR) spectrometry and using an intracellular dithiol reporter that becomes fluorescent when its disulfide bond is cleaved. These studies demonstrated that bis(3-propionic acid methyl ester) phenylphosphine-borane complex (PB1) and (3-propionic acid methyl ester) diphenylphosphine-borane complex (PB2) are potent intracellular disulfide reducing agents which are cell permeable. EPR and pharmacological studies demonstrated reducing activity but not scavenging of superoxide. Given that phosphine-borane complexes reduce cell injury from mitochondrial superoxide generation but do not scavenge superoxide, this implies a mechanism where an intracellular superoxide burst induces downstream formation of protein disulfides. The redox-dependent cleavage of the disulfides is therefore a novel mechanism of neuroprotection.
Collapse
Affiliation(s)
- Nicholas J Niemuth
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, United States
| | - Alex F Thompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, United States
| | - Megan E Crowe
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, United States
| | - Christopher J Lieven
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, United States
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, United States; Departments of Ophthalmology and Neurology, McGill University, Canada
| |
Collapse
|
8
|
Migita H, Yoshitake S, Tange Y, Choijookhuu N, Hishikawa Y. Hyperbaric Oxygen Therapy Suppresses Apoptosis and Promotes Renal Tubular Regeneration After Renal Ischemia/Reperfusion Injury in Rats. Nephrourol Mon 2016; 8:e34421. [PMID: 26981502 PMCID: PMC4780282 DOI: 10.5812/numonthly.34421] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Renal ischemia/reperfusion (I/R) injury remains a major cause of acute kidney injury (AKI), in addition to I/R injury-induced tissue inflammation, necrosis and apoptosis. Hyperbaric oxygen therapy (HBO) is defined as a treatment in which a patient is intermittently exposed to 100% oxygen pressurized to a pressure above sea level (> 2.0 atmospheres absolute (ATA), 1.0 ATA = 760 mmHg). It has been used in a number of medical conditions with a proven efficacy in a limited number of disorders. However, the effects of HBO therapy on apoptosis and proliferative activity after I/R injury have not been fully understood. OBJECTIVES We studied the possible beneficial effects of HBO therapy on apoptosis and tubular cell regeneration after renal I/R injury in rats. MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomized into three groups: Sham (Sham-operated rats); I/R (animals submitted to I/R); and I/R + HBO (I/R rats exposed to HBO). Tubular cell apoptosis was confirmed by DNA laddering and the terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick end labeling (TUNEL) assay. Cellular proliferation activity was determined using the anti-Ki-67 antibody. RESULTS A significant decrease in apoptotic cells and increase in proliferative reaction were observed in the I/R + HBO group compared to the I/R group. CONCLUSIONS We demonstrated that HBO suppressed apoptosis, which caused inflammation after renal I/R, and promoted tubular cell regeneration. HBO has protective effects against AKI caused by renal I/R through the inhibition of apoptosis.
Collapse
Affiliation(s)
- Heihachi Migita
- Department of Medical Engineering, Faculty of Health Sciences, Kyushu University of Health and Welfare, Yoshinomachi, Nobeoka, Japan
- Corresponding author: Heihachi Migita, Department of Medical Engineering, Faculty of Health Sciences, Kyushu University of Health and Welfare, Yoshinomachi, Nobeoka, Japan. Tel: +81-982235555, Fax: +81-9825618, E-mail:
| | - Shigenori Yoshitake
- Department of Medical Engineering, Faculty of Health Sciences, Kyushu University of Health and Welfare, Yoshinomachi, Nobeoka, Japan
| | - Yoshihiro Tange
- Department of Medical Engineering, Faculty of Health Sciences, Kyushu University of Health and Welfare, Yoshinomachi, Nobeoka, Japan
| | - Narantsog Choijookhuu
- Department of Anatomy, Faculty of Medicine, Division of Histochemistry and Cell Biology, University of Miyazaki, Kyotake, Miyazaki, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Faculty of Medicine, Division of Histochemistry and Cell Biology, University of Miyazaki, Kyotake, Miyazaki, Japan
| |
Collapse
|
9
|
Buchner M, Park E, Geng H, Klemm L, Flach J, Passegué E, Schjerven H, Melnick A, Paietta E, Kopanja D, Raychaudhuri P, Müschen M. Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia. Nat Commun 2015; 6:6471. [PMID: 25753524 PMCID: PMC4366523 DOI: 10.1038/ncomms7471] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/30/2015] [Indexed: 01/19/2023] Open
Abstract
Despite recent advances in the cure rate of acute lymphoblastic leukaemia (ALL), the prognosis for patients with relapsed ALL remains poor. Here we identify FOXM1 as a candidate responsible for an aggressive clinical course. We show that FOXM1 levels peak at the pre-B-cell receptor checkpoint but are dispensable for normal B-cell development. Compared with normal B-cell populations, FOXM1 levels are 2- to 60-fold higher in ALL cells and are predictive of poor outcome in ALL patients. FOXM1 is negatively regulated by FOXO3A, supports cell survival, drug resistance, colony formation and proliferation in vitro, and promotes leukemogenesis in vivo. Two complementary approaches of pharmacological FOXM1 inhibition-(i) FOXM1 transcriptional inactivation using the thiazole antibiotic thiostrepton and (ii) an FOXM1 inhibiting ARF-derived peptide-recapitulate the findings of genetic FOXM1 deletion. Taken together, our data identify FOXM1 as a novel therapeutic target, and demonstrate feasibility of FOXM1 inhibition in ALL.
Collapse
Affiliation(s)
- Maike Buchner
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Eugene Park
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
- Department of Haematology, University of Cambridge, Cambridge CB2 OAH, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Lars Klemm
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Johanna Flach
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hem/Onc Division, University of California San Francisco, San Francisco, California 94143, USA
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hem/Onc Division, University of California San Francisco, San Francisco, California 94143, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York 10021, USA
| | - Elisabeth Paietta
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10466, USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, USA
- Department of Haematology, University of Cambridge, Cambridge CB2 OAH, UK
| |
Collapse
|
10
|
Lee JW, Nam WJ, Han MJ, Shin JH, Kim JG, Kim SH, Kim HR, Oh DJ. Role of IL-1α in cisplatin-induced acute renal failure in mice. Korean J Intern Med 2011; 26:187-94. [PMID: 21716595 PMCID: PMC3110851 DOI: 10.3904/kjim.2011.26.2.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/05/2010] [Accepted: 10/07/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIMS For unknown reasons, caspase-1 -/- mice, protected against cisplatin-induced acute renal failure (ARF), are deficient in interleukin (IL)-1α. We thus asked whether IL-1α deficiency underlies the mechanism of protection against cisplatin-induced ARF in these mice. METHODS Cisplatin (30 mg/kg) was injected intraperitoneally into wild-type C57BL/6 mice to produce a cisplatin-induced model of ARF. IL-1α was measured in control vehicle- and cisplatin-treated wild-type animals. We also examined whether IL-1α -/- mice were similarly protected against cisplatin-induced ARF. Additionally, infiltration of CD11b- and CD49b-positive cells, as markers of macrophages, natural killer, and natural killer T cells (pan-NK cells), was investigated in wild-type and IL-1α -/- mice. RESULTS Compared with vehicle-treated mice, renal IL-1α increased in cisplatin-treated wild-type mice beginning on day 1. IL-1α -/- mice were shown to be protected against cisplatin-induced ARF. No significant difference in the infiltration of neutrophils or CD11b- and CD49b-positive cells were observed between wild-type and IL-1α -/- mice. CONCLUSIONS Mice deficient in IL-1α are protected against cisplatin-induced ARF. The lack of IL-1α may explain, at least in part, the protection against cisplatin-induced ARF observed in caspase-1 -/- mice. Investigation of the protective mechanism (s) in IL-1α -/- mice in cisplatin-induced ARF merits further study.
Collapse
Affiliation(s)
- Jay-Wook Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Woo-Jin Nam
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Min-Jee Han
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung-Ho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jin-Gun Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Su-Hyun Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hye-Ryoun Kim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Abstract
Improved mechanistic understanding of renal cell death in acute kidney injury (AKI) has generated new therapeutic targets. Clearly, the classic lesion of acute tubular necrosis is not adequate to describe the consequences of renal ischemia, nephrotoxin exposure, or sepsis on glomerular filtration rate. Experimental evidence supports a pathogenic role for apoptosis in AKI. Interestingly, proximal tubule epithelial cells are highly susceptible to apoptosis, and injury at this site contributes to organ failure. During apoptosis, well-orchestrated events converge at the mitochondrion, the organelle that integrates life and death signals generated by the BCL2 (B-cell lymphoma 2) protein family. Death requires the 'perfect storm' for outer mitochondrial membrane injury to release its cellular 'executioners'. The complexity of this process affords new targets for effective interventions, both before and after renal insults. Inhibiting apoptosis appears to be critical, because circulating factors released by the injured kidney induce apoptosis and inflammation in distant organs including the heart, lung, liver, and brain, potentially contributing to the high morbidity and mortality associated with AKI. Manipulation of known stress kinases upstream of mitochondrial injury, induction of endogenous, anti-apoptotic proteins, and improved understanding of the timing and consequences of renal cell apoptosis will inevitably improve the outcome of human AKI.
Collapse
Affiliation(s)
- Andrea Havasi
- Renal Section, Department of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
12
|
Kim HJ, Sato T, Rodríguez-Iturbe B, Vaziri ND. Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J Pharmacol Exp Ther 2011; 337:583-90. [PMID: 21357516 DOI: 10.1124/jpet.110.175828] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Imai rat is a model of spontaneous focal glomerulosclerosis, which leads to heavy proteinuria, hyperlipidemia, hypertension, and progressive renal failure. Treatment with AT1 blockers (ARBs) ameliorates proteinuria, hyperlipidemia, and nephropathy in this model. Progression of renal disease in 5/6 nephrectomized rats is associated with activation of the intrarenal angiotensin system, up-regulation of the oxidative, inflammatory, and fibrogenic pathways, and impaired activity of nuclear factor-erythroid-2-related factor 2 (Nrf2), the master regulator of genes encoding antioxidant molecules. We hypothesized that progressive nephropathy in the Imai rat is accompanied by oxidative stress, inflammation, and impaired Nrf2 activation and that amelioration of nephropathy with AT1 receptor blockade in this model may be associated with the reversal of these abnormalities. Ten-week-old Imai rats were randomized to the ARB-treated (olmesartan, 10 mg/kg/day for 24 weeks) or vehicle-treated groups. Sprague-Dawley rats served as controls. At 34 weeks of age Imai rats showed heavy proteinuria, hypoalbuminemia, hypertension, azotemia, glomerulosclerosis, tubulointerstitial inflammation, increased angiotensin II expressing cell population, up-regulations of AT1 receptor, AT2 receptor, NAD(P)H oxidase, and inflammatory mediators, activation of nuclear factor-κB and reduction of Nrf2 activity and expression of its downstream gene products in the renal cortex. ARB therapy prevented nephropathy, suppressed oxidative stress and inflammation, and restored Nrf2 activation and expression of the antioxidant enzymes. Thus progressive focal glomerulosclerosis in the Imai rats is associated with oxidative stress, inflammation, and impaired Nrf2 activation. These abnormalities are accompanied by activation of intrarenal angiotensin system and can be prevented by ARB administration.
Collapse
Affiliation(s)
- Hyun Ju Kim
- World Institute of Kimchi, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Yusuf R, Frenkel K. Morphologic transformation of human breast epithelial cells MCF-10A: dependence on an oxidative microenvironment and estrogen/epidermal growth factor receptors. Cancer Cell Int 2010; 10:30. [PMID: 20809984 PMCID: PMC2944135 DOI: 10.1186/1475-2867-10-30] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 09/01/2010] [Indexed: 11/19/2022] Open
Abstract
Background MCF-10A, immortalized but non-transformed human breast epithelial cells, are widely used in research examining carcinogenesis. The studies presented here were initiated with the observation that MCF-10A cells left in continuous culture for prolonged periods without re-feeding were prone to the development of transformed foci. We hypothesized that the depletion of labile culture components led to the onset of processes culminating in the observed cell transformation. The purpose of this study was to define the factors which promoted transformation of this cell line. Results Changes in levels of phenol red (PHR), hydrocortisone (HC), and epidermal growth factor (EGF) with or without estrogen treatment indicated that both oxidative stress- and estrogen receptor alpha (ERα)-mediated pathways contribute to cell transformation. Gene array and Western blotting analyses of cells maintained in our laboratory and of those from other sources documented detectable ERα and ERbeta (ERβ) in this ERα-negative cataloged cell line. Results also indicate the possibility of a direct association of EGF receptor (EGFR) and ERα in these cells as well as the formation and high induction of a novel ternary complex that includes ERβ (ERα/ERβ/EGFR) in cells grown under conditions facilitating transformation. Conclusions Our studies resulted in the development of a growth protocol where the effects of chronic, physiologically relevant alterations in the microenvironment on cellular transformation were examined. From our results, we were able to propose a model of transformation within the MCF-10A cell line in which oxidative stress, ER and EGFR play essential roles. Overall, our work indicates that the immediate microenvironment of cells exerts powerful growth cues which ultimately determine their transformation potential.
Collapse
Affiliation(s)
- Rita Yusuf
- Department of Environmental Medicine, NYU School of Medicine, PHL Room 802, 550 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
14
|
Zhang R, Harding P, Garvin JL, Juncos R, Peterson E, Juncos LA, Liu R. Isoforms and functions of NAD(P)H oxidase at the macula densa. Hypertension 2009; 53:556-63. [PMID: 19204183 DOI: 10.1161/hypertensionaha.108.124594] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macula densa cells produce superoxide (O2-) during tubuloglomerular feedback primarily via NAD(P)H oxidase (NOX). The purpose of the present study was to determine NOXs expressed by the macula densa and the role of each one in NaCl-induced O2- production. To identify which isoforms are expressed, we applied single-cell RT-PCR to macula densa cells isolated by laser capture microdissection and to MMDD1 cells (a macula densa-like cell line). The captured cells expressed neuronal NOS (marker of macula densa), NOX2, and NOX4 but not NOX1. Expression of the NOXs and neuronal NOS was essentially identical in the MMDD1 cells. Thus, we used MMDD1 cells to investigate which isoform is responsible for NaCl-induced O2- production. We used small-interfering RNA to knock down NOX2 or NOX4 in MMDD1 cells and measured O2- exposed to low-salt solution (LS; 70 mmol/L of NaCl) or high-salt solution (HS; 140 mmol/L of NaCl). Exposing control cells (scrambled small-interfering RNA) to HS increased O2- concentrations from 0.75+/-0.28 to 1.48+/-0.46 U/min per 10(5) cells in LS and HS, respectively (P<0.001). Inhibiting NOX2 blocked the HS-induced increase in O2- (0.62+/-0.39 versus 0.76+/-0.31 U/min per 10(5) cells in LS and HS groups, respectively). Blocking NOX4 did not affect HS-induced O2- levels. O2- levels in the control cells during LS and HS were 0.80+/-0.30 and 1.56+/-0.49 U/min per 10(5) cells, respectively (P<0.001); whereas O2- levels in NOX4-small-interfering RNA-treated cells during LS and HS were 0.40+/-0.25 and 1.26+/-0.51 U/min per 10(5) cells, respectively (P<0.001). We conclude that, whereas macula densa cells express the NOX2 and NOX4 isoforms, NOX2 is primarily responsible for NaCl-induced O2- generation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Susnow N, Zeng L, Margineantu D, Hockenbery DM. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 2008. [PMID: 19138742 DOI: 10.1016/j.semcancer.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Bcl-2 family of proteins includes pro- and anti-apoptotic factors acting at mitochondrial and microsomal membranes. An impressive body of published studies, using genetic and physical reconstitution experiments in model organisms and cell lines, supports a view of Bcl-2 proteins as the critical arbiters of apoptotic cell death decisions in most circumstances (excepting CD95 death receptor signaling in Type I cells). Evasion of apoptosis is one of the hallmarks of cancer [Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70], relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins is observed in many cancers [Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105-14; Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G, et al. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res. 2007;5:331-9]. The rekindled interest in aerobic glycolysis as a cancer trait raises interesting questions as to how metabolic changes in cancer cells are integrated with other essential alterations in cancer, e.g. promotion of angiogenesis and unbridled growth signals. Apoptosis induced by multiple different signals involves loss of mitochondrial homeostasis, in particular, outer mitochondrial membrane integrity, releasing cytochrome c and other proteins from the intermembrane space. This integrative process, controlled by Bcl-2 family proteins, is also influenced by the metabolic state of the cell. In this review, we consider the role of reactive oxygen species, a metabolic by-product, in the mitochondrial pathway of apoptosis, and the relationships between Bcl-2 functions and oxidative stress.
Collapse
Affiliation(s)
- Nathan Susnow
- Department of Medicine, University of Washington, Seattle, 98195-6424, United States
| | | | | | | |
Collapse
|
16
|
Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 2008; 19:42-9. [PMID: 19138742 DOI: 10.1016/j.semcancer.2008.12.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 12/13/2008] [Indexed: 12/22/2022]
Abstract
The Bcl-2 family of proteins includes pro- and anti-apoptotic factors acting at mitochondrial and microsomal membranes. An impressive body of published studies, using genetic and physical reconstitution experiments in model organisms and cell lines, supports a view of Bcl-2 proteins as the critical arbiters of apoptotic cell death decisions in most circumstances (excepting CD95 death receptor signaling in Type I cells). Evasion of apoptosis is one of the hallmarks of cancer [Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70], relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins is observed in many cancers [Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105-14; Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G, et al. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res. 2007;5:331-9]. The rekindled interest in aerobic glycolysis as a cancer trait raises interesting questions as to how metabolic changes in cancer cells are integrated with other essential alterations in cancer, e.g. promotion of angiogenesis and unbridled growth signals. Apoptosis induced by multiple different signals involves loss of mitochondrial homeostasis, in particular, outer mitochondrial membrane integrity, releasing cytochrome c and other proteins from the intermembrane space. This integrative process, controlled by Bcl-2 family proteins, is also influenced by the metabolic state of the cell. In this review, we consider the role of reactive oxygen species, a metabolic by-product, in the mitochondrial pathway of apoptosis, and the relationships between Bcl-2 functions and oxidative stress.
Collapse
|
17
|
Harguindey S, Orive G, Cacabelos R, Hevia EM, de Otazu RD, Arranz JL, Anitua E. An integral approach to the etiopathogenesis of human neurodegenerative diseases (HNDDs) and cancer. Possible therapeutic consequences within the frame of the trophic factor withdrawal syndrome (TFWS). Neuropsychiatr Dis Treat 2008; 4:1073-84. [PMID: 19337452 PMCID: PMC2646641 DOI: 10.2147/ndt.s3800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel and integral approach to the understanding of human neurodegenerative diseases (HNDDs) and cancer based upon the disruption of the intracellular dynamics of the hydrogen ion (H(+)) and its physiopathology, is advanced. From an etiopathological perspective, the activity and/or deficiency of different growth factors (GFs) in these pathologies are studied, and their relationships to intracellular acid-base homeostasis reviewed. Growth and trophic factor withdrawal in HNDDs indicate the need to further investigate the potential utilization of certain GFs in the treatment of Alzheimer disease and other neurodegenerative diseases. Platelet abnormalities and the therapeutic potential of platelet-derived growth factors in these pathologies, either through platelet transfusions or other clinical methods, are considered. Finally, the etiopathogenic mechanisms of apoptosis and antiapoptosis in HNDDs and cancer are viewed as opposite biochemical and biological disorders of cellular acid-base balance and their secondary effects on intracellular signaling pathways and aberrant cell metabolism are considered in the light of the both the seminal and most recent data available. The "trophic factor withdrawal syndrome" is described for the first time in English-speaking medical literature, as well as a Darwinian-like interpretation of cellular behavior related to specific and nonspecific aspects of cell biology.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c/o Postas 13, 01004 Vitoria, Spain.
| | | | | | | | | | | | | |
Collapse
|
18
|
Viral inhibitor of apoptosis vFLIP/K13 protects endothelial cells against superoxide-induced cell death. J Virol 2008; 83:598-611. [PMID: 18987137 DOI: 10.1128/jvi.00629-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma (KS). HHV-8 encodes an antiapoptotic viral Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (vFLIP/K13). The antiapoptotic activity of vFLIP/K13 has been attributed to an inhibition of caspase 8 activation and more recently to its capability to induce the expression of antiapoptotic proteins via activation of NF-kappaB. Our study provides the first proteome-wide analysis of the effect of vFLIP/K13 on cellular-protein expression. Using comparative proteome analysis, we identified manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant and an important antiapoptotic enzyme, as the protein most strongly upregulated by vFLIP/K13 in endothelial cells. MnSOD expression was also upregulated in endothelial cells upon infection with HHV-8. Microarray analysis confirmed that MnSOD is also upregulated at the RNA level, though the differential expression at the RNA level was much lower (5.6-fold) than at the protein level (25.1-fold). The induction of MnSOD expression was dependent on vFLIP/K13-mediated activation of NF-kappaB, occurred in a cell-intrinsic manner, and was correlated with decreased intracellular superoxide accumulation and increased resistance of endothelial cells to superoxide-induced death. The upregulation of MnSOD expression by vFLIP/K13 may support the survival of HHV-8-infected cells in the inflammatory microenvironment in KS.
Collapse
|
19
|
Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, Schwartz JH, Borkan SC. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 2008; 283:12305-13. [PMID: 18299320 PMCID: PMC2431006 DOI: 10.1074/jbc.m801291200] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Indexed: 12/31/2022] Open
Abstract
Hsp27 inhibits mitochondrial injury and apoptosis in both normal and cancer cells by an unknown mechanism. To test the hypothesis that Hsp27 decreases apoptosis by inhibiting Bax, Hsp27 expression was manipulated in renal epithelial cells before transient metabolic stress, an insult that activates Bax, induces mitochondrial injury, and causes apoptosis. Compared with control, enhanced Hsp27 expression inhibited conformational Bax activation, oligomerization, and translocation to mitochondria, reduced the leakage of both cytochrome c and apoptosis-inducing factor, and significantly improved cell survival by >50% after stress. In contrast, Hsp27 down-regulation using RNA-mediated interference promoted Bax activation, increased Bax translocation, and reduced cell survival after stress. Immunoprecipitation did not detect Hsp27-Bax interaction before, during, or after stress, suggesting that Hsp27 indirectly inhibits Bax. During stress, Hsp27 expression prevented the inactivation of Akt, a pro-survival kinase, and increased the interaction between Akt and Bax, an Akt substrate. In contrast, Hsp27 RNA-mediated interference promoted Akt inactivation during stress. Hsp27 up- or down-regulation markedly altered the activity of phosphatidylinositol 3-kinase (PI3-kinase), a major regulator of Akt. Furthermore, distinct PI3-kinase inhibitors completely abrogated the protective effect of Hsp27 expression on Akt activation, Bax inactivation, and cell survival. These data show that Hsp27 antagonizes Bax-mediated mitochondrial injury and apoptosis by promoting Akt activation via a PI3-kinase-dependent mechanism.
Collapse
Affiliation(s)
- Andrea Havasi
- Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sinha D, Wang Z, Ruchalski KL, Levine JS, Krishnan S, Lieberthal W, Schwartz JH, Borkan SC. Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors. Am J Physiol Renal Physiol 2005; 288:F703-13. [PMID: 15572521 DOI: 10.1152/ajprenal.00189.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse proximal tubular cells (BUMPT), when cultured in the absence of growth factors, activate a default apoptotic pathway. Although Wnt signaling antagonizes the effect of proapoptotic triggers, its role in regulating the default pathway of apoptosis is less well defined. The present study examines the hypothesis that lithium (Li+) and (2′Z,3′E)-6-bromoindirubin-3′-oxime (BIO), two glycogen synthase kinase-3β (GSK3β) inhibitors, promote survival of growth factor-deprived renal epithelial cells by activating the Wnt pathway. These studies demonstrate that Li+and BIO activate Wnt signaling as indicated by the following changes: phosphorylation (inhibition) of GSK3β; decreased phosphorylation of β-catenin (a GSK3β substrate); nuclear translocation of β-catenin; specific transcriptional activation of Tcf/catenin-responsive pTopflash constructs; and an increase in the expression of cyclin D1 (indicative of a promitogenic cell response). In addition, Li+or BIO significantly increases the phosphorylation (activation) of Akt, an anti-apoptotic protein, and inhibits apoptosis (decreases both annexin-V staining and caspase-3 activation), during serum deprivation. Inhibition of phosphatidylinositol 3-kinase (responsible for Akt activation) either by wortmanin or LY-294002 prevented Li+- or BIO-induced Akt phosphorylation and reduces cell survival without altering the phosphorylation state of GSK3β. Li+or BIO also increases the expression of insulin-like growth factor-II (IGF-II), a potent proliferative signaling protein. Li+or BIO-free conditioned medium harvested from Li+- or BIO-exposed cells also induced Akt phosphorylation, mimicking the protective effect of the two GSK3β inhibitors on serum-starved cells. Furthermore, the effect of conditioned medium on Akt phosphorylation could be inhibited by either LY-294002 or IGF-binding protein. BIO, a specific GSK3β inhibitor, replicated the protective effect of Li+on cell viability, suggesting that GSK3β activation is important for initiating the apoptotic pathway. Taken together, these data suggest that Li+or BIO promotes renal epithelial cell survival by inhibiting apoptosis through GSK3β-dependent activation of the Wnt pathway and subsequent release of IGF-II. Extracellular IGF-II serves as an autocrine survival factor that is responsible, in part, for activating the anti-apoptotic phosphatidylinositol-3-kinase-Akt pathway during serum deprivation.
Collapse
Affiliation(s)
- Diviya Sinha
- Renal Section, Evans Biomedical Research Center, Rm. 546, 650 Albany St., Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kaushal GP, Liu L, Kaushal V, Hong X, Melnyk O, Seth R, Safirstein R, Shah SV. Regulation of caspase-3 and -9 activation in oxidant stress to RTE by forkhead transcription factors, Bcl-2 proteins, and MAP kinases. Am J Physiol Renal Physiol 2004; 287:F1258-68. [PMID: 15304372 DOI: 10.1152/ajprenal.00391.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cytotoxicity to renal tubular epithelial cells (RTE) is dependent on the relative response of cell survival and cell death signals triggered by the injury. Forkhead transcription factors, Bcl-2 family member Bad, and mitogen-activated protein kinases are regulated by phosphorylation that plays crucial roles in determining cell fate. We examined the role of phosphorylation of these proteins in regulation of H2O2-induced caspase activation in RTE. The phosphorylation of FKHR, FKHRL, and Bcl-2 family member Bad was markedly increased in response to oxidant injury, and this increase was associated with elevated levels of basal phosphorylation of Akt/protein kinase B. Phosphoinositol (PI) 3-kinase inhibitors abolished this phosphorylation and also decreased expression of antiapoptotic proteins Bcl-2 and BclxL. Inhibition of phosphorylation of forkhead proteins resulted in a marked increase in the proapoptotic protein Bim. These downstream effects of PI 3-kinase inhibition promoted the oxidant-induced activation of caspase-3 and -9, but not caspase-8 and -1. The impact of enhanced activation of caspases by PI 3-kinase inhibition was reflected on accelerated oxidant-induced cell death. Oxidant stress also induced marked phosphorylation of ERK1/2, P38, and JNK kinases. Inhibition of ERK1/2 phosphorylation but not P38 and JNK kinase increased caspase-3 and -9 activation; however, this activation was far less than induced by inhibition of Akt phosphorylation. Thus the Akt-mediated phosphorylation pathway, ERK signaling, and the antiapoptotic Bcl-2 proteins distinctly regulate caspase activation during oxidant injury to RTE. These studies suggest that enhancing renal-specific survival signals may lead to preservation of renal function during oxidant injury.
Collapse
Affiliation(s)
- Gur P Kaushal
- Department of Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Slot 501, 4301 W. Markham St., Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Saito R, Inoue C, Katoh A. Well-divided and pH-Dependent Bimodal Chemiluminescence of 2-Methyl-6-phenyl-8-(4-substituted phenyl)imidazo-[1,2-a]pyrazin-3(7H)-ones Induced by Superoxide Anion. HETEROCYCLES 2004. [DOI: 10.3987/com-03-9977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Pareja M, Sánchez O, Lorita J, Soley M, Ramírez I. Activated epidermal growth factor receptor (ErbB1) protects the heart against stress-induced injury in mice. Am J Physiol Regul Integr Comp Physiol 2003; 285:R455-62. [PMID: 12676755 DOI: 10.1152/ajpregu.00588.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute, high-intensity stress induces necrotic lesions in the heart. We found that restraint-and-cold (4 degrees C) exposure (RCE) raises plasma lactate dehydrogenase (LDH), creatine kinase (CK), and transaminase activity in a time-dependent manner, with a peak value 7 h after stimulus cessation. At 24 h, signs of necrotic lesions were observed in paraffin sections stained with hematoxylineosin: focal accumulation of mononuclear cells in subendocardial areas of the left ventricle wall and focal hemorrhage in papillary muscles. In contrast, intermale fighting (IF) did not increase plasma CK activity, although LDH and transaminase activities did increase. In IF, no histological evidence of heart injury was observed. Because IF, but not RCE, increased plasma epidermal growth factor (EGF) concentration by approximately 1,000-fold, we hypothesized that EGF receptor (ErbB1) activation may protect the heart against stress-induced injury. To examine this hypothesis, we injected the ErbB1 tyrosine kinase inhibitor tyrphostin AG-1478 (25 mg/kg ip) immediately before mice were exposed to IF. After 3 h, plasma activities of LDH-1 and CK increased. Plasma enzyme activities were as low in control mice (injected with vehicle alone) as in nonfighting mice. In the last experiment, we injected EGF (0.25 mg/kg ip) 20 min before exposing mice to RCE. After 7 h, plasma LDH-1 and CK activities were significantly lower in these animals than in mice injected with vehicle. The effect required ErbB1 activation, because simultaneous administration of AG-1478 completely abolished the effect of exogenous EGF. We conclude that activated ErbB1, by endogenous or exogenous ligands, may protect the heart against stress-induced injury.
Collapse
Affiliation(s)
- Miguel Pareja
- Department of Biochemistry and Molecular Biology, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, Salvemini D, Voelkel NF, Flores SC. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 2003; 29:88-97. [PMID: 12600822 DOI: 10.1165/rcmb.2002-0228oc] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that a failure of pulmonary endothelial cell survival induced by vascular endothelial growth factor (VEGF) receptor blockade results in lung alveolar septal cell apoptosis and emphysema. Because apoptosis and oxidative stress may be pathobiologically linked, we hypothesized that oxidative stress has a central role in alveolar septal cell apoptosis and emphysema induced by VEGF receptor blockade. When compared with control animals, rats treated with the VEGF receptor blocker SU5416 showed increased alveolar enlargement, alveolar septal cell apoptosis, and expression of markers of oxidative stress, all of which were prevented by the superoxide dismutase mimetic M40419. The preservation of lung structure in SU5416+M40419-treated lungs was associated with increased septal cell proliferation, and enhanced phosphorylation of the prosurvival and antiapoptotic Akt, when compared with SU5416-treated lungs. Consistent with a positive feedback interaction between oxidative stress and apoptosis, we found that apoptosis predominated in areas of oxidative stress, and that apoptosis blockade by a broad spectrum caspase inhibitor markedly reduced the expression of markers of oxidative stress induced by SU5416 treatment. Oxidative stress and apoptosis, which cause lung cellular destruction in emphysema induced by VEGF receptor blockade, may be important mediators common to human and experimental emphysema.
Collapse
Affiliation(s)
- Rubin M Tuder
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, Choi DW, Yu SP. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 2003; 116:2099-110. [PMID: 12679386 DOI: 10.1242/jcs.00420] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Na+, K+-ATPase (Na+, K+-pump) plays critical roles in maintaining ion homeostasis. Blocking the Na+, K+-pump may lead to apoptosis. By contrast, whether an apoptotic insult may affect the Na+, K+-pump activity is largely undefined. In cultured cortical neurons, the Na+, K+-pump activity measured as a membrane current Ipump was time-dependently suppressed by apoptotic insults including serum deprivation, staurosporine, and C2-ceramide, concomitant with depletion of intracellular ATP and production of reactive oxygen species. Signifying a putative relationship among these events, Ipump was highly sensitive to changes in ATP and reactive oxygen species levels. Moreover, the apoptosis-associated Na+, K+-pump failure and serum deprivation-induced neuronal death were antagonized by pyruvate and succinate in ATP- and reactive-oxygen-species-dependent manners. We suggest that failure of the Na+, K+-pump as a result of a combination of energy deficiency and production of reactive oxygen species is a common event in the apoptotic cascade; preserving the pump activity provides a neuroprotective strategy in certain pathological conditions.
Collapse
Affiliation(s)
- Xue Qing Wang
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Imai H, Koumura T, Nakajima R, Nomura K, Nakagawa Y. Protection from inactivation of the adenine nucleotide translocator during hypoglycaemia-induced apoptosis by mitochondrial phospholipid hydroperoxide glutathione peroxidase. Biochem J 2003; 371:799-809. [PMID: 12534348 PMCID: PMC1223322 DOI: 10.1042/bj20021342] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 01/02/2003] [Accepted: 01/21/2003] [Indexed: 01/28/2023]
Abstract
We demonstrated that mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) first suppressed the dissociation of cytochrome c (cyt c) from cardiolipin (CL) in mitochondrial inner membranes and then apoptosis caused by the hypoglycaemia by the prevention of peroxidation of CL [Nomura, Imai, Koumura, Arai and Nakagawa (1999) J. Biol. Chem. 274, 29294-29302; Nomura, Imai, Koumura, Kobayashi and Nakagawa (2000) Biochem. J. 351, 183-193]. The present study shows the involvement of peroxidation of CL in the inactivation of adenine nucleotide translocator (ANT) and the opening of permeability transition pores by using the system of ANT-reconstituted liposome and isolated mitochondria. ANT activity appeared in dioleoyl phosphatidylcholine proteoliposome containing 10% (mol/mol) CL or phosphatidylglycerol (PG), but not other classes of phospholipids. ANT activity was competitively inhibited by the addition of cardiolipin hydroperoxide (CLOOH) in reconstituted liposomes containing CL. However, phosphatidylcholine hydroperoxide failed to inactivate the activity of ANT. The activity of ANT in reconstituted liposomes, including CLOOH, recovered when CLOOH in reconstituted liposome was reduced to hydroxycardiolipin by incubation with PHGPx. The activity of ANT was determined in rat basophil leukaemia RBL2H3 cells after their exposure to 2-deoxyglucose. ANT activity decreased to 50% of the control level by 4 h in response to apoptosis. In parallel, cyt c and apoptosis-inducing factor (AIF) were released from mitochondria. Suppression of the accumulation of CLOOH by overexpression of PHGPx in mitochondria effectively prevented the inactivation of ANT, the opening of permeability transition pores and the release of cyt c and AIF from mitochondria in hypoglycaemia-induced apoptotic cells. These findings suggest that mitochondrial PHGPx might be involved in the modulation of the activity of ANT and the opening of pores for the release of cyt c via the modulation of levels of CLOOH in the mitochondria.
Collapse
Affiliation(s)
- Hirotaka Imai
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
27
|
Feldman EL. Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J Clin Invest 2003. [PMID: 12588877 DOI: 10.1172/jci200317863] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Eva L Feldman
- Juvenile Diabetes Research Foundation Center for the Study of Complications in Diabetes, and the Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
28
|
Feldman EL. Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J Clin Invest 2003; 111:431-3. [PMID: 12588877 PMCID: PMC151930 DOI: 10.1172/jci17862] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Eva L Feldman
- Juvenile Diabetes Research Foundation Center for the Study of Complications in Diabetes, and the Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
29
|
Berlanga J, Prats P, Remirez D, Gonzalez R, Lopez-Saura P, Aguiar J, Ojeda M, Boyle JJ, Fitzgerald AJ, Playford RJ. Prophylactic use of epidermal growth factor reduces ischemia/reperfusion intestinal damage. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:373-9. [PMID: 12163361 PMCID: PMC1850750 DOI: 10.1016/s0002-9440(10)64192-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2002] [Indexed: 01/20/2023]
Abstract
Ischemia/reperfusion of mesenteric vessels is a useful model for acute vascular insufficiency and the early stages of multiorgan failure, conditions associated with high morbidity and mortality. Epidermal growth factor (EGF) is a potent mitogen that shows potential for use in intestinal injury. We therefore examined its influence on this model. Male Sprague-Dawley rats received human recombinant EGF (2 mg/kg i.p., n = 14) or saline (n = 16); 25 minutes before arterial clamping of the superior mesenteric artery (ischemic period) for 60 minutes followed by a final 60-minute reperfusion period. Additional rats were not operated on (controls, n = 7) or had sham operation (laparotomy only, n = 10). Ischemia/reperfusion caused macroscopic damage affecting 56%, 51 to 67% (median, interquartile range), of small intestinal length and intraluminal bleeding. Malondialdehyde levels (free radical marker) increased eightfold compared to nonoperated animals (2400, 2200 to 2700 micro mol/mg protein versus 290, 250 to 350 micro mol/mg protein, P < 0.01) and myeloperoxidase levels (marker for inflammatory infiltrate) increased 15-fold (3150, 2670 to 4180 U/g tissue versus 240, 190 to 250 U/g tissue, P < 0.01). Pretreatment with EGF reduced macroscopic injury to 11%, 0 to 15%; prevented intraluminal bleeding; and reduced malondialdehyde and myeloperoxidase levels by approximately 60% and 90% (all P < 0.01 versus non-EGF-treated). Mesenteric ischemia/reperfusion also damaged the lungs and kidneys and increased serum tumor necrosis factor-alpha levels (circulating cytokine activity marker). EGF pretreatment also reduced these changes. These studies provide preliminary evidence that EGF is a novel therapy for the early treatment or prevention of intestinal damage and multiorgan failure resulting from mesenteric hypoperfusion.
Collapse
Affiliation(s)
- Jorge Berlanga
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, Valeri R, Levine JS. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol 2001; 281:F693-706. [PMID: 11553517 DOI: 10.1152/ajprenal.2001.281.4.f693] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The immunosuppressive effect of rapamycin is mediated by inhibition of interleukin-2-stimulated T cell proliferation. We report for the first time that rapamycin also inhibits growth factor-induced proliferation of cultured mouse proximal tubular (MPT; IC(50) ~1 ng/ml) cells and promotes apoptosis of these cells by impairing the survival effects of the same growth factors. On the basis of these in vitro data, we tested the hypothesis that rapamycin would impair recovery of renal function after ischemic acute renal failure induced in vivo by renal artery occlusion (RAO). Rats given daily injections of rapamycin or vehicle were subjected to RAO or sham surgery. Rapamycin had no effect on the glomerular filtration rate (GFR) of sham-operated animals. In rats subjected to RAO, GFR fell to comparable levels 1 day later in vehicle- and rapamycin-treated rats (0.25 +/- 0.08 and 0.12 +/- 0.05 ml. min(-1). 300 g(-1), respectively) (P = not significant). In vehicle-treated rats subjected to RAO, GFR increased to 0.61 +/- 0.08 ml. min(-1). 300 g(-1) on day 3 (P < 0.02 vs. day 1) and then rose further to 0.99 +/- 0.09 ml. min(-1). 300 g(-1) on day 4 (P < 0.02 vs. day 3). By contrast, GFR did not improve in rapamycin-treated rats subjected to RAO over the same time period. Rapamycin also increased apoptosis of tubular cells while markedly reducing their proliferative response after RAO. Furthermore, rapamycin inhibited activation of 70-kDa S6 protein kinase (p70(S6k)) in cultured MPT cells as well as in the renal tissue of rats subjected to RAO. We conclude that rapamycin severely impairs the recovery of renal function after ischemia-reperfusion injury. This effect appears to be due to the combined effects of increased tubular cell loss (via apoptosis) and profound inhibition of the regenerative response of tubular cells. These effects are likely mediated by inhibition of p70(S6k).
Collapse
Affiliation(s)
- W Lieberthal
- Renal Section, Evans Memorial Department of Clinical Research, Department of Medicine, Boston University Medical Center, 650 Albany St., Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 2000; 351:183-93. [PMID: 10998361 PMCID: PMC1221349 DOI: 10.1042/0264-6021:3510183] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytochrome c (cyt. c) is a proapoptotic factor that binds preferentially to cardiolipin (CL), a mitochondrial lipid, but not to cardiolipin hydroperoxide (CL-OOH). Cyt. c that had bound to CL liposomes was liberated on peroxidation of the liposomes by a radical. The generation of CL-OOH in mitochondria occurred before the release of cyt. c in rat basophile leukaemia (RBL)2H3 cells that had been induced to undergo apoptosis by exposure to hypoglycaemia with 2-deoxyglucose (2DG). The amount of cyt. c bound to CL prepared from the mitochondria of 2DG-treated cells was lower than that of untreated cells. The release of cyt. c was completely suppressed when the production of CL-OOH in mitochondria was inhibited by the overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx). The fluorescence from CL-labelling dye (10-N-nonyl Acridine Orange) decreased on the induction of apoptosis by 2DG. However, no decrease in fluorescence was observed in PHGPx-overexpressing cells. Cyt. c was released from mitochondria that had been isolated from control cells on peroxidation by t-butylhydroperoxide, but no similar liberation of cyt. c from mitochondria isolated from mitochondrial PHGPx-overexpressing cells was observed. These findings suggest that the generation of CL-OOH in mitochondria might be a primary event that triggers the release of cyt. c from mitochondria in the apoptotic process in which mitochondrial PHGPx participates as an anti-apoptotic factor by preventing the formation of CL-OOH.
Collapse
Affiliation(s)
- K Nomura
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | | | |
Collapse
|
32
|
Uberti D, Grilli M, Memo M. Contribution of NF-kappaB and p53 in the glutamate-induced apoptosis. Int J Dev Neurosci 2000; 18:447-54. [PMID: 10817929 DOI: 10.1016/s0736-5748(00)00018-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exposure of primary cultures of cerebellar granule cells for 15 min to micromolar concentrations of glutamate results in cell death of both necrotic and apoptotic types. Among the intracellular events triggered by glutamate, we identified two transcriptional factors: the p50 member of the NF-kappaB family and the tumor suppressor phosphoprotein p53. Pretreatment of the cultures with aspirin, which inhibits NF-kappaB activation, or with specific p53 antisense oligonucleotide, which inhibits p53 transcription, resulted in a complete prevention of glutamate-induced p53 induction and apoptosis. These findings suggest the existence of a transcriptional program activated by glutamate receptor stimulation in which p50 and p53 play a relevant role. Then, we studied the expression of two p53 downstream genes that could participate in the glutamate-induced pro-apoptotic pathway: p21, which codes for an inhibitor of different cyclin dependent kinases, and MSH2, which codes for a protein involved in the recognition and repair of DNA mismatches. We found that primary cerebellar neurons expressed p21 and MSH2 at very low levels in basal conditions. However, very soon after a brief exposure of the cells to glutamate, the expression of both proteins was dramatically enhanced.On these bases, we propose NF-kappaB, p53, p21 and MSH2 as relevant contributors of the glutamate-induced pro-apoptotic pathway. Understanding this cascade of nuclear events may unravel specific targets for pharmacological intervention for those neurological diseases in which excitatory amino acid-induced apoptosis plays a relevant role.
Collapse
Affiliation(s)
- D Uberti
- Division of Pharmacology, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Via Valsabbina 19, 25123, Brescia, Italy
| | | | | |
Collapse
|
33
|
Matute-Bello G, Liles WC, Steinberg KP, Kiener PA, Mongovin S, Chi EY, Jonas M, Martin TR. Soluble Fas Ligand Induces Epithelial Cell Apoptosis in Humans with Acute Lung Injury (ARDS). THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The goals of this study were to determine whether the Fas-dependent apoptosis pathway is active in the lungs of patients with the acute respiratory distress syndrome (ARDS), and whether this pathway can contribute to lung epithelial injury. We found that soluble Fas ligand (sFasL) is present in bronchoalveolar lavage (BAL) fluid of patients before and after the onset of ARDS. The BAL concentration of sFasL at the onset of ARDS was significantly higher in patients who died. BAL from patients with ARDS induced apoptosis of distal lung epithelial cells, which express Fas, and this effect was inhibited by blocking the Fas/FasL system using three different strategies: anti-FasL mAb, anti-Fas mAb, and a Fas-Ig fusion protein. In contrast, BAL from patients at risk for ARDS had no effect on distal lung epithelial cell apoptosis. These data indicate that sFasL is released in the airspaces of patients with acute lung injury and suggest that activation of the Fas/FasL system contributes to the severe epithelial damage that occurs in ARDS. These data provide the first evidence that FasL can be released as a biologically active, death-inducing mediator capable of inducing apoptosis of cells of the distal pulmonary epithelium during acute lung injury
Collapse
Affiliation(s)
- Gustavo Matute-Bello
- *Medical Research Service, Seattle Veterans Affairs Medical Center, Seattle, WA 98108
- ‡Pulmonary and Critical Care Medicine and of
| | | | - Kenneth P. Steinberg
- †Section of Pulmonary and Critical Care Medicine, Harborview Medical Center, Seattle, WA 98104; Divisions of
- ‡Pulmonary and Critical Care Medicine and of
| | - Peter A. Kiener
- ∥Department of Immunology and Inflammation, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543
| | - Stephen Mongovin
- *Medical Research Service, Seattle Veterans Affairs Medical Center, Seattle, WA 98108
- ‡Pulmonary and Critical Care Medicine and of
| | - Emil Y. Chi
- ¶Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195; and
| | - Mechthild Jonas
- ¶Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195; and
| | - Thomas R. Martin
- *Medical Research Service, Seattle Veterans Affairs Medical Center, Seattle, WA 98108
- ‡Pulmonary and Critical Care Medicine and of
| |
Collapse
|