1
|
Savić B, Murphy D, Japundžić-Žigon N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 2022; 13:858941. [PMID: 35370790 PMCID: PMC8966844 DOI: 10.3389/fphys.2022.858941] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
The paraventricular nucleus (PVN) is a highly organized structure of the hypothalamus that has a key role in regulating cardiovascular and osmotic homeostasis. Functionally, the PVN is divided into autonomic and neuroendocrine (neurosecretory) compartments, both equally important for maintaining blood pressure (BP) and body fluids in the physiological range. Neurosecretory magnocellular neurons (MCNs) of the PVN are the main source of the hormones vasopressin (VP), responsible for water conservation and hydromineral balance, and oxytocin (OT), involved in parturition and milk ejection during lactation. Further, neurosecretory parvocellular neurons (PCNs) take part in modulation of the hypothalamic–pituitary–adrenal axis and stress responses. Additionally, the PVN takes central place in autonomic adjustment of BP to environmental challenges and contributes to its variability (BPV), underpinning the PVN as an autonomic master controller of cardiovascular function. Autonomic PCNs of the PVN modulate sympathetic outflow toward heart, blood vessels and kidneys. These pre-autonomic neurons send projections to the vasomotor nucleus of rostral ventrolateral medulla and to intermediolateral column of the spinal cord, where postganglionic fibers toward target organs arise. Also, PVN PCNs synapse with NTS neurons which are the end-point of baroreceptor primary afferents, thus, enabling the PVN to modify the function of baroreflex. Neuroendocrine and autonomic parts of the PVN are segregated morphologically but they work in concert when the organism is exposed to environmental challenges via somatodendritically released VP and OT by MCNs. The purpose of this overview is to address both neuroendocrine and autonomic PVN roles in BP and BPV regulation.
Collapse
Affiliation(s)
- Bojana Savić
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Japundžić-Žigon
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nina Japundžić-Žigon,
| |
Collapse
|
2
|
Japundžić-Žigon N, Lozić M, Šarenac O, Murphy D. Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Curr Neuropharmacol 2020; 18:14-33. [PMID: 31544693 PMCID: PMC7327933 DOI: 10.2174/1570159x17666190717150501] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 07/06/2019] [Indexed: 01/19/2023] Open
Abstract
Since the discovery of vasopressin (VP) and oxytocin (OT) in 1953, considerable knowledge has been gathered about their roles in cardiovascular homeostasis. Unraveling VP vasoconstrictor properties and V1a receptors in blood vessels generated powerful hemostatic drugs and drugs effective in the treatment of certain forms of circulatory collapse (shock). Recognition of the key role of VP in water balance via renal V2 receptors gave birth to aquaretic drugs found to be useful in advanced stages of congestive heart failure. There are still unexplored actions of VP and OT on the cardiovascular system, both at the periphery and in the brain that may open new venues in treatment of cardiovascular diseases. After a brief overview on VP, OT and their peripheral action on the cardiovascular system, this review focuses on newly discovered hypothalamic mechanisms involved in neurogenic control of the circulation in stress and disease.
Collapse
Affiliation(s)
| | - Maja Lozić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Šarenac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Helle F, Dahl TD, Chatziantoniou C. A low-cost, scalable technique to study distal coronary arteriole function. Acta Physiol (Oxf) 2014; 211:260-7. [PMID: 24698112 DOI: 10.1111/apha.12293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Helle
- Renal Research Group; Department of Clinical Medicine; University of Bergen; Bergen Norway
| | - T. D. Dahl
- Renal Research Group; Department of Clinical Medicine; University of Bergen; Bergen Norway
- Department of Biomedicine; University of Bergen; Bergen Norway
| | | |
Collapse
|
4
|
Moss NG, Kopple TE, Arendshorst WJ. Renal vasoconstriction by vasopressin V1a receptors is modulated by nitric oxide, prostanoids, and superoxide but not the ADP ribosyl cyclase CD38. Am J Physiol Renal Physiol 2014; 306:F1143-54. [PMID: 24623148 DOI: 10.1152/ajprenal.00664.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal blood flow (RBF) responses to arginine vasopressin (AVP) were tested in anesthetized wild-type (WT) and CD38(-/-) mice that lack the major calcium-mobilizing second messenger cyclic ADP ribose. AVP (3-25 ng) injected intravenously produced dose-dependent decreases in RBF, reaching a maximum of 25 ± 2% below basal RBF in WT and 27 ± 2% in CD38(-/-) mice with 25 ng of AVP. Renal vascular resistance (RVR) increased 75 ± 6% and 78 ± 6% in WT and CD38(-/-) mice. Inhibition of nitric oxide (NO) synthase with nitro-L-arginine methyl ester (L-NAME) increased the maximum RVR response to AVP to 308 ± 76% in WT and 388 ± 81% in CD38(-/-) (P < 0.001 for both). Cyclooxygenase inhibition with indomethacin increased the maximum RVR response to 125 ± 15% in WT and 120 ± 14% in CD38(-/-) mice (P < 0.001, <0.05). Superoxide suppression with tempol inhibited the maximum RVR response to AVP by 38% in both strains (P < 0.005) but was ineffective when administered after L-NAME. The rate of RBF recovery (relaxation) after AVP was slowed by L-NAME and indomethacin (P < 0.001, <0.005) but was unchanged by tempol. All vascular responses to AVP were abolished by an AVP V1a receptor antagonist. A V2 receptor agonist or antagonist had no effect on AVP-induced renal vasoconstriction. Taken together, the results indicate that renal vasoconstriction by AVP in the mouse is strongly buffered by vasodilatory actions of NO and prostanoids. The vasoconstriction depends on V1a receptor activation without involvement of CD38 or concomitant vasodilatation by V2 receptors. The role of superoxide is to enhance the contractile response to AVP, most likely by reducing the availability of NO rather than directly stimulating intracellular contraction signaling pathways.
Collapse
Affiliation(s)
- Nicholas G Moss
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tayler E Kopple
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Japundžić-Žigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol 2013; 11:218-30. [PMID: 23997756 PMCID: PMC3637675 DOI: 10.2174/1570159x11311020008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/01/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022] Open
Abstract
Vasopressin (VP) and oxytocin (OT) are mainly synthesized in the magnocellular neurons of the paraventricular (PVN) and supraoptic nucleus (SON) of the hypothalamus. Axons from the magnocellular part of the PVN and SON project to neurohypophysis where VP and OT are released in blood to act like hormones. Axons from the parvocellular part of PVN project to extra-hypothalamic brain areas (median eminence, limbic system, brainstem and spinal cord) where VP and OT act like neurotransmitters/modulators. VP and OT act in complementary manner in cardiovascular control, both as hormones and neurotransmitters. While VP conserves water and increases circulating blood volume, OT eliminates sodium. Hyperactivity of VP neurons and quiescence of OT neurons in PVN underlie osmotic adjustment to pregnancy. In most vascular beds VP is a potent vasoconstrictor, more potent than OT, except in the umbilical artery at term. The vasoconstriction by VP and OT is mediated via V1aR. In some vascular beds, i.e. the lungs and the brain, VP and OT produce NO dependent vasodilatation. Peripherally, VP has been found to enhance the sensitivity of the baro-receptor while centrally, VP and OT increase sympathetic outflow, suppresse baro-receptor reflex and enhance respiration. Whilst VP is an important mediator of stress that triggers ACTH release, OT exhibits anti-stress properties. Moreover, VP has been found to contribute considerably to progression of hypertension and heart failure while OT has been found to decrease blood pressure and promote cardiac healing.
Collapse
Affiliation(s)
- Nina Japundžić-Žigon
- Professor of Basic and Clinical Pharmacology and Toxicology, University of Belgrade School of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Dr Subotica 1, Belgrade, Republic of Serbia
| |
Collapse
|
6
|
Helle F, Skogstrand T, Schwartz IF, Schwartz D, Iversen BM, Palm F, Hultström M. Nitric oxide in afferent arterioles after uninephrectomy depends on extracellular l-arginine. Am J Physiol Renal Physiol 2013; 304:F1088-98. [DOI: 10.1152/ajprenal.00665.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Uninephrectomy (UNX) causes hyperperfusion of the contralateral remaining kidney via increased nitric oxide (NO) synthesis. Although the exact mechanism remains largely unknown, we hypothesize that this would be localized to the afferent arteriole and that it depends on cellular uptake of l-arginine. The experiments were performed in rats 2 days (early) or 6 wk (late) after UNX and compared with controls (Sham) to study acute and chronic effects on NO metabolism. Renal blood flow was increased after UNX (21 ± 2 ml·min−1·kg−1 in sham, 30 ± 3 in early, and 26 ± 1 in late, P < 0.05). NO inhibition with Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) caused a greater increase in renal vascular resistance in early UNX compared with Sham and late UNX (138 ± 24 vs. 88 ± 10, and 84 ± 7%, P < 0.01). The lower limit of autoregulation was increased both in early and late UNX compared with Sham ( P < 0.05). l-NAME did not affect the ANG II-induced contraction of isolated afferent arterioles (AA) from Sham. AA from early UNX displayed a more pronounced contraction in response to l-NAME (−57 ± 7 vs. −16 ± 7%, P < 0.05) and in the absence of l-arginine (−41 ± 4%, P < 0.05) compared with both late UNX and Sham. mRNA expression of endothelial NO synthase was reduced, whereas protein expression was unchanged. Cationic amino acid transporter-1 and -2 mRNA was increased, while protein was unaffected in isolated preglomerular resistance vessels. In conclusion, NO-dependent hyperperfusion of the remaining kidney in early UNX is associated with increased NO release from the afferent arteriole, which is highly dependent on extracellular l-arginine availability.
Collapse
Affiliation(s)
- Frank Helle
- Renal Research Group, Institute of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Trude Skogstrand
- Renal Research Group, Institute of Medicine, University of Bergen, Bergen, Norway
| | - Idit F. Schwartz
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Doron Schwartz
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Bjarne M. Iversen
- Renal Research Group, Institute of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Fredrik Palm
- Division of Nephrology and Hypertension, Georgetown University, Washington, District of Columbia
- Department of Health and Medical Sciences, Linköping University, Linköping, Sweden; and
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- Renal Research Group, Institute of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Age-dependent regulation of renal vasopressin V1A and V2 receptors in rats with genetic hypertension: implications for the treatment of hypertension. ACTA ACUST UNITED AC 2013; 7:3-13. [DOI: 10.1016/j.jash.2012.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 11/21/2022]
|
8
|
Hultström M, Helle F, Iversen BM. AT1 receptor activation regulates the mRNA expression of CAT1, CAT2, arginase-1, and DDAH2 in preglomerular vessels from angiotensin II hypertensive rats. Am J Physiol Renal Physiol 2009; 297:F163-8. [DOI: 10.1152/ajprenal.00087.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previously, we found increased expression of l-arginine metabolizing enzymes in both kidneys from two-kidney, one-clip (2K1C) hypertensive rats (Helle F, Hultstrom M, Skogstrand T, Palm F, Iversen BM. Am J Physiol Renal Physiol 296: F78–F86, 2009). In the present study, we investigate whether AT1 receptor activation can induce the changes observed in 2K1C. Four groups of rats were infused with 80 ng/min ANG II or saline for 14 days and/or given 60 mg·kg−1·day−1 losartan. Gene expression was studied in isolated preglomerular vessels by RT-PCR. Dose-responses to ANG II were studied in isolated preglomerular vessels with and without acute NOS inhibition [10−4 mol/l NG-nitro-l-arginine methyl ester (l-NAME)]. Expressions of endothelial nitric oxide synthase (eNOS), caveolin-1, and arginase-2 were not changed by ANG II infusion. CAT1 (0.3 8 ± 0.07 to 0.73 ± 0.12, P < 0.05), CAT2 (1.14 ± 0.29 to 2.74 ± 0.48), DDAH2 (1.09 ± 0.27 to 2.3 ± 0.46), and arginase-1 (1.08 ± 0.17 to 1.82 ± 0.22) were increased in ANG II-infused rats. This was prevented by losartan treatment, which reduced the expression of eNOS (0.97 ± 0.26 to 0.37 ± 0.11 in controls; 0.8 ± 0.16 to 0.36 ± 0.1 in ANG II-infused rats) and caveolin-1 (2.49 ± 0.59 to 0.82 ± 0.24 in controls and 2.59 ± 0.61 to 1.1 ± 0.25 in ANG II-infused rats). ANG II (10−10 mol/l) caused vessels from ANG II-infused animals to contract to 53 ± 15% of baseline diameter and 90 ± 5% of baseline diameter in controls ( P < 0.05) and was further enhanced by l-NAME to 4 ± 4% of baseline diameter ( P < 0.05). In vivo losartan treatment reduced the reactivity of isolated vessels to 91 ± 2% of baseline in response to 10−7 mol/l ANG II compared with 82 ± 3% in controls ( P < 0.05) and prevented the increased responsiveness caused by ANG II infusion. In conclusion, CAT1, CAT2, DDAH2, and arginase-1 expression in renal resistance vessels is regulated through the AT1 receptor. This finding may be of direct importance for NOS and the regulation of preglomerular vascular function.
Collapse
|
9
|
Helle F, Hultström M, Skogstrand T, Palm F, Iversen BM. Angiotensin II-induced contraction is attenuated by nitric oxide in afferent arterioles from the nonclipped kidney in 2K1C. Am J Physiol Renal Physiol 2008; 296:F78-86. [PMID: 18945823 DOI: 10.1152/ajprenal.90518.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two-kidney, one-clip (2K1C) is a model of renovascular hypertension where we previously found an exaggerated intracellular calcium (Ca(i)(2+)) response to ANG II in isolated afferent arterioles (AAs) from the clipped kidney (Helle F, Vagnes OB, Iversen BM. Am J Physiol Renal Physiol 291: F140-F147, 2006). To test whether nitric oxide (NO) ameliorates the exaggerated ANG II response in 2K1C, we studied ANG II (10(-7) mol/l)-induced calcium signaling and contractility with or without the NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME). In AAs from the nonclipped kidney, l-NAME increased the ANG II-induced Ca(i)(2+) response from 0.28 +/- 0.05 to 0.55 +/- 0.09 (fura 2, 340 nm/380 nm ratio) and increased contraction from 80 +/- 6 to 60 +/- 6% of baseline (P < 0.05). In vessels from sham and clipped kidneys, l-NAME had no effect. In diaminofluorescein-FM diacetate-loaded AAs from the nonclipped kidney, ANG II increased NO-derived fluorescence to 145 +/- 34% of baseline (P < 0.05 vs. sham), but not in vessels from the sham or clipped kidney. Endothelial NOS (eNOS) mRNA and ser-1177 phosphorylation were unchanged in both kidneys from 2K1C, while eNOS protein was reduced in the clipped kidney compared with sham. Cationic amino acid transferase-1 and 2 mRNAs were increased in 2K1C, indicating increased availability of l-arginine for NO synthesis, but counteracted by decreased scavenging of the eNOS inhibitor asymmetric dimethylarginine by dimethylarginine dimethylaminohydrolase 2. In conclusion, the Ca(i)(2+) and contractile responses to ANG II are blunted by NO release in the nonclipped kidney. This may protect the nonclipped kidney from the hypertension and elevated ANG II levels in 2K1C.
Collapse
Affiliation(s)
- Frank Helle
- Renal Research Group, Institute of Medicine, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | |
Collapse
|
10
|
Vågnes ØB, Iversen BM, Arendshorst WJ. Short-term ANG II produces renal vasoconstriction independent of TP receptor activation and TxA2/isoprostane production. Am J Physiol Renal Physiol 2007; 293:F860-7. [PMID: 17567934 DOI: 10.1152/ajprenal.00510.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relative contributions of vasoconstrictor and of dilator systems are balanced in health. The balance is reset in disease, often favoring a predominant role of vasoconstrictors, perhaps due to positive interactions between constrictor systems. For example, in hypertension, chronic high levels of angiotensin II (ANG II) stimulate the production of thromboxane (TxA2/PGH2) and/or isoprostane that activate constrictor thromboxane prostanoid (TP) receptors in the vasculature. The present study evaluated a modest concentration of ANG II administered acutely into the renal artery on urinary excretion of TxB2 and isoprostane and possible renal TP receptor activation that might amplify ANG II-induced renal vasoconstriction. TP receptors were blocked with SQ29548 coinfused with ANG II. Results were compared with a time control group of continuous ANG II infusion (40 ng.min(-1).kg body wt(-1)) over 90 min. TP receptor antagonism during 30-60 min had no effect on the reduction in renal blood flow (RBF) produced by ANG II (15.8 +/- 2.8 vs. 13.2 +/- 4.9%) (P > 0.6). Likewise, there was no difference between groups during ANG II-induced renal vasoconstriction between 60-90 min in presence or absence of TP receptor antagonist (RBF -8.6 +/- 4.0 vs. -9.6 +/- 4.5%) (P > 0.8). Systemic arterial pressure was stable throughout, so RBF changes reflected localized changes in renal vascular resistance. Urinary excretion of TxB2 and isoprostane were nearly doubled by ANG II. The present data indicate that short-term intrarenal infusion of ANG II rapidly increases renal production of TxA2 but that the ANG II-induced renal vasoconstriction is independent of TP receptor activation during the initial 90 min of local challenge with ANG II.
Collapse
Affiliation(s)
- Øyvind B Vågnes
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
11
|
Vagnes OB, Hansen FH, Feng JJ, Iversen BM, Arendshorst WJ. Enhanced Ca2+ response to AVP in preglomerular vessels from rats with genetic hypertension during different hydration states. Am J Physiol Renal Physiol 2005; 288:F1249-56. [PMID: 15657301 DOI: 10.1152/ajprenal.00363.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exaggerated arginine vasopressin (AVP)-induced calcium signaling and renal vasoconstriction, characteristic in young spontaneously hypertensive rats (SHR) during euvolemia, are related to greater amounts of V1a receptor mRNA and V1a protein in preglomerular resistance arterioles. The present study determined whether V1a receptor density and calcium signal transduction in the renal vasculature of young SHR is regulated appropriately during physiological changes in hydration state. [3H]AVP ligand binding documented two- to threefold greater density of V1a receptors in euvolemic SHR vs. Wistar-Kyoto (WKY) rats. Parallel changes in V1a receptor density were observed in both strains during chronic water loading (plus approximately 50 fmol/mg) and during dehydration (minus approximately 50 fmol/mg). Affinity was unchanged. Real-time RT-PCR demonstrated that V1a mRNA in preglomerular arterioles was three times greater in euvolemic SHR. Dehydration decreased expression approximately 50% in renal vessels independent of rat strain; water loading increased V1a mRNA. Thus V1a receptor regulation correlated with changes in mRNA in a normal manner in response to chronic changes in AVP concentration, albeit set at a higher level in SHR. In dehydrated animals, AVP increased the cytosolic Ca2+ concentration ([Ca2+]i) by 60 +/- 5 and 112 +/- 13 nM cytosolic Ca2+ in WKY and SHR, respectively (P < 0.01), whereas in hydrated animals the [Ca2+]i increase was 168 +/- 10 and 220 +/- 18 nM, respectively (P < 0.05). In all hydration states, calcium signaling was greater in SHR compared with WKY (P < 0.05). Calcium signaling paralleled changes in the receptor density and mRNA. Mechanisms other than hydration state per se are likely to be responsible for the two- to threefold difference in the V1a receptor density between WKY and SHR in the renal vasculature at the critical age of 6 wk.
Collapse
Affiliation(s)
- Oyvind B Vagnes
- Renal Research Group, Institute of Medicine, Univ. of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
12
|
Hansen FH, Vågnes ØB, Iversen BM. Enhanced response to AVP in the interlobular artery from the spontaneously hypertensive rat. Am J Physiol Renal Physiol 2004; 288:F1023-31. [PMID: 15598845 DOI: 10.1152/ajprenal.00175.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arginine vasopressin (AVP) induces exaggerated intracellular free calcium (Cai2+) responses in preglomerular smooth muscle cells from young spontaneously hypertensive rats (SHR) due to increased density of the AVP V1a receptor. The intention of the present paper was to examine the relative contribution of afferent arterioles (AA) and interlobular artery (ILA) in AVP- and norepinephrine-induced calcium signaling. The kidneys were perfused with agar solution in vivo, and thin cortical slices were enzyme digested to produce isolated agar-filled vascular fragments. Calcium responses were recorded in fura 2-loaded cells by Ca2+ imaging. Diameter changes were measured after AVP stimulation and mRNA for V1a was measured on isolated vessel fragments. SHR had a significantly higher baseline calcium ratio and lower resting diameter compared with normotensive Wistar-Kyoto rats (WKY). Stimulation with AVP (10(-7) M) in ILA fragments from SHR induced a ratio increase of 0.49 +/- 0.09, significantly higher than the ratio increase in AA from SHR (0.20 +/- 0.03, P < 0.01) and in ILA from WKY (0.24 +/- 0.03, P < 0.01). Stimulation with norepinephrine (10(-7) M) induced responses homogeneously distributed between the segments and strains. Nifedipine treatment or removal of external calcium (Cao2+) reduced the norepinephrine-induced peak response. Both norepinephrine- and AVP-induced sustained responses were abolished after Cao2+ removal in SHR and WKY (P < 0.01). Measurements of V1a receptor mRNA on isolated segments showed a threefold increase in ILA from SHR. The present findings indicate that the exaggerated Ca2+ and contractile response to AVP in SHR is mainly mediated through ILA vasoconstriction.
Collapse
Affiliation(s)
- Frank H Hansen
- Renal Research Group, Institute of Medicine, University of Bergen, Bergen, Norway.
| | | | | |
Collapse
|
13
|
Vågnes B ØB, Hansen FH, Christiansen REF, Gjerstad C, Iversen BM. Age-dependent regulation of vasopressin V1areceptors in preglomerular vessels from the spontaneously hypertensive rat. Am J Physiol Renal Physiol 2004; 286:F997-1003. [PMID: 15075196 DOI: 10.1152/ajprenal.00399.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments were performed to get insight into the role of AVP receptor V1aregulation with age, i.e., during development and maintenance of high blood pressure. Previous studies showed an increased gene expression and renal vascular response to AVP in young spontaneously hypertensive rats (SHR). The age regulation of the V1areceptor was examined in preglomerular vessels from 5-, 10-, 20-, and 70-wk-old SHR using normotensive Wistar-Kyoto rats (WKY) as controls. Real-time PCR and ligand binding were used for analysis of receptor expression, and the change in cytosolic calcium concentration during stimulation of isolated preglomerular vessels with AVP was studied. Studies showed an increase of the V1areceptor protein and mRNA from 5-and 10-wk-old SHR compared with vessels from 20- and 70-wk-old SHR. In 5-wk-old SHR receptor density was 84 ± 13 fmol/mg protein, and 38 ± 11 fmol/mg protein in 70-wk-old SHR ( P < 0.05). mRNA in the 5- and 70-wk-old SHR was 15,854 ± 629 and 3,181 ± 224 V1amRNA/108 18S ribosomal RNA, respectively ( P < 0.001). Values from WKY at all ages were similar to 20- and 70-wk-old SHR. During stimulation with AVP, the change in cytosolic calcium in vessels from 5-wk-old SHR increased 234 ± 59 nM, whereas the increase was 89 ± 9 nM in 70-wk-old SHR ( P = 0.03). These results indicate that the V1areceptor is increased at protein and mRNA level during development of hypertension in SHR but is normalized when hypertension is established.
Collapse
Affiliation(s)
- Øyvind B Vågnes B
- Renal Research Group, Institue of Medicine, University of Bergen, N-5021 Haukeland sykehus, Bergen, Norway.
| | | | | | | | | |
Collapse
|
14
|
Japundzić-Zigon N, Milutinović S, Jovanović A. Effects of Nonpeptide and Selective V1 and V2 Antagonists on Blood Pressure Short-Term Variability in Spontaneously Hypertensive Rats. J Pharmacol Sci 2004; 95:47-55. [PMID: 15153650 DOI: 10.1254/jphs.95.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Effects of V(1) (OPC-21268) and V(2) (OPC-31260) vasopressin antagonists on blood pressure (BP) short-term variability were investigated in adult spontaneously hypertensive rats (SHR) under basal conditions and after the stimulation of vasopressin release by hemorrhage. BP was recorded intra-arterially and sampled at 20 Hz to be analyzed on a personal computer. BP time spectra were calculated on 30 stationary overlapping 2048 point-time series. Spectral power was estimated in total (0.00976 - 3 Hz), very low frequency (VLF: 0.00976 - 0.195 Hz), low frequency (LF: 0.195 - 0.605 Hz), and high frequency (HF: 0.8 - 3 Hz) regions. Under basal conditions a V(1) antagonist (5 mg/kg, i.v.) decreased BP without affecting BP variability, while combined (V(1) + V(2)) blockade or V(2) blockade (1 mg/kg, i.v.) alone did not affect cardiovascular parameters. Mild hemorrhage (5 ml/kg per min) increased HF-BP variability, while moderate (10 ml/kg per min) and massive (15 ml/kg per min) hemorrhage did not affect it. In V(1), but not V(2), antagonist pre-treated SHR HF-BP increased significantly after moderate and massive hemorrhage. V(1) or V(2) antagonist pre-treatment also enhanced VLF-BP variability during massive hemorrhage. Moreover V(1) blockade prevented hemorrhage-induced bradycardia, while V(2) blockade potentiated it. It follows that in adult SHR, vasopressin buffers BP oscillations in HF and VLF frequency domains only in hypovolaemic conditions and that the modulation of the autonomic adjustment of the HR to hemorrhage by vasopressin is preserved.
Collapse
Affiliation(s)
- Nina Japundzić-Zigon
- Institute of Clinical Pharmacology, Pharmacology and Toxicology, School of Medicine, University of Belgrade, Serbia and Montenegro.
| | | | | |
Collapse
|