1
|
Martinovich VP, Baradzina KU. Peptide Hormones in Medicine: A 100-Year History. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
This review is devoted to the 100-year history of the investigation of peptide hormones and the creation of drugs on their basis, starting from the insulin discovery and its introduction into a medical practice in 1921. The basic groups of the peptide hormones are discussed: neurohypophyseal hormones, hypothalamic releasing hormones, incretins, insulin, adrenocorticotropic hormone (ACTH), and calcitonin. The first therapeutic agents based on the peptide hormones were created by a traditional approach that involved the isolation of peptides from animal tissues, their purification to individual compounds, determination of their primary structure, their chemical synthesis or their deep purification, and the creation of a pharmaceutical substance. A modern approach to creation of peptide hormone drugs is based on their consideration as ligands of the corresponding cellular receptors and the use of computer modeling, efficient synthesis methods, and high-throughput screening. The combination of these methods enabled the development of analogs which would be more active than the corresponding natural compounds, exhibit other activities in addition to the hormonal regulation, and be resistant to biodegradation. Such therapeutic agents have been designed on the basis of agonistic and antagonistic analogs of somatostatin and luliberin, and have found wide application in hormonal regulation and cancer treatment. Over the past two decades, the glucagon-like peptide (GLP-1) has been intensively investigated as a potential therapeutic agent. In our review, we describe modifications which resulted in the most highly effective long-acting drugs. Now, natural hormones and their analogs are widely present in the pharmaceutical market.
Collapse
|
2
|
Jakobi T, Siede D, Eschenbach J, Heumüller AW, Busch M, Nietsch R, Meder B, Most P, Dimmeler S, Backs J, Katus HA, Dieterich C. Deep Characterization of Circular RNAs from Human Cardiovascular Cell Models and Cardiac Tissue. Cells 2020; 9:cells9071616. [PMID: 32635460 PMCID: PMC7407233 DOI: 10.3390/cells9071616] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, cardiovascular disease (CVD) has been the leading cause of death throughout most developed countries. Several studies relate RNA splicing, and more recently also circular RNAs (circRNAs), to CVD. CircRNAs originate from linear transcripts and have been shown to exhibit tissue-specific expression profiles. Here, we present an in-depth analysis of sequence, structure, modification, and cardiac circRNA interactions. We used human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs), human healthy and diseased (ischemic cardiomyopathy, dilated cardiomyopathy) cardiac tissue, and human umbilical vein endothelial cells (HUVECs) to profile circRNAs. We identified shared circRNAs across all samples, as well as model-specific circRNA signatures. Based on these circRNAs, we identified 63 positionally conserved and expressed circRNAs in human, pig, and mouse hearts. Furthermore, we found that the sequence of circRNAs can deviate from the sequence derived from the genome sequence, an important factor in assessing potential functions. Integration of additional data yielded evidence for m6A-methylation of circRNAs, potentially linked to translation, as well as, circRNAs overlapping with potential Argonaute 2 binding sites, indicating potential association with the RISC complex. Moreover, we describe, for the first time in cardiac model systems, a sub class of circRNAs containing the start codon of their primary transcript (AUG circRNAs) and observe an enrichment for m6A-methylation for AUG circRNAs.
Collapse
Affiliation(s)
- Tobias Jakobi
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.B.); (R.N.); (B.M.); (P.M.); (H.A.K.)
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Correspondence: (T.J.); (C.D.)
| | - Dominik Siede
- Institute of Experimental Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Jessica Eschenbach
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.B.); (R.N.); (B.M.); (P.M.); (H.A.K.)
| | - Andreas W. Heumüller
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany; (A.W.H.); (S.D.)
- German Centre for Cardiovascular Research (DZHK)-Partner site Rhine/Main, 60590 Frankfurt, Germany
| | - Martin Busch
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.B.); (R.N.); (B.M.); (P.M.); (H.A.K.)
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Rouven Nietsch
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.B.); (R.N.); (B.M.); (P.M.); (H.A.K.)
| | - Benjamin Meder
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.B.); (R.N.); (B.M.); (P.M.); (H.A.K.)
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Patrick Most
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.B.); (R.N.); (B.M.); (P.M.); (H.A.K.)
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany; (A.W.H.); (S.D.)
- German Centre for Cardiovascular Research (DZHK)-Partner site Rhine/Main, 60590 Frankfurt, Germany
| | - Johannes Backs
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Institute of Experimental Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Hugo A. Katus
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.B.); (R.N.); (B.M.); (P.M.); (H.A.K.)
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.B.); (R.N.); (B.M.); (P.M.); (H.A.K.)
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Correspondence: (T.J.); (C.D.)
| |
Collapse
|
3
|
Kunkler B, Salamango D, DeBruine ZJ, Ploch C, Dean S, Grossens D, Hledin MP, Marquez GA, Madden J, Schnell A, Short M, Burnatowska-Hledin MA. CUL5 is required for thalidomide-dependent inhibition of cellular proliferation. PLoS One 2018; 13:e0196760. [PMID: 29746508 PMCID: PMC5944951 DOI: 10.1371/journal.pone.0196760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis is essential for cancer metastasis, thus the discovery and characterization of molecules that inhibit this process is important. Thalidomide is a teratogenic drug which is known to inhibit angiogenesis and effectively inhibit cancer metastasis, yet the specific cellular targets for its effect are not well known. We discovered that CUL5 (previously identified as VACM-1), a scaffold protein in E3 ligase complexes, is involved in thalidomide-dependent inhibition of endothelial cell growth. Our results show that in human endothelial cells (HUVEC), thalidomide-dependent decrease in cell growth was associated with decreased nuclear localization of CUL5. In HUVEC transfected with anti-VACM-1 siRNA, thalidomide failed to decrease cell growth. Previously it was established that the antiproliferative effect of CUL5 is inhibited in rat endothelial cells (RAMEC) transfected with mutated CUL5 which is constitutively modified by NEDD8, a ubiquitin-like protein. In this study, the antiproliferative response to thalidomide was compromised in RAMEC expressing mutated CUL5. These results suggest that CUL5 protein is involved in the thalidomide-dependent regulation of cellular proliferation in vitro. Consequently, CUL5 may be an important part of the mechanism for thalidomide-dependent inhibition of cellular proliferation, as well as a novel biomarker for predicting a response to thalidomide for the treatment of disorders such as multiple myeloma and HIV infection.
Collapse
Affiliation(s)
- Bryan Kunkler
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Daniel Salamango
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Zachary J DeBruine
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Caitlin Ploch
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Shirley Dean
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - David Grossens
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Michael P Hledin
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Gabriel A Marquez
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Julie Madden
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Abigayle Schnell
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Michael Short
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Maria A Burnatowska-Hledin
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America.,Department of Biology, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| |
Collapse
|
4
|
Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. The role of cullin 5-containing ubiquitin ligases. Cell Div 2016; 11:1. [PMID: 27030794 PMCID: PMC4812663 DOI: 10.1186/s13008-016-0016-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| |
Collapse
|
5
|
Analysis of the Cullin binding sites of the E4orf6 proteins of human adenovirus E3 ubiquitin ligases. J Virol 2014; 88:3885-97. [PMID: 24453364 DOI: 10.1128/jvi.03579-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED E4orf6 proteins of human adenoviruses form Cullin-based E3 ubiquitin ligase complexes that degrade cellular proteins, which impedes efficient viral replication. These complexes also include the viral E1B55K product, which is believed to recruit most substrates for ubiquitination. Heterogeneity in the composition of these ligases exists, as serotypes representing some species form Cul5-based complexes (species B2, C, D, and E), whereas others utilize Cul2 (species A and F). Adenovirus type 16 (Ad16; species B1) binds significant levels of both. In this report, we show that the Cul2 binding sequence in E4orf6 of Ad12 (species A) and Ad40 (species F) resembles the cellular consensus Cul2 box. Mutation within this Cul2 box prevents binding not only of Cul2 but also in some cases Elongin C and reduces the ability to degrade target proteins, such as Mre11 and p53. A comparable Cul2 box is not present in E4orf6 of Ad5 and other serotypes that bind Cul5; however, creation of this Cul2 box sequence in Ad5 E4orf6 promoted binding to Cul2 and Cul2-dependent degradation of Mre11. E4orf6 of Ad16 also binds Cul2; however, unlike Ad40, it does not contain an Ad12-like Cul2 box, suggesting that Ad16 binds Cul2 in a unique but perhaps nonfunctional manner, as only Cul5 binding complexes appeared able to degrade Mre11. Our extensive analyses have thus far failed to identify a consensus Cul5 binding sequence, suggesting that association occurs via a novel and perhaps complex pattern of protein-protein interactions. Nevertheless, the identification of the Cul2 box may allow prediction of Cullin specificity for all E4orf6-containing Adenoviridae. IMPORTANCE The work described in this paper is a continuation of our in-depth studies on the Cullin-based E3 ligase complexes formed by the viral E4orf6 and E1B55K proteins of all human adenoviruses. This complex induces the degradation of a growing series of cellular proteins that impede efficient viral replication. Some human adenovirus species utilize Cul5, whereas others bind Cul2. In this paper, we are the first to identify the E4orf6 Cul2 binding site, which conforms in sequence to a classic cellular Cul2 box. Ours is the first detailed biochemical and genetic analysis of a Cul2-based adenovirus ligase and provides insights into both the cooperative interactions in forming Cullin-based ligases as well as the universality of formation of all adenovirus ligase complexes. Our work now permits future analysis of the evolutionary significance of the ligase complex, work that is currently in progress in our lab.
Collapse
|
6
|
Bradley SE, Johnson AE, Le IP, Oosterhouse E, Hledin MP, Marquez GA, Burnatowska-Hledin M. Phosphorylation of VACM-1/Cul5 by protein kinase A regulates its neddylation and antiproliferative effect. J Biol Chem 2009; 285:4883-95. [PMID: 19917606 DOI: 10.1074/jbc.m109.085225] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the VACM-1/cul5 gene in endothelial and in cancer cell lines in vitro inhibits cellular proliferation and decreases phosphorylation of MAPK. Structure-function analysis of the VACM-1 protein sequence identified consensus sites specific for phosphorylation by protein kinases A and C (PKA and PKC) and a Nedd8 protein modification site. Mutations at the PKA-specific site in VACM-1/Cul5 ((S730A)VACM-1) sequence resulted in increased cellular growth and the appearance of a Nedd8-modified VACM-1/Cul5. The aim of this study was to examine if PKA-dependent phosphorylation of VACM-1/Cul5 controls its neddylation status, phosphorylation by PKC, and ultimately growth. Our results indicate that in vitro transfection of rat adrenal medullary endothelial cells with anti-VACM-1-specific small interfering RNA oligonucleotides decreases endogenous VACM-1 protein concentration and increases cell growth. Western blot analysis of cell lysates immunoprecipitated with an antibody directed against a PKA-specific phosphorylation site and probed with anti-VACM-1-specific antibody showed that PKA-dependent phosphorylation of VACM-1 protein was decreased in cells transfected with (S730A)VACM-1 cDNA when compared with the cytomegalovirus-transfected cells. This change was associated with increased modification of VACM-1 protein by Nedd8. Induction of PKA activity with forskolin reduced modification of VACM-1 protein by Nedd8. Finally, rat adrenal medullary endothelial cells transfected with (S730A)VACM-1/cul5 cDNA and treated with phorbol 12-myristate 13-acetate (10 and 100 nm) to induce PKC activity grew significantly faster than the control cells. These results suggest that the antiproliferative effect of VACM-1/Cul5 is dependent on its posttranslational modifications and will help in the design of new anticancer therapeutics that target the Nedd8 pathway.
Collapse
Affiliation(s)
- Shirley E Bradley
- Department of Biology, Hope College, Holland, Michigan 49422-9000, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Maestroni A, Ruggieri D, Dell'Antonio G, Luzi L, Zerbini G. C-peptide increases the expression of vasopressin-activated calcium-mobilizing receptor gene through a G protein-dependent pathway. Eur J Endocrinol 2005; 152:135-41. [PMID: 15762197 DOI: 10.1530/eje.1.01823] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Although an increasing number of reports suggest that physiological concentrations of C-peptide protect against the development of diabetic nephropathy, possibly through the modulation of Na-K pump activity, the intracellular pathways controlled by C-peptide are still unrecognized. C-peptide and vasopressin share similar intracellular effects including the activation of calcium influx and endothelial nitric oxide synthase. Both hormones stimulate also the activity of Na-K pump activity. Whether the activity of C-peptide is mediated by the recently identified vasopressin-activated calcium-mobilizing receptor (VACM-1) has never been previously investigated. DESIGN AND METHODS To clarify this issue, we evaluated the effect of C-peptide on VACM-1 RNA (measured by semiquantitative RT-PCR) and protein expression (measured by immunoblotting) in human skin fibroblasts (where a specific binding of C-peptide was demonstrated) and in human mesangial cells, the cellular target of diabetic nephropathy. RESULTS C-peptide-induced activation of VACM-1 was demonstrated in fibroblasts from six healthy individuals (0.51+/-0.1 vs 1.48+/-0.4, arbitrary units+/-s.e., P = 0.025). This finding was paralleled by an increased VACM-1 protein expression (5.64+/-1.0 vs 8.47+/-1.2, arbitrary units+/-s.e., P= 0.043). Similar results were confirmed in three independent cultures of human mesangial cells. VACM-1 activation in fibroblasts was insensitive to phosphatidylinositol-3-kinase inhibitor LY294002, but was inhibited by pertussis toxin, suggesting that activation of VACM-1 could be mediated by a G protein-coupled receptor. CONCLUSIONS This study demonstrates for the first time that C-peptide activates VACM-1, possibly through a G protein-coupled receptor. Further studies are needed to clarify whether VACM-1 is involved in the protective effect of C-peptide against the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Anna Maestroni
- Renal Pathophysiology Laboratory, Section Nutrition-Metabolism, Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
8
|
Van Dort C, Zhao P, Parmelee K, Capps B, Poel A, Listenberger L, Kossoris J, Wasilevich B, Murrey D, Clare P, Burnatowska-Hledin M. VACM-1, a cul-5 gene, inhibits cellular growth by a mechanism that involves MAPK and p53 signaling pathways. Am J Physiol Cell Physiol 2003; 285:C1386-96. [PMID: 12917106 DOI: 10.1152/ajpcell.00338.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasopressin-activated Ca2+-mobilizing (VACM)-1 gene product is a 780-amino acid membrane protein that shares sequence homology with cullins, a family of genes involved in the regulation of cell cycle. However, when expressed in vitro, VACM-1 attenuates basal and vasopressin- and forskolin-induced cAMP production. Mutating the PKA-dependent phosphorylation site in the VACM-1 sequence (S730AVACM-1) prevents this inhibitory effect. To further examine the biological role of VACM-1, we studied the effect of VACM-1 and S730AVACM-1 proteins on cellular proliferation and gene expression in Chinese hamster ovary and COS-1 cells. Cellular proliferation of VACM-1-expressing cell lines was significantly lower compared with that of the vector-transfected cells, whereas it was significantly increased in S730AVACM-1-derived cell lines. Furthermore, expression of VACM-1 but not S730AVACM-1 protein retarded cytokinesis and prevented MAPK phosphorylation. Screening with the Human PathwayFinder-1 GEArray system and subsequent Western blot analysis demonstrated that VACM-1 induces p53 mRNA and protein expression. In summary, VACM-1 inhibits cellular growth by a mechanism that involves cAMP, MAPK phosphorylation, and p53 expression.
Collapse
Affiliation(s)
- C Van Dort
- Dept. of Biology, Peale Science Center, Hope College, Holland, MI 49422-9000, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fay MJ, Longo KA, Karathanasis GA, Shope DM, Mandernach CJ, Leong JR, Hicks A, Pherson K, Husain A. Analysis of CUL-5 expression in breast epithelial cells, breast cancer cell lines, normal tissues and tumor tissues. Mol Cancer 2003; 2:40. [PMID: 14641918 PMCID: PMC317354 DOI: 10.1186/1476-4598-2-40] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 11/25/2003] [Indexed: 12/05/2022] Open
Abstract
Background The chromosomal location of CUL-5 (11q 22-23) is associated with LOH in breast cancer, suggesting that CUL-5 may be a tumor suppressor. The purpose of this research was to determine if there is differential expression of CUL-5 in breast epithelial cells versus breast cancer cell lines, and normal human tissues versus human tumors. The expression of CUL-5 in breast epithelial cells (HMEC, MCF-10A), and breast cancer cells (MCF-7, MDA-MB-231) was examined using RT-PCR, Northern blot analysis, and Western blot analysis. The expression of mRNA for other CUL family members (CUL-1, -2, -3, -4A, and -4B) in these cells was evaluated by RT-PCR. A normal human tissue expression array and a cancer profiling array were used to examine CUL-5 expression in normal human tissues and matched normal tissues versus tumor tissues, respectively. Results CUL-5 is expressed at the mRNA and protein levels by breast epithelial cells (HMEC, MCF-10A) and breast cancer cells (MCF-7, MDA-MB-231). These cells also express mRNA for other CUL family members. The normal human tissue expression array revealed that CUL-5 is widely expressed. The cancer profiling array revealed that 82% (41/50) of the breast cancers demonstrated a decrease in CUL-5 expression versus the matched normal tissue. For the 50 cases of matched breast tissue there was a statistically significant ~2.2 fold decreased expression of CUL-5 in tumor tissue versus normal tissue (P < 0.0001). Conclusions The data demonstrate no apparent decrease in CUL-5 expression in the breast cancer cell lines (MCF-7, MDA-MB-231) versus the breast epithelial cells (HMEC, MCF-10A). The decrease in CUL-5 expression in breast tumor tissue versus matched normal tissue supports the hypothesis that decreased expression of CUL-5 may play a role in breast tumorigenesis.
Collapse
Affiliation(s)
- Michael J Fay
- Department of Pharmacology, Midwestern University, Chicago College of Osteopathic Medicine, 555 31Street, Downers Grove, IL 60515, USA
| | - Kenneth A Longo
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A Karathanasis
- Department of Pharmacology, Midwestern University, Chicago College of Osteopathic Medicine, 555 31Street, Downers Grove, IL 60515, USA
| | - David M Shope
- Department of Pharmacology, Midwestern University, Chicago College of Osteopathic Medicine, 555 31Street, Downers Grove, IL 60515, USA
| | - Craig J Mandernach
- Department of Pharmacology, Midwestern University, Chicago College of Osteopathic Medicine, 555 31Street, Downers Grove, IL 60515, USA
| | - Jason R Leong
- Department of Pharmacology, Midwestern University, Chicago College of Osteopathic Medicine, 555 31Street, Downers Grove, IL 60515, USA
| | - Alfred Hicks
- Department of Pharmacology, Midwestern University, Chicago College of Osteopathic Medicine, 555 31Street, Downers Grove, IL 60515, USA
| | - Kenneth Pherson
- Department of Pharmacology, Midwestern University, Chicago College of Osteopathic Medicine, 555 31Street, Downers Grove, IL 60515, USA
| | - Amyna Husain
- Department of Pharmacology, Midwestern University, Chicago College of Osteopathic Medicine, 555 31Street, Downers Grove, IL 60515, USA
| |
Collapse
|
10
|
Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 2001; 15:3104-17. [PMID: 11731475 PMCID: PMC312842 DOI: 10.1101/gad.926401] [Citation(s) in RCA: 390] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although MDM2 plays a major role in regulating the stability of the p53 tumor suppressor protein, other poorly understood MDM2-independent pathways also exist. Human adenoviruses have evolved strategies to regulate p53 function and stability to permit efficient viral replication. One mechanism involves adenovirus E1B55K and E4orf6 proteins, which collaborate to target p53 for degradation. To determine the mechanism of this process, a multiprotein E4orf6-associated complex was purified and shown to contain a novel Cullin-containing E3 ubiquitin ligase that is (1) composed of Cullin family member Cul5, Elongins B and C, and the RING-H2 finger protein Rbx1(ROC1); (2) remarkably similar to the von Hippel-Lindau tumor suppressor and SCF (Skp1-Cul1/Cdc53-F-box) E3 ubiquitin ligase complexes; and (3) capable of stimulating ubiquitination of p53 in vitro in the presence of E1/E2 ubiquitin-activating and -conjugating enzymes. Cullins are activated by NEDD8 modification; therefore, to determine whether Cullin complexes are required for adenovirus-induced p53 degradation, studies were conducted in ts41 Chinese hamster ovary cells that are temperature sensitive for the NEDD8 pathway. E4orf6/E1B55K failed to induce the degradation of p53 at the nonpermissive temperature. Thus, our results identify a novel role for the Cullin-based machinery in regulation of p53.
Collapse
Affiliation(s)
- E Querido
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Burnatowska-Hledin M, Zhao P, Capps B, Poel A, Parmelee K, Mungall C, Sharangpani A, Listenberger L. VACM-1, a cullin gene family member, regulates cellular signaling. Am J Physiol Cell Physiol 2000; 279:C266-73. [PMID: 10898738 DOI: 10.1152/ajpcell.2000.279.1.c266] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasopressin-activated Ca(2+)-mobilizing (VACM-1) receptor binds arginine vasopressin (AVP) but does not have amino acid sequence homology with the traditional AVP receptors. VACM-1, however, is homologous with a newly discovered cullin family of proteins that has been implicated in the regulation of cell cycle through the ubiquitin-mediated degradation of cyclin-dependent kinase inhibitors. Because cell cycle processes can be regulated by the transmembrane signal transduction systems, the effects of VACM-1 expression on the Ca(2+) and cAMP-dependent signaling pathway were examined in a stable cell line expressing VACM-1 in VACM-1 transfected COS-1 cells and in cells cotransfected with VACM-1 and the adenylyl cyclase-linked V(2) AVP receptor cDNAs. Expression of the VACM-1 gene reduced basal as well as forskolin- and AVP-stimulated cAMP production. In cells cotransfected with VACM-1 and the V(2) receptor, the AVP- and forskolin-induced increases in adenylyl cyclase activity and cAMP production were inhibited. The inhibitory effect of VACM-1 on cAMP production could be reversed by pretreating cells with staurosporin, a protein kinase A (PKA) inhibitor, or by mutating S730A, the PKA-dependent phosphorylation site in the VACM-1 sequence. The protein kinase C specific inhibitor Gö-6983 further enhanced the inhibitory effect of VACM-1 on AVP-stimulated cAMP production. Finally, AVP stimulated D-myo-inositol 1,4, 5-trisphosphate production both in the transiently transfected COS-1 cells and in the stable cell line expressing VACM-1, but not in the control COS-1 and Chinese hamster ovary cells. Our data demonstrate that VACM-1, the first mammalian cullin protein to be characterized, is involved in the regulation of signaling.
Collapse
Affiliation(s)
- M Burnatowska-Hledin
- Departments of Biology and Chemistry, Peale Science Center, Hope College, Holland, Michigan 49422-9000, USA.
| | | | | | | | | | | | | | | |
Collapse
|