1
|
Liu Y, Yang C, Zhang J, Ihsan A, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Recent progress in adverse events of carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) and their association with the metabolism: the consequences on mitochondrial dysfunction and oxidative stress, and prevention with natural plant extracts. Expert Opin Drug Metab Toxicol 2024:1-21. [PMID: 38980754 DOI: 10.1080/17425255.2024.2378885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) are extensively used worldwide due to their antipyretic, analgesic, and anti-inflammatory effects. CBA-NSAIDs have reasonable margin of safety at therapeutic doses, and in the current climate, do not possess addiction potential like opioid drugs. Studies have revealed that various adverse events of CBA-NSAIDs are related mitochondrial dysfunction and oxidative stress. AREAS COVERED This review article summarizes adverse events induced by CBA-NSAIDs, mechanisms of mitochondrial damage, oxidative stress, and metabolic interactions. Meanwhile, this review discusses the treatment and prevention of CBA-NSAIDs damage by natural plant extracts based on antioxidant effects. EXPERT OPINION CBA-NSAIDs can induce reactive oxygen species (ROS) production, mediate DNA, protein and lipid damage, lead to imbalance of cell antioxidant status, change of mitochondrial membrane potential, activate oxidative stress signal pathway, thus leading to oxidative stress and cell damage. Adverse events caused by CBA-NSAIDs often exhibit dose and time dependence. In order to avoid adverse events caused by CBA-NSAIDs, it is necessary to provide detailed patient consultation and eliminate influencing factors. Moreover, constructive research studies on the organ-specific toxicity and mechanism of natural plant extracts in preventing and treating metabolic abnormalities of CBA-NSAIDs, will provide important value for warning and guidance for use of CBA-NSAIDs.
Collapse
Affiliation(s)
- Yanan Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jieying Zhang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
2
|
Effect of Quercetin on Injury to Indomethacin-Treated Human Embryonic Kidney 293 Cells. Life (Basel) 2021; 11:life11111134. [PMID: 34833010 PMCID: PMC8623736 DOI: 10.3390/life11111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammation and pain and even to prevent the progression of cardiovascular disease. They have become widely used because of their effectiveness, especially among athletes performing high-intensity training. Indomethacin is used for pain management in sports medicine and is highly effective and versatile. However, several clinical studies have reported that indomethacin induces acute renal damage. In the present study, we determined that indomethacin reduced human embryonic kidney 293 (HEK293) cell viability in a concentration-dependent manner by triggering apoptosis. In addition, we demonstrated the effect of quercetin on indomethacin-treated HEK293 cells by inactivating the caspase-3 and caspase-9 signals. Furthermore, quercetin reduced ROS production and increased mitochondrial membrane potential (ΔΨm) in indomethacin-treated HEK293 cells. Our results indicate that quercetin can interrupt the activated caspase and mitochondrial pathway induced by indomethacin in HEK293 cells and affect apoptotic mRNA expression. Quercetin can protect against indomethacin-induced HEK293 cell apoptosis by regulating abnormal ΔΨm and apoptotic mRNA expression.
Collapse
|
3
|
Casali CI, Erjavec LC, Fernández-Tome MDC. Sequential and synchronized hypertonicity-induced activation of Rel-family transcription factors is required for osmoprotection in renal cells. Heliyon 2019; 4:e01072. [PMID: 30603705 PMCID: PMC6304461 DOI: 10.1016/j.heliyon.2018.e01072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/31/2018] [Accepted: 12/14/2018] [Indexed: 01/28/2023] Open
Abstract
NF-κB and TonEBP belong to the Rel-superfamily of transcription factors. Several specific stimuli, including hypertonicity which is a key factor for renal physiology, are able to activate them. It has been reported that, after hypertonic challenge, NF-κB activity can be modulated by TonEBP, considered as the master regulator of transcriptional activity in the presence of changes in environmental tonicity. In the present work we evaluated whether hypertonicity-induced gene transcription mediated by p65/RelA and TonEBP occurs by an independent action of each transcription factor or by acting together. To do this, we evaluated the expression of their specific target genes and cyclooxygenase-2 (COX-2), a common target of both transcription factors, in the renal epithelial cell line Madin-Darby canine kidney (MDCK) subjected to hypertonic environment. The results herein indicate that hypertonicity activates the Rel-family transcription factors p65/RelA and TonEBP in MDCK cells, and that both are required for hypertonic induction of COX-2 and of their specific target genes. In addition, present data show that p65/RelA modulates TonEBP expression and both colocalize in nuclei of hypertonic cultures of MDCK cells. Thus, a sequential and synchronized action p65/RelA → TonEBP would be necessary for the expression of hypertonicity-induced protective genes.
Collapse
Affiliation(s)
- Cecilia I Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Luciana C Erjavec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - María Del Carmen Fernández-Tome
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
4
|
Choi H, Chaiyamongkol W, Doolittle AC, Johnson ZI, Gogate SS, Schoepflin ZR, Shapiro IM, Risbud MV. COX-2 expression mediated by calcium-TonEBP signaling axis under hyperosmotic conditions serves osmoprotective function in nucleus pulposus cells. J Biol Chem 2018; 293:8969-8981. [PMID: 29700115 DOI: 10.1074/jbc.ra117.001167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
The nucleus pulposus (NP) of intervertebral discs experiences dynamic changes in tissue osmolarity because of diurnal loading of the spine. TonEBP/NFAT5 is a transcription factor that is critical in osmoregulation as well as survival of NP cells in the hyperosmotic milieu. The goal of this study was to investigate whether cyclooxygenase-2 (COX-2) expression is osmoresponsive and dependent on TonEBP, and whether it serves an osmoprotective role. NP cells up-regulated COX-2 expression in hyperosmotic media. The induction of COX-2 depended on elevation of intracellular calcium levels and p38 MAPK pathway, but independent of calcineurin signaling as well as MEK/ERK and JNK pathways. Under hyperosmotic conditions, both COX-2 mRNA stability and its proximal promoter activity were increased. The proximal COX-2 promoter (-1840/+123 bp) contained predicted binding sites for TonEBP, AP-1, NF-κB, and C/EBP-β. While COX-2 promoter activity was positively regulated by both AP-1 and NF-κB, AP-1 had no effect and NF-κB negatively regulated COX-2 protein levels under hyperosmotic conditions. On the other hand, TonEBP was necessary for both COX-2 promoter activity and protein up-regulation in response to hyperosmotic stimuli. Ex vivo disc organ culture studies using hypomorphic TonEBP+/- mice confirmed that TonEBP is required for hyperosmotic induction of COX-2. Importantly, the inhibition of COX-2 activity under hyperosmotic conditions resulted in decreased cell viability, suggesting that COX-2 plays a cytoprotective and homeostatic role in NP cells for their adaptation to dynamically loaded hyperosmotic niches.
Collapse
Affiliation(s)
- Hyowon Choi
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Weera Chaiyamongkol
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and.,Department of Orthopaedic Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Alexandra C Doolittle
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Zariel I Johnson
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Shilpa S Gogate
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Zachary R Schoepflin
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Irving M Shapiro
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Makarand V Risbud
- From the Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| |
Collapse
|
5
|
Li X, Mazaleuskaya LL, Ballantyne LL, Meng H, FitzGerald GA, Funk CD. Differential compensation of two cyclooxygenases in renal homeostasis is independent of prostaglandin-synthetic capacity under basal conditions. FASEB J 2018; 32:5326-5337. [PMID: 29676940 DOI: 10.1096/fj.201800252r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The distinct functions of each cyclooxygenase (COX) isoform in renal homeostasis have been the subject of intense investigation for many years. We took the novel approach of using 3 characterized mouse lines, where the prostaglandin (PG)-endoperoxide synthase genes 1 and 2 ( Ptgs1 and Ptgs2) substitute for one another to delineate distinct roles and the potential for COX isoform substitution. Flipped Ptgs genes generate a reversed COX-expression pattern in the kidney, where the knockin COX-2 is highly expressed. Normal nephrogenesis was sustained in all 3 strains at the postnatal stage d 8 (P8). Knockin COX-1 can temporally restore renal function and delay but not prevent renal pathology consequent to COX-2 deletion. Loss of COX-2 in adult COX-1 > COX-2 mice results in severe nephropathy, which leads to impaired renal function. These defects are partially rescued by the knockin COX-2 in Reversa mice, whereas COX-2 can compensate for the loss of COX-1 in COX-2 > COX-1 mice. Intriguingly, the highly expressed knockin COX-2 enzyme barely makes any PGs or thromboxane in neonatal P8 or adult mice, demonstrating that prostanoid biosynthesis requires native COX-1 and cannot be rescued by the knockin COX-2. In summary, the 2 COX isoforms can preferentially compensate for some renal functions, which appears to be independent of the PG-synthetic capacity.-Li, X., Mazaleuskaya, L. L., Ballantyne, L. L., Meng, H., FitzGerald, G. A., Funk, C. D. Differential compensation of two cyclooxygenases in renal homeostasis is independent of prostaglandin-synthetic capacity under basal conditions.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| | - Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| |
Collapse
|
6
|
Slattery P, Frölich S, Goren I, Nüsing RM. Salt supplementation ameliorates developmental kidney defects in COX-2 −/− mice. Am J Physiol Renal Physiol 2017; 312:F1044-F1055. [DOI: 10.1152/ajprenal.00565.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
Deficiency of cyclooxygenase-2 (COX-2) activity in the early postnatal period causes impairment of kidney development leading to kidney insufficiency. We hypothesize that impaired NaCl reabsorption during the first days of life is a substantial cause for nephrogenic defects observed in COX-2−/− mice and that salt supplementation corrects these defects. Daily injections of NaCl (0.8 mg·g−1·day−1) for the first 10 days after birth ameliorated impaired kidney development in COX-2−/− pups resulting in an increase in glomerular size and fewer immature superficial glomeruli. However, impaired renal subcortical growth was not corrected. Increasing renal tubular flow by volume load or injections of KCl did not relieve the renal histomorphological damage. Administration of torsemide and spironolactone also affected nephrogenesis resulting in diminished glomeruli and cortical thinning. Treatment of COX-2−/− pups with NaCl/DOCA caused a stronger mitigation of glomerular size and induced a slight but significant growth of cortical tissue mass. After birth, renal mRNA expression of NHE3, NKCC2, ROMK, NCCT, ENaC, and Na+/K+-ATPase increased relative to postnatal day 2 in wild-type mice. However, in COX-2−/− mice, a significantly lower expression was observed for NCCT, whereas NaCl/DOCA treatment significantly increased NHE3 and ROMK expression. Long-term effects of postnatal NaCl/DOCA injections indicate improved kidney function with normalization of pathologically enhanced creatinine and urea plasma levels; also, albumin excretion was observed. In summary, we present evidence that salt supplementation during the COX-2-dependent time frame of nephrogenesis partly reverses renal morphological defects in COX-2−/− mice and improves kidney function.
Collapse
Affiliation(s)
- Patrick Slattery
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| | - Stefanie Frölich
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| | - Itamar Goren
- Institute of Pharmacology and Toxicology, Goethe-University, Frankfurt, Germany
| | - Rolf M. Nüsing
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| |
Collapse
|
7
|
Hao S, DelliPizzi A, Quiroz-Munoz M, Jiang H, Ferreri NR. The EP3 receptor regulates water excretion in response to high salt intake. Am J Physiol Renal Physiol 2016; 311:F822-F829. [PMID: 27465993 DOI: 10.1152/ajprenal.00589.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 μg·kg-1·day-1) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by ∼75% in TAL tubules from rats given 1% NaCl concomitant with a ∼60% inhibition of COX-2-dependent PGE2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced ∼40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 μg·kg-1·day-1), which increased COX-2 expression and renal PGE2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE2 synthesis, thereby mitigating the inhibitory effects of PGE2 on these transporters and decreasing urine volume.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Mariana Quiroz-Munoz
- Department of Physiology, Center for Aging and Regeneration, CARE Chile UC, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
8
|
Slattery P, Frölich S, Schreiber Y, Nüsing RM. COX-2 gene dosage-dependent defects in kidney development. Am J Physiol Renal Physiol 2016; 310:F1113-22. [PMID: 26984955 DOI: 10.1152/ajprenal.00430.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/10/2016] [Indexed: 12/18/2022] Open
Abstract
Deletion of cyclooxygenase (COX)-2 causes impairment of kidney development, including hypothrophic glomeruli and cortical thinning. A critical role for COX-2 is seen 4-8 days postnatally. The present study was aimed at answering whether different COX-2 gene dosage and partial pharmacological COX-2 inhibition impairs kidney development. We studied kidney development in COX-2(+/+), COX-2(+/-), and COX-2(-/-) mice as well as in C57Bl6 mice treated postnatally with low (5 mg·kg(-1)·day(-1)) and high (10 mg·kg(-1)·day(-1)) doses of the selective COX-2 inhibitor SC-236. COX-2(+/-) mice exhibit impaired kidney development leading to reduced glomerular size but, in contrast to COX-2(-/-) mice, only marginal cortical thinning. Moreover, in COX-2(+/-) and COX-2(-/-) kidneys, juxtamedullary glomeruli, which develop in the very early stages of nephrogenesis, also showed a size reduction. In COX-2(+/-) kidneys at the age of 8 days, we observed significantly less expression of COX-2 mRNA and protein and less PGE2 and PGI2 synthetic activity compared with COX-2(+/+) kidneys. The renal defects in COX-2(-/-) and COX-2(+/-) kidneys could be mimicked by high and low doses of SC-236, respectively. In aged COX-2(+/-) kidneys, glomerulosclerosis was observed; however, in contrast to COX-2(-/-) kidneys, periglomerular fibrosis was absent. COX-2(+/-) mice showed signs of kidney insufficiency, demonstrated by enhanced serum creatinine levels, quite similar to COX-2(-/-) mice, but, in contrast, serum urea remained at the control level. In summary, function of both COX-2 gene alleles is absolutely necessary to ensure physiological development of the mouse kidney. Loss of one copy of the COX-2 gene or partial COX-2 inhibition is associated with distinct renal damage and reduced kidney function.
Collapse
Affiliation(s)
- Patrick Slattery
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| | - Stefanie Frölich
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| | | | - Rolf M Nüsing
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany; and
| |
Collapse
|
9
|
Nilsson L, Madsen K, Krag S, Frøkiær J, Jensen BL, Nørregaard R. Disruption of cyclooxygenase type 2 exacerbates apoptosis and renal damage during obstructive nephropathy. Am J Physiol Renal Physiol 2015; 309:F1035-48. [PMID: 26671967 DOI: 10.1152/ajprenal.00253.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023] Open
Abstract
Renal oxidative stress is increased in response to ureteral obstruction. In vitro, cyclooxygenase (COX)-2 activity contributes to protection against oxidants. In the present study, we tested the hypothesis that COX-2 activity counters oxidative stress and apoptosis in an in vivo model of obstructive nephropathy. Renal oxidative stress markers, antioxidant enzymes, and markers of tubular injury, tubular dilation, and apoptosis were investigated in COX-2 knockout (COX-2(-/-)) and wild-type (WT) mice subjected to 3 or 7 days of unilateral ureteral obstruction (UUO). In a separate series, WT sham-operated and UUO mice were treated with a selective COX-2 inhibitor, parecoxib. COX-2 increased in response to UUO; the oxidative stress markers 4-hydroxynonenal and nitrotyrosine protein residues increased in kidney tissue with no genotype difference after UUO, whereas the antioxidant enzymes heme oxygenase-1 and SOD2 displayed higher levels in COX-2(-/-) mice. Tubular injury was aggravated by COX-2 deletion, as measured by tubular dilatation, an increase in kidney injury molecule-1, cortical caspase-3 content, and apoptosis index. In conclusion, COX-2 is necessary to protect against tubular injury and apoptosis after UUO but not necessary to protect against oxidative stress. COX-2 is not likely to directly regulate antioxidant enzymes heme oxygenase-1 and SOD in the kidney.
Collapse
Affiliation(s)
- Line Nilsson
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kirsten Madsen
- Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark; Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Søren Krag
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark; and
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Boye L Jensen
- Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
10
|
Gonzalez AA, Green T, Luffman C, Bourgeois CRT, Gabriel Navar L, Prieto MC. Renal medullary cyclooxygenase-2 and (pro)renin receptor expression during angiotensin II-dependent hypertension. Am J Physiol Renal Physiol 2014; 307:F962-70. [PMID: 25143455 DOI: 10.1152/ajprenal.00267.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The (pro)renin receptor [(P)RR] upregulates cyclooxygenase-2 (COX-2) in inner medullary collecting duct (IMCD) cells through ERK1/2. Intrarenal COX-2 and (P)RR are upregulated during chronic ANG II infusion. However, the duration of COX-2 and (P)RR upregulation has not been determined. We hypothesized that during the early phase of ANG II-dependent hypertension, membrane-bound (P)RR and COX-2 are augmented in the renal medulla, serving to buffer the hypertensinogenic and vasoconstricting effects of ANG II. In Sprague-Dawley rats infused with ANG II (0.4 μg·min(-1)·kg(-1)), systolic blood pressure (BP) increased by day 7 (162 ± 5 vs. 114 ± 10 mmHg) and continued to increase by day 14 (198 ± 15 vs. 115 ± 13 mmHg). Membrane-bound (P)RR was augmented at day 3 coincident with phospho-ERK1/2 levels, COX-2 expression, and PGE2 in the renal medulla. In contrast, membrane-bound (P)RR was reduced and COX-2 protein levels were not different from controls by day 14. In cultured IMCD cells, ANG II increased secretion of the soluble (P)RR. In anesthetized rats, COX-2 inhibition decreased the glomerular filtration rate (GFR) and renal blood flow (RBF) during the early phase of ANG II infusion without altering BP. However, at 14 days of ANG II infusions, COX-2 inhibition decreased mean arterial BP (MABP), RBF, and GFR. Thus, during the early phase of ANG II-dependent hypertension, the increased (P)RR and COX-2 expression in the renal medulla may contribute to attenuate the vasoconstrictor effects of ANG II on renal hemodynamics. In contrast, at 14 days the reductions in RBF and GFR caused by COX-2 inhibition paralleled the reduced MABP, suggesting that vasoconstrictor COX-2 metabolites contribute to ANG II hypertension.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; and
| | - Torrance Green
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Christina Luffman
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Camille R T Bourgeois
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
11
|
Østergaard M, Christensen M, Nilsson L, Carlsen I, Frøkiær J, Nørregaard R. ROS dependence of cyclooxygenase-2 induction in rats subjected to unilateral ureteral obstruction. Am J Physiol Renal Physiol 2014; 306:F259-70. [DOI: 10.1152/ajprenal.00352.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress resulting from unilateral ureteral obstruction (UUO) may be aggravated by increased production of ROS. Previous studies have demonstrated increased cyclooxygenase (COX)-2 expression in renal medullary interstitial cells (RMICs) in response to UUO. We investigated, both in vivo and in vitro, the role of ROS in the induction of COX-2 in rats subjected to UUO and in RMICs exposed to oxidative and mechanical stress. Rats subjected to 3-day UUO were treated with two mechanistically distinct antioxidants, the NADPH oxidase inhibitor diphenyleneiodonium (DPI) and the complex I inhibitor rotenone (ROT), to interfere with ROS production. We found that UUO-mediated induction of COX-2 in the inner medulla was attenuated by both antioxidants. In addition, DPI and ROT reduced tubular damage and oxidative stress after UUO. Moreover, mechanical stretch induced COX-2 and oxidative stress in RMICs. Likewise, RMICs exposed to H2O2 as an inducer of oxidative stress showed increased COX-2 expression and activity, both of which were reduced by DPI and ROT. Similarly, ROS production, which was increased after exposure of RMICs to H2O2, was also reduced by DPI and ROT. Furthermore, oxidative stress-induced phosphorylation of ERK1/2 and p38 was blocked by both antioxidants, and inhibition of ERK1/2 and p38 attenuated the induction of COX-2 in RMICs. Notably, COX-2 inhibitors further exacerbated the oxidative stress level in H2O2-exposed RMICs. We conclude that oxidative stress as a consequence of UUO stimulates COX-2 expression through the activation of multiple MAPKs and that the induction of COX-2 may exert a cytoprotective function in RMICs.
Collapse
Affiliation(s)
- Martin Østergaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Michael Christensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Line Nilsson
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Inge Carlsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
- Department of Clinical Physiology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
12
|
He W, Xie Q, Wang Y, Chen J, Zhao M, Davis LS, Breyer MD, Gu G, Hao CM. Generation of a tenascin-C-CreER2 knockin mouse line for conditional DNA recombination in renal medullary interstitial cells. PLoS One 2013; 8:e79839. [PMID: 24244568 PMCID: PMC3823583 DOI: 10.1371/journal.pone.0079839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/01/2013] [Indexed: 11/17/2022] Open
Abstract
Renal medullary interstitial cells (RMIC) are specialized fibroblast-like cells that exert important functions in maintaining body fluid homeostasis and systemic blood pressure. Here, we generated a RMIC specific tenascin-C promoter driven inducible CreER2 knockin mouse line with an EGFP reporter. Similar as endogenous tenascin-C expression, the reporter EGFP expression in the tenascin-C-CreER2(+/-) mice was observed in the inner medulla of the kidney, and co-localized with COX2 but not with AQP2 or AQP1, suggesting selective expression in RMICs. After recombination (tenascin-C-CreER2(+/-)/ROSA26-lacZ(+/-) mice + tamoxifen), β-gal activity was restricted to the cells in the inner medulla of the kidney, and didn't co-localize with AQP2, consistent with selective Cre recombinase activity in RMICs. Cre activity was not obvious in other major organs or without tamoxifen treatment. This inducible RMIC specific Cre mouse line should therefore provide a novel tool to manipulate genes of interest in RMICs.
Collapse
Affiliation(s)
- Wenjuan He
- Gladstone Institute of Virology & Immunology, San Francisco, California, United States of America ; Nephrology Division, Vanderbilt University Medical Center School of Medicine, Nashville, Tennessee, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
He W, Zhang M, Zhao M, Davis LS, Blackwell TS, Yull F, Breyer MD, Hao CM. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells. Pflugers Arch 2013; 466:357-367. [PMID: 23900806 DOI: 10.1007/s00424-013-1328-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.
Collapse
Affiliation(s)
- Wenjuan He
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Zhao
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Linda S Davis
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Fiona Yull
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Matthew D Breyer
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China.,Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| |
Collapse
|
14
|
Chen YC, Chu LY, Yang SF, Chen HL, Yet SF, Wu KK. Prostacyclin and PPARα agonists control vascular smooth muscle cell apoptosis and phenotypic switch through distinct 14-3-3 isoforms. PLoS One 2013; 8:e69702. [PMID: 23844263 PMCID: PMC3701049 DOI: 10.1371/journal.pone.0069702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/17/2013] [Indexed: 01/05/2023] Open
Abstract
We hypothesized that prostacyclin (PGI2) protects vascular smooth muscle cell (VSMC) against apoptosis and phenotypic switch through peroxisome proliferator-activated receptor-α (PPARα) activation and 14-3-3 upregulation. Here we showed that transfection of rat aortic VSMC, A-10, with PGI2-producing vectors, Ad-COPI, resulted in attenuated H2O2-induced apoptosis accompanied by a selective increase in 14-3-3β and 14-3-3θ expression. Carbaprostacyclin (cPGI2) and Wy14,643 exerted a similar effect. The effects of PGI2 were abrogated by MK886, a PPARα antagonist, but not GSK3787, a PPARδ antagonist. PPARα transfection upregulated 14-3-3β and θ expression and attenuated H2O2-induced apoptosis. H2O2-induced 14-3-3β but not 14-3-3θ degradation was blocked by a caspase 3 inhibitor. Furthermore, 14-3-3β but not 14-3-3θ overexpression reduced, while 14-3-3β siRNA aggravated apoptosis. VSMC contractile proteins and serum response factor (SRF) were reduced in H2O2-treated A-10 cells which were concurrently prevented by caspase 3 inhibitor. By contrast, PGI2 prevented H2O2-induced SM22α and Calponin-1 degradation without influencing SRF. cPGI2 and Wy14,643 also effectively blocked VSMC phenotypic switch induced by growth factors (GFs). GFs suppressed 14-3-3β, θ, ε and η isoforms and cPGI2 prevented the decline of β, θ and η, but not ε. 14-3-3θ siRNA abrogated the protective effect of cPGI2 on SM22α and Calponin-1 while 14-3-3 θ or 14-3-3β overexpression partially restored SM22α. These results indicated that PGI2 protects VSMCs via PPARα by upregulating 14-3-3β and 14-3-3θ. 14-3-3β upregulation confers resistance to apoptosis whereas 14-3-3θ and β upregulation protects SM22α and Calponin-1 from degradation.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ling-Yun Chu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Fan Yang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Hua-Ling Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Kenneth K. Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsin-Chu, Taiwan
- Metabolomic Medicine Research Center, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Gonzalez AA, Luffman C, Bourgeois CRT, Vio CP, Prieto MC. Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (Pro)renin receptor in rat renal inner medullary cells. Hypertension 2012. [PMID: 23184385 DOI: 10.1161/hypertensionaha.112.196303] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During renin-angiotensin system activation, cyclooxygenase-2 (COX-2)-derived prostaglandins attenuate the pressor and antinatriuretic effects of angiotensin II (AngII) in the renal medulla. The (pro)renin receptor (PRR) is abundantly expressed in the collecting ducts (CD) and its expression is augmented by AngII. PRR overexpression upregulates COX-2 via mitogen-activated kinases/extracellular regulated kinases 1/2 in renal tissues; however, it is not clear whether this effect occurs independently or in concert with AngII type 1 receptor (AT1R) activation. We hypothesized that PRR activation stimulates COX-2 expression independently of AT(1)R in primary cultures of rat renal inner medullary cells. The use of different cell-specific immunomarkers (aquaporin-2 for principal cells, anion exchanger type 1 for intercalated type-A cells, and tenascin C for interstitial cells) and costaining for AT(1)R, COX-2, and PRR revealed that PRR and COX-2 were colocalized in intercalated and interstitial cells whereas principal cells did not express PRR or COX-2. In normal rat kidney sections, PRR and COX-2 were colocalized in intercalated and interstitial cells. In rat renal inner medullary cultured cells, treatment with AngII (100 nmol/L) increased COX-2 expression via AT(1)R. In addition, AngII and rat recombinant prorenin (100 nmol/L) treatments increased extracellular regulated kinases 1/2 phosphorylation, independently. Importantly, rat recombinant prorenin upregulated COX-2 expression in the presence of AT(1)R blockade. Inhibition of mitogen-activated kinases/extracellular regulated kinases 1/2 suppressed COX-2 upregulation mediated by either AngII or rat recombinant prorenin. Furthermore, PRR knockdown using PRR-short hairpin RNA blunted the rat recombinant prorenin-mediated upregulation of COX-2. These results indicate that COX-2 expression is upregulated by activation of either PRR or AT(1)R via mitogen-activated kinases/extracellular regulated kinases 1/2 in rat renal inner medullary cells.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Chile
| | | | | | | | | |
Collapse
|
16
|
Nørregaard R, Madsen K, Hansen PBL, Bie P, Thavalingam S, Frøkiær J, Jensen BL. COX-2 disruption leads to increased central vasopressin stores and impaired urine concentrating ability in mice. Am J Physiol Renal Physiol 2011; 301:F1303-13. [PMID: 21880835 DOI: 10.1152/ajprenal.00665.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP mRNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2(-/-), basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. Water deprivation resulted in lower urine osmolality, higher plasma osmolality in COX-2(-/-) mice irrespective of gender. Hypothalamic AVP mRNA level increased and was unchanged between COX-2(-/-) and WT after WD. AVP peptide content was higher in COX-2(-/-) compared with WT. At baseline, plasma AVP concentration was elevated in conscious chronically catheterized COX-2(-/-) mice, but after WD plasma AVP was unchanged between COX-2(-/-) and WT mice (43 ± 11 vs. 70 ± 16 pg/ml). Renal V2 receptor abundance was downregulated in COX-2(-/-) mice. Medullary interstitial osmolality increased and did not differ between COX-2(-/-) and WT after WD. Aquaporin-2 (AQP2; cortex-outer medulla), AQP3 (all regions), and UT-A1 (inner medulla) protein abundances were elevated in COX-2(-/-) at baseline and further increased after WD. COX-2(-/-) mice had elevated plasma urea and creatinine and accumulation of small subcapsular glomeruli. In conclusion, hypothalamic COX-2 activity is not necessary for enhanced AVP expression and secretion in response to water deprivation. Renal medullary COX-2 activity negatively regulates AQP2 and -3. The urine concentrating defect in COX-2(-/-) is likely caused by developmental glomerular injury and not dysregulation of AVP or collecting duct aquaporins.
Collapse
Affiliation(s)
- Rikke Nørregaard
- The Water and Salt Research Center, Institute of Clinical Medicine, University of Aarhus, Aarhus Univ. Hospital-Skejby, Brendstrupgaardsvej 100, Aarhus N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
17
|
Peroxisome Proliferator-Activated Receptors Protect against Apoptosis via 14-3-3. PPAR Res 2010; 2010. [PMID: 20862376 PMCID: PMC2938460 DOI: 10.1155/2010/417646] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/14/2010] [Indexed: 01/17/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) were reported to prevent cells from stress-induced apoptosis and protect tissues against ischemia-reperfusion injury. The underlying transcriptional mechanism is unclear. Recent reports indicate that the antiapoptotic actions of ligand-activated PPARδ and PPARγ are mediated through enhanced binding of PPAR to the promoter of 14-3-3ε and upregulation of 14-3-3ε expression. We propose that ligand-activated PPARα exerts its anti-apoptotic actions via the identical pathway. The PPAR to 14-3-3 transcriptional axis plays an important role in protection of cell and tissue integrity and is a target for drug discovery.
Collapse
|
18
|
Carlsen I, Donohue KE, Jensen AM, Selzer AL, Chen J, Poppas DP, Felsen D, Frøkiær J, Nørregaard R. Increased cyclooxygenase-2 expression and prostaglandin E2 production in pressurized renal medullary interstitial cells. Am J Physiol Regul Integr Comp Physiol 2010; 299:R823-31. [PMID: 20610829 DOI: 10.1152/ajpregu.00544.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Renal medullary interstitial cells (RMICs) are subjected to osmotic, inflammatory, and mechanical stress as a result of ureteral obstruction, which may influence the expression and activity of cyclooxygenase type 2 (COX-2). Inflammatory stress strongly induces COX-2 in RMICs. To explore the direct effect of mechanical stress on the expression and activity of COX-2, cultured RMICs were subjected to varying amounts of pressure over time using a novel pressure apparatus. COX-2 mRNA and protein were induced following 60 mmHg pressure for 4 and 6 h, respectively. COX-1 mRNA and protein levels were unchanged. PGE(2) production in the RMICs was increased when cells were subjected to 60 mmHg pressure for 6 h and was prevented by a selective COX-2 inhibitor. Pharmacological inhibition indicating that pressure-induced COX-2 expression is dependent on p38 MAPK and biochemical knockdown experiments showed that NF-kappaB might be involved in the COX-2 induction by pressure. Importantly, terminal deoxyneucleotidyl transferase-mediated dUTP nick-end labeling and methylthiazoletetetrazolium assay studies showed that subjecting RMICs to 60 mmHg pressure for 6 h does not affect cell viability, apoptosis, and proliferation. To further examine the regulation of COX-2 in vivo, rats were subjected to unilateral ureteral obstruction (UUO) for 6 and 12 h. COX-2 mRNA and protein level was increased in inner medulla in response to 6- and 12-h UUO. COX-1 mRNA and protein levels were unchanged. These findings suggest that in vitro application of pressure recapitulates the effects on RMICs found after in vivo UUO. This directly implicates pressure as an important regulator of renal COX-2 expression.
Collapse
Affiliation(s)
- Inge Carlsen
- The Water and Salt Research Center, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
He W, Wang Y, Zhang MZ, You L, Davis LS, Fan H, Yang HC, Fogo AB, Zent R, Harris RC, Breyer MD, Hao CM. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 2010; 120:1056-68. [PMID: 20335659 DOI: 10.1172/jci41563] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/10/2010] [Indexed: 01/06/2023] Open
Abstract
Sirtuin 1 (Sirt1) is a NAD+-dependent deacetylase that exerts many of the pleiotropic effects of oxidative metabolism. Due to local hypoxia and hypertonicity, the renal medulla is subject to extreme oxidative stress. Here, we set out to investigate the role of Sirt1 in the kidney. Our initial analysis indicated that it was abundantly expressed in mouse renal medullary interstitial cells in vivo. Knocking down Sirt1 expression in primary mouse renal medullary interstitial cells substantially reduced cellular resistance to oxidative stress, while pharmacologic Sirt1 activation using either resveratrol or SRT2183 improved cell survival in response to oxidative stress. The unilateral ureteral obstruction (UUO) model of kidney injury induced markedly more renal apoptosis and fibrosis in Sirt1+/- mice than in wild-type controls, while pharmacologic Sirt1 activation substantially attenuated apoptosis and fibrosis in wild-type mice. Moreover, Sirt1 deficiency attenuated oxidative stress-induced COX2 expression in cultured mouse renal medullary interstitial cells, and Sirt1+/- mice displayed reduced UUO-induced COX2 expression in vivo. Conversely, Sirt1 activation increased renal medullary interstitial cell COX2 expression both in vitro and in vivo. Furthermore, exogenous PGE2 markedly reduced apoptosis in Sirt1-deficient renal medullary interstitial cells following oxidative stress. Taken together, these results identify Sirt1 as an important protective factor for mouse renal medullary interstitial cells following oxidative stress and suggest that the protective function of Sirt1 is partly attributable to its regulation of COX2 induction. We therefore suggest that Sirt1 provides a potential therapeutic target to minimize renal medullary cell damage following oxidative stress.
Collapse
Affiliation(s)
- Wenjuan He
- Nephrology Division, Vanderbilt University Medical Center School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu Y, Stubbe J, Ibrahim S, Song WL, Smyth EM, Symth EM, Funk CD, FitzGerald GA. Cyclooxygenase-2-dependent prostacyclin formation and blood pressure homeostasis: targeted exchange of cyclooxygenase isoforms in mice. Circ Res 2009; 106:337-45. [PMID: 19940265 DOI: 10.1161/circresaha.109.204529] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Cyclooxygenase (COX)-derived prostanoids (PGs) are involved in blood pressure homeostasis. Both traditional nonsteroidal antiinflammatory drugs (NSAIDs) that inhibit COX-1 and COX-2 and NSAIDs designed to be selective for inhibition of COX-2 cause sodium retention and elevate blood pressure. OBJECTIVE To elucidate the role of COX-2 in blood pressure homeostasis using COX-1>COX-2 mice, in which the COX-1 expression is controlled by COX-2 regulatory elements. METHODS AND RESULTS COX-1>COX-2 mice developed systolic hypertension relative to wild types (WTs) on a high-salt diet (HSD); this was attenuated by a PGI(2) receptor agonist. HSD increased expression of COX-2 in WT mice and of COX-1 in COX-1>COX-2 mice in the inner renal medulla. The HSD augmented in all strains urinary prostanoid metabolite excretion, with the exception of the major PGI(2) metabolite that was suppressed on regular chow and unaltered by the HSD in both mutants. Furthermore, inner renal medullary expression of the receptor for PGI(2), but not for other prostanoids, was depressed by HSD in WT and even more so in both mutant strains. Increasing osmolarity augmented expression of COX-2 in WT renal medullary interstitial cells and again the increase in formation of PGI(2) observed in WTs was suppressed in cells derived from both mutants. Intramedullary infusion of the PGI(2) receptor agonist increased urine volume and sodium excretion in mice. CONCLUSIONS These studies suggest that dysregulated expression of the COX-2 dependent, PGI(2) biosynthesis/response pathway in the renal inner renal medulla undermines the homeostatic response to a HSD. Inhibition of this pathway may contribute directly to the hypertensive response to NSAIDs.
Collapse
Affiliation(s)
- Ying Yu
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, 153 Johnson Pavilion, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Favale N, Casali C, Lepera L, Pescio L, Fernández-Tome M. Hypertonic induction of COX2 expression requires TonEBP/NFAT5 in renal epithelial cells. Biochem Biophys Res Commun 2009; 381:301-5. [DOI: 10.1016/j.bbrc.2008.12.189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
22
|
Abstract
Cyclooxygenase-derived prostanoids exert complex and diverse functions within the kidney. The biological effect of each prostanoid is controlled at multiple levels, including (a) enzymatic reactions catalyzed sequentially by cyclooxygenase and prostanoid synthase for the synthesis of bioactive prostanoid and (b) the interaction with its receptors that mediate its functions. Cyclooxygenase-derived prostanoids act in an autocrine or a paracrine fashion and can serve as physiological buffers, protecting the kidney from excessive functional changes during physiological stress. Through these actions, prostanoids play important roles in maintaining renal function, body fluid homeostasis, and blood pressure. Renal cortical COX2-derived prostanoids, particularly PGI2 and PGE2, play critical roles in maintaining blood pressure and renal function in volume-contracted states. Renal medullary COX2-derived prostanoids appear to have an antihypertensive effect in individuals challenged with a high-salt diet. Loss of EP2 or IP receptor is associated with salt-sensitive hypertension. COX2 also plays a role in maintaining renal medullary interstitial cell viability in the hypertonic environment of the medulla. Cyclooxygenase-derived prostanoids also are involved in certain pathological processes. The cortical COX2-derived PGI2 participates in the pathogenesis of renal vascular hypertension through stimulating renal renin synthesis and release. COX-derived prostanoids also appear to be involved in the pathogenesis of diabetic nephropathy. COXs, prostanoid synthases, and prostanoid receptors should provide fruitful targets for intervention in the pharmacological treatment of renal disease.
Collapse
Affiliation(s)
- Chuan-Ming Hao
- Division of Nephrology, Department of Medicine, Vanderbilt University, and Veterans Affair Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
23
|
Kim GH, Choi NW, Jung JY, Song JH, Lee CH, Kang CM, Knepper MA. Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2. Am J Physiol Renal Physiol 2008; 294:F702-9. [PMID: 18216147 DOI: 10.1152/ajprenal.00366.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin E(2) may antagonize vasopressin-stimulated salt absorption in the thick ascending limb and water absorption in the collecting duct. Blockade of prostaglandin E(2) synthesis by nonsteroidal anti-inflammatory drugs (NSAIDs) enhances urinary concentration, and these agents have antidiuretic effects in patients with nephrogenic diabetes insipidus (NDI) of different etiologies. Because renal prostaglandins are derived largely from cyclooxygenase-2 (COX-2), we hypothesized that treatment of NDI with a COX-2 inhibitor may relieve polyuria through increased expression of Na-K-2Cl cotransporter type 2 (NKCC2) in the thick ascending limb and aquaporin-2 (AQP2) in the collecting duct. To test this hypothesis, semiquantitative immunoblotting and immunohistochemistry were carried out from the kidneys of lithium-induced NDI rats with and without COX-2 inhibition. After male Sprague-Dawley rats were fed an LiCl-containing rat diet for 3 wk, the rats were randomly divided into control and experimental groups. The COX-2 inhibitor DFU (40 mg.kg(-1).day(-1)) was orally administered to the experimental rats for an additional week. Treatment with the COX-2 inhibitor significantly relieved polyuria and raised urine osmolality. Semiquantitative immunoblotting using whole-kidney homogenates revealed that COX-2 inhibition caused significant increases in the abundance of AQP2 and NKCC2. Immunohistochemistry for AQP2 and NKCC2 confirmed the effects of COX-2 inhibition in lithium-induced NDI rats. The upregulation of AQP2 and NKCC2 in response to the COX-2 inhibitor may underlie the therapeutic mechanisms by which NSAIDs enhance antidiuresis in patients with NDI.
Collapse
Affiliation(s)
- Gheun-Ho Kim
- Dept. of Internal Medicine, Hanyang Univ. College of Medicine, 17 Haengdang-dong Seongdong-gu, Seoul 133-792, South Korea.
| | | | | | | | | | | | | |
Collapse
|
24
|
Hyndman KA, Evans DH. Endothelin and endothelin converting enzyme-1 in the fish gill:evolutionary and physiological perspectives. J Exp Biol 2007; 210:4286-97. [DOI: 10.1242/jeb.009969] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY
In euryhaline fishes like the killifish (Fundulus heteroclitus)that experience daily fluctuations in environmental salinity, endothelin 1(EDN1) may be an important regulator molecule necessary to maintain ion homeostasis. The purpose of this study was to determine if EDN1 and the endothelin converting enzyme (ECE1; the enzyme necessary for cleaving the precursor proendothelin-1 to EDN1) are present in the killifish, to determine if environmental salinity regulates their expression, and to examine the phylogenetic relationships among the EDNs and among the ECEs. We sequenced killifish gill cDNA for two EDN1 orthologues, EDN1A and EDN1B, and also sequenced a portion of ECE1 cDNA. EDN1A and ECE1 mRNA are expressed ubiquitously in the killifish while EDN1B mRNA has little expression in the killifish opercular epithelium or gill. Using in situ hybridization and immunohistochemistry, EDN1 was localized to large round cells adjacent to the mitochondrion-rich cells of the killifish gill, and to lamellar pillar cells. In the gill, EDN1A and EDN1B mRNA levels did not differ with acute (<24 h) or chronic (30 days) acclimation to seawater (SW); however, EDN1B levels increased threefold post SW to freshwater (FW) transfer,and ECE1 mRNA levels significantly increased twofold over this period. ECE1 mRNA levels also increased sixfold over 24 h post FW to SW transfer. Chronic exposure to SW or FW had little effect on ECE1mRNA levels. Based upon our cellular localization studies, we modeled EDN1 expression in the fish gill and conclude that it is positioned to act as a paracrine regulator of gill functions in euryhaline fishes. It also may function as an autocrine on pillar cells, where it is hypothesized to regulate local blood flow in the lamellae. From our phylogenetic analyses, ECE is predicted to have an ancient origin and may be a generalist endoprotease in non-vertebrate organisms, while EDNs are vertebrate-specific peptides and may be key characters in vertebrate evolution.
Collapse
Affiliation(s)
- Kelly A. Hyndman
- Department of Zoology, University of Florida, 221 Bartram Hall,Gainesville, FL 32608, USA and Mount Desert Island Biological Laboratory,Salisbury Cove, ME 04672, USA
| | - David H. Evans
- Department of Zoology, University of Florida, 221 Bartram Hall,Gainesville, FL 32608, USA and Mount Desert Island Biological Laboratory,Salisbury Cove, ME 04672, USA
| |
Collapse
|
25
|
Choe KP, Havird J, Rose R, Hyndman K, Piermarini P, Evans DH. COX2 in a euryhaline teleost, Fundulus heteroclitus: primary sequence, distribution, localization, and potential function in gills during salinity acclimation. J Exp Biol 2006; 209:1696-708. [PMID: 16621950 DOI: 10.1242/jeb.02198] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In the kidneys of mammals, cyclooxygenase type 2 (COX2) is expressed in medullary interstitial cells, the macula densa and epithelial cells of the cortical thick ascending limb where it generates prostaglandins that regulate hormone secretion, inhibit ion transport, and support cell survival during salt loading and dehydration. In teleosts, the gills are in direct contact with an aquatic environment and are the dominant site of osmoregulation. During transfers between salinities, specialized cells in the gills (chloride cells) rapidly regulate NaCl secretion for systemic osmoregulation while they simultaneously are exposed to acute osmotic shock. This study was conducted to determine if COX2 is expressed in the gills, and if so, to evaluate its function in cellular and systemic osmoregulation. Degenerate primers, reverse transcription–PCR and rapid amplification of cDNA ends were used to deduce the complete cDNA sequence of a putative COX2 enzyme from the gills of the euryhaline killifish (Fundulus heteroclitus). The 2738 base pair cDNA includes a coding region for a 610 amino acid protein that is over 70%identical to mammalian COX2. A purified antibody generated against a conserved region of mouse COX2 labeled chloride cells, suggesting that the enzyme may control NaCl secretion as an autocrine agent. Real-time PCR was then used to demonstrate that mRNA expression of the COX2 homologue was threefold greater in gills from chronic seawater killifish than in gills from chronic freshwater killifish. Expression of Na+/K+/2Cl–cotransporter and the cystic fibrosis transmembrane conductance regulator were also greater in seawater, suggesting that chronic COX2 expression in the gills is regulated in parallel to the key ion transporters that mediate NaCl secretion. Real-time PCR was also used to demonstrate that acute transfer from seawater to freshwater and from freshwater to seawater led to rapid, transient inductions of COX2 expression. Together with previous physiological evidence,the present molecular and immunological data suggest that constitutive branchial COX2 expression is enhanced in seawater, where prostaglandins can regulate NaCl secretion in chloride cells. Our data also suggest that branchial COX2 expression may play a role in cell survival during acute osmotic shock.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Zoology, University of Florida, Gainesville, 32611, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Pucci ML, Endo S, Nomura T, Lu R, Khine C, Chan BS, Bao Y, Schuster VL. Coordinate control of prostaglandin E2 synthesis and uptake by hyperosmolarity in renal medullary interstitial cells. Am J Physiol Renal Physiol 2005; 290:F641-9. [PMID: 16263809 DOI: 10.1152/ajprenal.00426.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During water deprivation, prostaglandin E(2) (PGE(2)), formed by renal medullary interstitial cells (RMICs), feedback inhibits the actions of antidiuretic hormone. Interstitial PGE(2) concentrations represent the net of both PGE(2) synthesis by cyclooxygenase (COX) and PGE(2) uptake by carriers such as PGT. We used cultured RMICs to examine the effects of hyperosmolarity on both PG synthesis and PG uptake in the same RMIC. RMICs expressed endogenous PGT as assessed by mRNA and immunoblotting. RMICs rapidly took up [(3)H]PGE(2) to a level 5- to 10-fold above background and with a characteristic time-dependent "overshoot." Inhibitory constants (K(i)) for various PGs and PGT inhibitors were similar between RMICs and the cloned rat PGT. Increasing extracellular hyperosmolarity to the range of 335-485 mosM increased the net release of PGE(2) by RMICs, an effect that was concentration dependent, maximal by 24 h, reversible, and associated with increased expression of COX-2. Over the same time period, there was decreased cell-surface activity of PGT due to internalization of the transporter. With continued exposure to hyperosmolarity over 7-10 days, PGE(2) release remained elevated, COX-2 returned to baseline, and PGT-mediated uptake became markedly reduced. Our findings suggest that hyperosmolarity induces coordinated changes in COX-2-mediated PGE(2) synthesis and PGT-mediated PGE(2) uptake in RMICs.
Collapse
Affiliation(s)
- Michael L Pucci
- Department of Medicine, Albert Einstein College of Medicine, Belfer 1008, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Knight S, Johns EJ. Effect of COX inhibitors and NO on renal hemodynamics following ischemia-reperfusion injury in normotensive and hypertensive rats. Am J Physiol Renal Physiol 2005; 289:F1072-7. [PMID: 15956774 DOI: 10.1152/ajprenal.00430.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The processes involved in the renal damage resulting from ischemia-reperfusion injury are poorly understood. This study examined the contribution of prostaglandins and nitric oxide (NO) in the vascular responses to ischemia-reperfusion injury in the kidneys of normotensive and hypertensive rats. Groups of Wistar and stroke-prone spontaneously hypertensive rats (SHRSP) were dosed with polyethylene glycol vehicle, aspirin (53.5 mg·kg−1·day−1), NO-aspirin (100 mg·kg−1·day−1), or celecoxib (10 mg·kg−1·day−1) for 7 days. On day 7, rats were anesthetized with chloralose/urethane and the left kidney was exposed to a 30-min period of ischemia followed by 90-min reperfusion. Renal cortical and medullary perfusions were monitored throughout using laser-Doppler flowmetry. In the vehicle- and celecoxib-treated Wistar rats, cortical and medullary postischemic perfusion was reduced to 66 and 62% and 53 and 62%, respectively (all P < 0.05), of baseline. The ischemia-induced reductions in cortical and medullary flux were ameliorated in the aspirin and NO-aspirin groups where flux fell to 96 and 78% and 105 and 83%, respectively ( P < 0.05). There was a fall in cortical and medullary flux in the postischemic period in the vehicle-treated SHRSP to 82 and 77% ( P < 0.05). These findings show that nonselective cyclooxygenase (COX) inhibition, and to an even greater extent NO donation, provided protection to the renal vasculature from ischemic injury in the Wistar rat but not in the SHRSP. This would suggest that prostaglandins are less important in the development of renal ischemia-reperfusion injury during hypertension and both COX isoforms must be inhibited to offset the decrease in renal hemodynamics.
Collapse
Affiliation(s)
- Sarah Knight
- Dept. of Physiology, University College Cork, Ireland
| | | |
Collapse
|
28
|
Warford-Woolgar L, Peng CYC, Shuhyta J, Wakefield A, Sankaran D, Ogborn M, Aukema HM. Selectivity of cyclooxygenase isoform activity and prostanoid production in normal and diseased Han:SPRD-cy rat kidneys. Am J Physiol Renal Physiol 2005; 290:F897-904. [PMID: 16234308 DOI: 10.1152/ajprenal.00332.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal prostanoids are important regulators of normal renal function and maintenance of renal homeostasis. In diseased kidneys, renal cylooxygenase (COX) expression and prostanoid formation are altered. With the use of the Han:Sprague-Dawley-cy rat, the aim of this study was to determine the relative contribution of renal COX isoforms (protein, gene expression, and activity) on renal prostanoid production [thromboxane B(2) (TXB(2), stable metabolite of TXA(2)), prostaglandin E(2) (PGE(2)), and 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha), stable metabolite of PGI(2))] in normal and diseased kidneys. In diseased kidneys, COX-1-immunoreactive protein and mRNA levels were higher and COX-2 levels were lower compared with normal kidneys. In contrast, COX activities were higher in diseased compared with normal kidneys for both COX-1 [0.05 +/- 0.02 vs. 0.45 +/- 0.11 ng prostanoids x min(-1) x mg protein(-1) (P < 0.001)] and COX-2 [0.64 +/- 0.10 vs. 2.32 +/- 0.22 ng prostanoids x min(-1).mg protein(-1) (P < 0.001)]. As the relative difference in activity was greater for COX-1, the ratio of COX-1/COX-2 was higher in diseased compared with normal kidneys, although the predominant activity was still due to the COX-2 isoform in both genotypes. Endogenous and steady-state in vitro levels of prostanoids were approximately 2-10 times higher in diseased compared with normal kidneys. The differences between normal and diseased kidney prostanoids were in the order of TXB(2) > 6-keto-PGF(1alpha) > PGE(2), as determined by higher renal prostanoid levels and COX activity ratios of TXB(2)/6-keto-PGF(1alpha), TXB(2)/PGE(2), and 6-keto-PGF(1alpha)/PGE(2). This specificity in both the COX isoform type and for the prostanoids produced has implications for normal and diseased kidneys in treatments involving selective inhibition of COX isoforms.
Collapse
Affiliation(s)
- Lori Warford-Woolgar
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Kotnik P, Nielsen J, Kwon TH, Krzisnik C, Frøkiaer J, Nielsen S. Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus. Am J Physiol Renal Physiol 2005; 288:F1053-68. [PMID: 15644490 DOI: 10.1152/ajprenal.00114.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandins have an important role in renal salt and water reabsorption. PGE2is the main kidney prostaglandin and is thought to be mainly produced in the kidney inner medulla (IM). There are indications that PGE2synthesis in nephrogenic (NDI) and central (CDI) diabetes insipidus is altered. We hypothesize that the expression of the major PGE2synthesis enzymes cyclooxygenases 1 and 2 (COX-1, COX-2) and membrane-associated PGE2synthase (mPGES) is altered in the kidneys of rats with NDI and CDI. Wistar rats treated with lithium for 4 wk were used as the NDI model. One-half of the NDI model rats were additionally dehydrated for 48 h. Brattleboro (BB) rats that lack endogenous antidiuretic hormone were used as the CDI model. Expression and localization of COX-1, COX-2, and mPGES in IM, inner stripe of outer medulla (ISOM), and cortex were determined by immunoblotting and immunohistochemistry. In lithium-induced NDI, expression of COX-1, COX-2, and mPGES was markedly decreased in IM. In ISOM and cortex, COX-1 expression was marginally reduced and mPGES expression was unaltered. COX-2 expression was undetected in ISOM and marginally increased in cortex. Consistent with this, the density of COX-2-expressing cells in macula densa was significantly increased, indicating differential regulation of COX-2 in IM and cortex. Dehydration of NDI rats resulted in a marked increase in COX-2 immunolabeling in IM interstitial cells, and there was no significant change in COX-1 and mPGES expression in any kidney zone. Treatment of DDAVP in BB rats for 6 days resulted in a markedly increased expression of COX-1, COX-2, and mPGES in IM. In the cortex, there were no changes in the expression of COX-1 and mPGES, whereas COX-2 expression was decreased. These results identify markedly reduced expression of COX-1, COX-2, and mPGES in IM in lithium-induced NDI. Furthermore, there were major changes in the expression of COX-1, COX-2, and mPGES in rats with CDI.
Collapse
Affiliation(s)
- Primoz Kotnik
- The Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
30
|
Rao R, Zhang MZ, Zhao M, Cai H, Harris RC, Breyer MD, Hao CM. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 2005; 288:F642-9. [PMID: 15585669 DOI: 10.1152/ajprenal.00287.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The use of LiCl in clinical psychiatry is routinely complicated by overt nephrogenic diabetes insipidus (NDI), the mechanism of which is incompletely understood. In vitro studies indicate that lithium can induce renal medullary interstitial cell cyclooxygenase 2 (COX2) protein expression via inhibition of glycogen synthase kinase-3β (GSK-3β). Both COX1 and COX2 are expressed in the kidney. Renal prostaglandins have been suggested to play an important role in lithium-induced polyuria. The present studies examined whether induction of the COX2 isoform contributes to LiCl-induced polyuria. Four days after initiation of lithium treatment in C57 BL/6J mice, urine volume increased in LiCl-treated mice by fourfold compared with controls ( P < 0.0001) and was accompanied by decreased urine osmolality. This was temporally associated with increased renal COX2 protein expression and increased urinary PGE2 excretion, whereas COX1 levels remained unchanged. COX2 inhibition significantly blunted lithium-induced polyuria ( P < 0.0001) and reduced urinary PGE2 levels. Lithium-associated polyuria was also seen in COX1−/− mice and was associated with increased urinary PGE2. COX2 inhibition completely prevented polyuria and PGE2 excretion in COX1−/− mice, suggesting that COX2, but not COX1, plays a critical role in lithium-induced polyuria. Lithium also induced renal medullary COX2 protein expression in congenitally polyuric antidiuretic hormone (AHD)-deficient rats, demonstrating that lithium-induced COX2 protein expression is not secondary to altered ADH levels or polyuria. Lithium also decreased renal medullary GSK-3β activity, and this was temporally related to increased COX2 expression in the kidney from lithium-treated mice, consistent with a tonic in vivo suppression of COX2 expression by GSK-3 activity. In conclusion, these findings temporally link decreased GSK-3 activity to enhanced renal COX2 expression and COX2-derived urine PGE2 excretion. Suppression of COX2-derived PGE2 blunts lithium-associated polyuria.
Collapse
Affiliation(s)
- Reena Rao
- Div. of Nephrology, Vanderbilt Univ. Medical Ctr., S3223, MCN, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yao B, Harris RC, Zhang MZ. Interactions between 11beta-hydroxysteroid dehydrogenase and COX-2 in kidney. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1767-73. [PMID: 15718388 DOI: 10.1152/ajpregu.00786.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The syndrome of apparent mineralocorticoid excess (SAME) is an autosomal recessive form of salt-sensitive hypertension caused by deficiency of the kidney type 2 11beta-hydroxysteroid dehydrogenase (11betaHSD2). In this disorder, cortisol is not inactivated by 11betaHSD2, occupies mineralocorticoid receptors (MRs), and causes excessive sodium retention and hypertension. In renal medulla, prostaglandins derived from cyclooxygenase-2 (COX-2) stimulate sodium and water excretion, and renal medullary COX-2 expression increases after mineralocorticoid administration. We investigated whether medullary COX-2 also increases in rats with 11betaHSD2 inhibition and examined its possible role in the development of hypertension. 11betaHSD2 inhibition increased medullary and decreased cortical COX-2 expression in adult rats and induced high blood pressure in high-salt-treated rats. COX-2 inhibition had no effect on blood pressure in control animals but further increased blood pressure in high-salt-treated rats with 11betaHSD2 inhibition. COX-1 inhibition had no effect on blood pressure in either control or experimental animals. 11betaHSD2 inhibition also led to medullary COX-2 increase and cortical COX-2 decrease in weaning rats, primarily through activation of MRs. In the suckling rats, medullary COX-2 expression was very low, consistent with a urinary concentrating defect. 11betaHSD2 inhibition had no effect on either cortical or medullary COX-2 expression in the suckling rats, consistent with low levels of circulating corticosterone in these animals. These data indicate that COX-2 plays a modulating role in the development of hypertension due to 11betaHSD2 deficiency and that 11betaHSD2 regulates renal COX-2 expression by preventing glucocorticoid access to MRs during postnatal development.
Collapse
Affiliation(s)
- Bing Yao
- George O'Brien Center for Kidney and Urologic Diseases and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-4794, USA
| | | | | |
Collapse
|
32
|
Câmpean V, Theilig F, Paliege A, Breyer M, Bachmann S. Key enzymes for renal prostaglandin synthesis: site-specific expression in rodent kidney (rat, mouse). Am J Physiol Renal Physiol 2003; 285:F19-32. [PMID: 12657565 DOI: 10.1152/ajprenal.00443.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostanoids derived from endogenous cylooxygenase (COX)-mediated arachidonic acid metabolism play important roles in the maintenance of renal blood flow and salt and water homeostasis. The relative importance of COX-1 and COX-2 isoforms is under active investigation. We have performed a comprehensive histochemical analysis by comparing rat and mouse kidneys for cellular and subcellular localization of COX-1 and -2 and microsomal-type PGE synthase (PGES), the rate-limiting biosynthetic enzyme in PGE2 synthesis. A choice of different sera was compared, and the results were confirmed by antigen-retrieval techniques, in situ hybridization, RT-PCR, and the use of COX knockout mice. In the glomerulus, significant COX-1 expression was detected in a subset of mesangial cells. Along the renal tubule, the known COX-2 expression in cTAL and macula densa was paralleled by PGES staining. In the terminal distal convoluted tubule, connecting tubule, and cortical and medullary collecting ducts, a significant COX-1 signal was colocalized with PGES; COX-2 was not found in these sites. Intercalated cells were generally negative. Cortical fibroblasts were COX-1 and PGES positive in mice, whereas in rats only PGES could be reliably detected. Lipid-laden interstitial cells of the inner medulla were COX-1, -2, and PGES positive. Vascular smooth muscle cells were not stained. The present data support prominent functions of renal prostanoids, predominantly PGE2, by defining expression sites of the key enzymes for their biosynthesis in the rat and mouse. Results define the renal cell types involved in prostaglandin autacoid functions within spatially restricted sites such as the juxtaglomerular apparatus, mesangium, distal convolutions and collecting duct, and in compartments of the renal interstitium.
Collapse
Affiliation(s)
- Valentina Câmpean
- Anatomisches Institut, Charité, Humboldt Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|
33
|
Bolli R, Shinmura K, Tang XL, Kodani E, Xuan YT, Guo Y, Dawn B. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res 2002; 55:506-19. [PMID: 12160947 PMCID: PMC3242376 DOI: 10.1016/s0008-6363(02)00414-5] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 10 years after its discovery, the function of cyclooxygenase-2 (COX-2) in the cardiovascular system remains largely an enigma. Many scholars have assumed that the allegedly detrimental effects of COX-2 in other systems (e.g. proinflammatory actions and tumorigenesis) signify a detrimental role of this protein in cardiovascular homeostasis as well. This view, however, is ill-founded. Recent studies have demonstrated that ischemic preconditioning (PC) upregulates the expression and activity of COX-2 in the heart, and that this increase in COX-2 activity mediates the protective effects of the late phase of PC against both myocardial stunning and myocardial infarction. An obligatory role of COX-2 has been observed in the setting of late PC induced not only by ischemia but also by delta-opioid agonists and physical exercise, supporting the view that the recruitment of this protein is a central mechanism whereby the heart protects itself from ischemia. The beneficial actions of COX-2 appear to be mediated by the synthesis of PGE(2) and/or PGI(2). Since inhibition of iNOS in preconditioned myocardium blocks COX-2 activity whereas inhibition of COX-2 does not affect iNOS activity, COX-2 appears to be downstream of iNOS in the protective pathway of late PC. The results of these studies challenge the widely accepted paradigm that views COX-2 activity as detrimental. The discovery that COX-2 plays an indispensable role in the anti-stunning and anti-infarct effects of late PC demonstrates that the recruitment of this protein is a fundamental mechanism whereby the heart adapts to stress, thereby revealing a novel, hitherto unappreciated cardioprotective function of COX-2. From a practical standpoint, the recognition that COX-2 is an obligatory co-mediator (together with iNOS) of the protection afforded by late PC has implications for the clinical use of COX-2 selective inhibitors as well as nonselective COX inhibitors. For example, the possibility that inhibition of COX-2 activity may augment myocardial cell death by obliterating the innate defensive response of the heart against ischemia/reperfusion injury needs to be considered and is the object of much current debate. Furthermore, the concept that the COX-2 byproducts, PGE(2) and/or PGI(2), play a necessary role in late PC provides a basis for novel therapeutic strategies designed to enhance the biosynthesis of these cytoprotective prostanoids in the ischemic myocardium. From a conceptual standpoint, the COX-2 hypothesis of late PC expands our understanding of the function of this enzyme in the cardiovascular system and impels a critical reassessment of current thinking regarding the biologic significance of COX-2.
Collapse
Affiliation(s)
- Roberto Bolli
- Division of Cardiology, University of Louisville, 550 South Jackson St., KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Qi Z, Hao CM, Langenbach RI, Breyer RM, Redha R, Morrow JD, Breyer MD. Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. J Clin Invest 2002; 110:61-9. [PMID: 12093889 PMCID: PMC151026 DOI: 10.1172/jci14752] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Therapeutic use of cyclooxygenase-inhibiting (COX-inhibiting) nonsteroidal antiinflammatory drugs (NSAIDs) is often complicated by renal side effects including hypertension and edema. The present studies were undertaken to elucidate the roles of COX1 and COX2 in regulating blood pressure and renal function. COX2 inhibitors or gene knockout dramatically augment the pressor effect of angiotensin II (Ang II). Unexpectedly, after a brief increase, the pressor effect of Ang II was abolished by COX1 deficiency (either inhibitor or knockout). Ang II infusion also reduced medullary blood flow in COX2-deficient but not in control or COX1-deficient animals, suggesting synthesis of COX2-dependent vasodilators in the renal medulla. Consistent with this, Ang II failed to stimulate renal medullary prostaglandin E(2) and prostaglandin I(2) production in COX2-deficient animals. Ang II infusion normally promotes natriuresis and diuresis, but COX2 deficiency blocked this effect. Thus, COX1 and COX2 exert opposite effects on systemic blood pressure and renal function. COX2 inhibitors reduce renal medullary blood flow, decrease urine flow, and enhance the pressor effect of Ang II. In contrast, the pressor effect of Ang II is blunted by COX1 inhibition. These results suggest that, rather than having similar cardiovascular effects, the activities of COX1 and COX2 are functionally antagonistic.
Collapse
Affiliation(s)
- Zhonghua Qi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ostrom RS, Gregorian C, Drenan RM, Gabot K, Rana BK, Insel PA. Key role for constitutive cyclooxygenase-2 of MDCK cells in basal signaling and response to released ATP. Am J Physiol Cell Physiol 2001; 281:C524-31. [PMID: 11443051 DOI: 10.1152/ajpcell.2001.281.2.c524] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Madin-Darby canine kidney (MDCK) cells release ATP upon mechanical or biochemical activation, initiating P2Y receptor signaling that regulates basal levels of multiple second messengers, including cAMP (J Biol Chem 275: 11735--11739, 2000). Data shown here document inhibition of cAMP formation by Gd(3+) and niflumic acid, channel inhibitors that block ATP release. cAMP production is stimulated via Ca(2+)-dependent activation of cytosolic phospholipase A(2), release of arachidonic acid (AA), and cyclooxygenase (COX)-dependent production of prostaglandins, which activate prostanoid receptors coupled to G(s) and adenylyl cyclase. In the current investigation, we assessed the expression and functional role of the two known isoforms of COX, COX-1 and COX-2. Treatment of cells with either a COX-1-selective inhibitor, SC-560, or COX-2-selective inhibitors, SC-58125 or NS-398, inhibited basal and UTP-stimulated cAMP levels. COX inhibitors also decreased forskolin-stimulated cAMP formation, implying this response is in part attributable to an action of AA metabolites. These findings imply an important role for the inducible form of COX, COX-2, under basal conditions. Indeed, COX-2 expression was readily detectable by immunoblot, and treatments that induce or reduce COX-2 expression in other cells (interleukin-1beta, tumor necrosis factor-alpha, phorbol ester, or dexamethasone) had minimal or no effect on the levels of COX-2 immunoreactivity. RT-PCR using isoform-specific primers detected COX-2 mRNA. We conclude that COX-2 is constitutively expressed in MDCK-D(1) cells and participates in basal and P2Y(2)-mediated signaling, implying a key role for COX-2 in regulation of epithelial cell function.
Collapse
Affiliation(s)
- R S Ostrom
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
In adult mammalian kidney, cyclooxygenase-2 (COX-2) expression is found in a restricted subpopulation of cells. The two sites of renal COX-2 localization detected in all species to date are the macula densa (MD) and associated cortical thick ascending limb (cTALH) and medullary interstitial cells (MICs). Physiological regulation of COX-2 in these cellular compartments suggests functional roles for eicosanoid products of the enzyme. COX-2 expression increases in high-renin states (salt restriction, angiotensin-converting enzyme inhibition, renovascular hypertension), and selective COX-2 inhibitors significantly decrease plasma renin levels, renal renin activity, and mRNA expression. There is evidence for negative regulation of MD/cTALH COX-2 by angiotensin II and by glucocorticoids and mineralocorticoids. Conversely, nitric oxide generated by neuronal nitric oxide synthase is a positive modulator of COX-2 expression. Decreased extracellular chloride increases COX-2 expression in cultured cTALH, an effect mediated by increased p38 mitogen-activated protein kinase activity, and, in vivo, a sodium-deficient diet increases expression of activated p38 in MD/cTALH. In contrast to COX-2 in MD/cTALH, COX-2 expression increases in MICs in response to a high-salt diet as well as water deprivation. Studies in cultured MICs have confirmed that expression is increased in response to hypertonicity and is mediated, at least in part, by nuclear factor-kappaB activation. COX-2 inhibition leads to apoptosis of MICs in response to hypertonicity in vitro and after water deprivation in vivo. In addition, COX-2 metabolites appear to be important mediators of medullary blood flow and renal salt handling. Therefore, there is increasing evidence that COX-2 is an important physiological mediator of kidney function.
Collapse
Affiliation(s)
- R C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, and Veterans Affairs Medical Center, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
37
|
Chang YW, Jakobi R, McGinty A, Foschi M, Dunn MJ, Sorokin A. Cyclooxygenase 2 promotes cell survival by stimulation of dynein light chain expression and inhibition of neuronal nitric oxide synthase activity. Mol Cell Biol 2000; 20:8571-9. [PMID: 11046152 PMCID: PMC102162 DOI: 10.1128/mcb.20.22.8571-8579.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) inhibits nerve growth factor (NGF) withdrawal apoptosis in differentiated PC12 cells. The inhibition of apoptosis by COX-2 was concomitant with prevention of caspase 3 activation. To understand how COX-2 prevents apoptosis, we used cDNA expression arrays to determine whether COX-2 regulates differential expression of apoptosis-related genes. The expression of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase [PIN]) was significantly stimulated in PC12 cells overexpressing COX-2. The COX-2-dependent stimulation of DLC expression was, at least in part, mediated by prostaglandin E(2). Overexpression of DLC also inhibited NGF withdrawal apoptosis in differentiated PC12 cells. Stimulation of DLC expression resulted in an increased association of DLC/PIN with neuronal nitric oxide synthase (nNOS), thereby reducing nNOS activity. Furthermore, nNOS expression and activity were significantly increased in differentiated PC12 cells after NGF withdrawal. This increased nNOS activity as well as increased nNOS dimer after NGF withdrawal were inhibited by COX-2 or DLC/PIN overexpression. An nNOS inhibitor or a membrane-permeable superoxide dismutase (SOD) mimetic protected differentiated PC12 cells from NGF withdrawal apoptosis. In contrast, NO donors induced apoptosis in differentiated PC12 cells and potentiated apoptosis induced by NGF withdrawal. The protective effects of COX-2 on apoptosis induced by NGF withdrawal were also overcome by NO donors. These findings suggest that COX-2 promotes cell survival by a mechanism linking increased expression of prosurvival genes coupled to inhibition of NO- and superoxide-mediated apoptosis.
Collapse
Affiliation(s)
- Y W Chang
- Department of Medicine and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
38
|
Hao CM, Yull F, Blackwell T, Kömhoff M, Davis LS, Breyer MD. Dehydration activates an NF-kappaB-driven, COX2-dependent survival mechanism in renal medullary interstitial cells. J Clin Invest 2000; 106:973-82. [PMID: 11032857 PMCID: PMC314340 DOI: 10.1172/jci9956] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Renal prostaglandin (PG) synthesis is mediated by cyclooxygenase-1 and -2 (COX1 and COX2). After dehydration, the maintenance of normal renal function becomes particularly dependent upon PG synthesis. The present studies were designed to examine the potential link between medullary COX1 and COX2 expression in hypertonic stress. In response to water deprivation, COX2, but not COX1, mRNA levels increase significantly in the renal medulla, specifically in renal medullary interstitial cells (RMICs). Water deprivation also increases renal NF-kappaB-driven reporter expression in transgenic mice. NF-kappaB activity and COX2 expression could be induced in cultured RMICs with hypertonic sodium chloride and mannitol, but not urea. RMIC COX2 expression was also induced by driving NF-kappaB activation with a constitutively active IkappaB kinase alpha (IKKalpha). Conversely, introduction of a dominant-negative IkappaB mutant reduced COX2 expression after hypertonicity or IKKalpha induction. RMICs failed to survive hypertonicity when COX2 was downregulated using a COX2-selective antisense or blocked with the selective nonsteroidal anti-inflammatory drug (NSAID) SC58236, reagents that did not affect cell survival in isotonic media. In rabbits treated with SC58236, water deprivation induced apoptosis of medullary interstitial cells in the renal papilla. These results demonstrate that water deprivation and hypertonicity activate NF-kappaB. The consequent increase in COX2 expression favors RMIC survival in hypertonic conditions. Inhibition of RMIC COX2 could contribute to NSAID-induced papillary injury.
Collapse
Affiliation(s)
- C M Hao
- Division of Nephrology, Department of Medicine, Vanderbilt George M. O'Brien Kidney and Urologic Diseases Center, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | | | | | | | | | | |
Collapse
|