1
|
Feng L, Tian R, Mu X, Chen C, Zhang Y, Cui J, Song Y, Liu Y, Zhang M, Shi L, Sun Y, Li L, Yi W. Identification of Genes Linking Natural Killer Cells to Apoptosis in Acute Myocardial Infarction and Ischemic Stroke. Front Immunol 2022; 13:817377. [PMID: 35432334 PMCID: PMC9012496 DOI: 10.3389/fimmu.2022.817377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are a type of innate lymphoid cell that are involved in the progression of acute myocardial infarction and ischemic stroke. Although multiple forms of programmed cell death are known to play important roles in these diseases, the correlation between NK cells and apoptosis-related genes during acute myocardial infarction and ischemic stroke remains unclear. In this study, we explored the distinct patterns of NK cell infiltration and apoptosis during the pathological progression of acute myocardial infarction and ischemic stroke using mRNA expression microarrays from the Gene Expression Omnibus database. Since the abundance of NK cells correlated positively with apoptosis in both diseases, we further examined the correlation between NK cell abundance and the expression of apoptosis-related genes. Interestingly, APAF1 and IRAK3 expression correlated negatively with NK cell abundance in both acute myocardial infarction and ischemic stroke, whereas ATM, CAPN1, IL1B, IL1R1, PRKACA, PRKACB, and TNFRSF1A correlated negatively with NK cell abundance in acute myocardial infarction. Together, these findings suggest that these apoptosis-related genes may play important roles in the mechanisms underlying the patterns of NK cell abundance and apoptosis in acute myocardial infarction and ischemic stroke. Our study, therefore, provides novel insights for the further elucidation of the pathogenic mechanism of ischemic injury in both the heart and the brain, as well as potential useful therapeutic targets.
Collapse
Affiliation(s)
- Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ruofei Tian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Xingdou Mu
- Department of Breast and Thyroid Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Cheng Chen
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Internal Medicine, Central Health Center of Huilong Town, Shangluo, China
| | - Yuxi Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yingying Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- College of Life Science, Northwest University, Xi’an, China
| | - Miao Zhang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yang Sun, ; Ling Li, ; Wei Yi,
| | - Ling Li
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Yang Sun, ; Ling Li, ; Wei Yi,
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yang Sun, ; Ling Li, ; Wei Yi,
| |
Collapse
|
2
|
Reunov A, Reunov A, Pimenova E, Reunova Y, Menchinskaiya E, Lapshina L, Aminin D. The study of the calpain and caspase-1 expression in ultrastructural dynamics of Ehrlich ascites carcinoma necrosis. Gene 2018. [PMID: 29518545 DOI: 10.1016/j.gene.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An expression of calpain and caspase-1 as well as the concomitant ultrastructural alterations were investigated during necrosis of the mouse Ehrlich ascites carcinoma. The calpain expression was registered at 0 h and 1 h although caspase-1 did not induce any signals during these time periods. The rise of the cytoplasmic lytic zones contacted by calpain antibodies was identified as a morphologic event corresponding to the expression of calpain. Lytic zone's distribution followed by the appearance of the calpain/caspase-1 clusters assigned for lysis of the Golgi vesicles and ER. Also, the microapocrine secretion of the vesicles containing the calpain/caspase-1 clusters was detected. Further, the lysis of the plasma membrane occurred due to progression of intracellular lysis. Rupture of the plasma membrane resulted in the termination of secretion and dissemination of cell contents. The nuclei still had their normal shape. Nuclear lysis continued to rise with intranuclear lytic zones, of which the progression was accompanied with the presence of calpain/caspase-1 clusters. The data contribute to the concept of the initial role of calpain for tumor cell destruction, provide first evidence of the calpain/caspase-1 pathway in tumor cells, and highlight microapocrine secretion as a possible tumor cell death signalling mechanism.
Collapse
Affiliation(s)
- Arkadiy Reunov
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada.
| | - Anatoliy Reunov
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Evgenia Pimenova
- National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Yulia Reunova
- National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Ekaterina Menchinskaiya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Larisa Lapshina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Dmitry Aminin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| |
Collapse
|
3
|
Dehydroabietic acid derivative QC2 induces oncosis in hepatocellular carcinoma cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:682197. [PMID: 25110686 PMCID: PMC4109319 DOI: 10.1155/2014/682197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/08/2014] [Indexed: 12/22/2022]
Abstract
Aim. Rosin, the traditional Chinese medicine, is reported to be able to inhibit skin cancer cell lines. In this report, we investigate the inhibitory effect against HCC cells of QC2, the derivative of rosin's main components dehydroabietic acid. Methods. MTT assay was used to determine the cytotoxicity of QC2. Morphological changes were observed by time-lapse microscopy and transmission electron microscopy and the cytoskeleton changes were observed by laser-scanning confocal microscopy. Cytomembrane integrity and organelles damage were confirmed by detection of the reactive oxygen (ROS), lactate dehydrogenase (LDH), and mitochondrial membrane potential (Δψm). The underlying mechanism was manifested by Western blotting. The oncotic cell death was further confirmed by detection of oncosis related protein calpain. Results. Swelling cell type and destroyed cytoskeleton were observed in QC2-treated HCC cells. Organelle damage was visualized by transmission electron microscopy. The detection of ROS accumulation, increased LDH release, and decreased ATP and Δψm confirmed the cell death. The oncotic related protein calpain was found to increase time-dependently in QC2-treated HCC cells, while its inhibitor PD150606 attenuated the cytotoxicity. Conclusions. Dehydroabietic acid derivative QC2 activated oncosis related protein calpain to induce the damage of cytomembrane and organelles which finally lead to oncosis in HCC cells.
Collapse
|
4
|
Ulusoy S, Ozkan G, Mungan S, Orem A, Yulug E, Alkanat M, Yucesan FB. GSPE is superior to NAC in the prevention of contrast-induced nephropathy: Might this superiority be related to caspase 1 and calpain 1? Life Sci 2014; 103:101-10. [DOI: 10.1016/j.lfs.2014.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/19/2014] [Accepted: 03/26/2014] [Indexed: 12/28/2022]
|
5
|
Wang Y, Zhu X, Yang Z, Zhao X. Honokiol induces caspase-independent paraptosis via reactive oxygen species production that is accompanied by apoptosis in leukemia cells. Biochem Biophys Res Commun 2013; 430:876-82. [DOI: 10.1016/j.bbrc.2012.12.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/13/2012] [Indexed: 11/30/2022]
|
6
|
Inserte J, Hernando V, Garcia-Dorado D. Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res 2012; 96:23-31. [PMID: 22787134 DOI: 10.1093/cvr/cvs232] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Loss of calcium (Ca(2+)) homeostasis contributes through different mechanisms to cell death occurring during the first minutes of reperfusion. One of them is an unregulated activation of a variety of Ca(2+)-dependent enzymes, including the non-lysosomal cysteine proteases known as calpains. This review analyses the involvement of the calpain family in reperfusion-induced cardiomyocyte death. Calpains remain inactive before reperfusion due to the acidic pHi and increased ionic strength in the ischaemic myocardium. However, inappropriate calpain activation occurs during myocardial reperfusion, and subsequent proteolysis of a wide variety of proteins contributes to the development of contractile dysfunction and necrotic cell death by different mechanisms, including increased membrane fragility, further impairment of Na(+) and Ca(2+) handling, and mitochondrial dysfunction. Recent studies demonstrating that calpain inhibition contributes to the cardioprotective effects of preconditioning and postconditioning, and the beneficial effects obtained with new and more selective calpain inhibitors added at the onset of reperfusion, point to the potential cardioprotective value of therapeutic strategies designed to prevent calpain activation.
Collapse
Affiliation(s)
- Javier Inserte
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
7
|
Abstract
Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca(2+)-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca(2+) overload causes mitochondrial calpain 1 cleavage of the Na(+)/Ca(2+) exchanger leading to mitochondrial Ca(2+) accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca(2+) overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system.
Collapse
Affiliation(s)
- Matthew A Smith
- Department of Pharmaceutical and Biomedical Sciences, Center for Cell Death, Injury, and Regeneration, Medical University of South Carolina, 280 Calhoun Street, MSC140, Charleston, SC 29425, USA
| | | |
Collapse
|
8
|
Ali MAM, Stepanko A, Fan X, Holt A, Schulz R. Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 2012; 423:1-5. [PMID: 22575511 DOI: 10.1016/j.bbrc.2012.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 02/06/2023]
Abstract
Matrix metalloproteinase (MMP)-2 is a zinc-dependent endopeptidase which, alongside its known extracellular actions, plays fundamental roles in oxidative stress-induced injury to the heart. Intracellular cleavage targets of MMP-2 selectively mediating this injury include the sarcomeric proteins troponin I, myosin light chain-1 and titin; some of these are also targeted by calpains. In myocardial ischemia and reperfusion injury, inhibitors of MMP-2 and some calpain inhibitors were shown to improve the recovery of contractile function. We hypothesized that the protective effects of calpain inhibitors may be due in part to their ability to inhibit MMP-2. Four calpain inhibitors (calpain inhibitor III, ALLM, ALLN, and PD-150606) were tested for their ability to inhibit MMP-2 in comparison to the selective MMP inhibitor ONO-4817. At 100 μM, all calpain inhibitors, except ALLM, showed significant inhibition of MMP-2 gelatinolytic activity. When assessed by the troponin I proteolysis assay, both ALLN and PD-150606, but neither ALLM nor calpain inhibitor III (at 20 μM), significantly inhibited MMP-2 activity. Using a fluorogenic MMP substrate peptide OmniMMP in a kinetic assay the rank order of IC(50) values against MMP-2 were: PD-150606<ALLN<calpain inhibitor III <<< ALLM. These experiments show that the calpain inhibitors PD-150606 and ALLN have significant additional pharmacological activity as MMP-2 inhibitors. This suggests that the protective effect of some calpain inhibitors is due in part to their ability to inhibit MMP activity.
Collapse
Affiliation(s)
- Mohammad A M Ali
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
9
|
Cummings BS, Schnellmann RG. Measurement of cell death in mammalian cells. ACTA ACUST UNITED AC 2012; Chapter 12:Unit 12.8. [PMID: 22294120 DOI: 10.1002/0471141755.ph1208s25] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This unit presents methods used to assess cell death in mammalian cells. The unit is divided into five sections: (1) a brief overview of cytotoxicity and pathways of cell death, (2) an improved method to measure cell death using lactate dehydrogenase (LDH) release as a marker of membrane integrity, (3) a flow cytometry method that simultaneously measures two types of cell death, oncosis and apoptosis, (4) use of nuclear morphology to assess apoptosis and oncosis, and (5) a brief discussion of the use of cytotoxicity assays to determine the mechanisms of cell death.
Collapse
Affiliation(s)
- Brian S Cummings
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|
10
|
Nakajima T, Shearer TR, Azuma M. Involvement of calpain 2 in ionomycin-induced cell death in cultured mouse lens epithelial cells. Curr Eye Res 2011; 36:930-6. [PMID: 21950698 DOI: 10.3109/02713683.2011.577264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Calpains are calcium-activated, intracellular, non-lysosomal, cysteine proteases that hydrolyze lens crystallins and cytoskeletal proteins. Elevated calcium is a frequent finding in both rodent and human cataracts, and calpain 2 is present in lenses of both species. Lens epithelium forms a critical barrier to influx of calcium, but the role of calpain 2 in lens epithelium is poorly characterized. Thus, the purpose of the present experiment was to determine the role of calpain 2 in lens epithelial cell death. METHODS Mouse lens epithelial cells (α-TN4) were cultured with the calcium ionophore ionomycin to promote calcium influx. Release of LDH into the culture medium was measured as a general marker of cell death, while necrosis and apoptosis were detected by staining with ethidium homodimer III (EtD-III) or FITC-annexin V. Calpain activity was determined by zymography and immunoblotting for activation-associated, fragments of calpain. Breakdown products of calpain substrate α-spectrin were also detected by immunoblotting as additional markers of calpain activation. RESULTS Calpain 2 was found to be the major calpain isozyme in α-TN4 cells. Ionomycin caused leakage of LDH into the medium, activation of calpain 2, proteolysis of α-spectrin, and changes in α-TN4 cell morphology and staining characteristic of necrotic cell death. Calpain inhibitor SNJ-1945 significantly inhibited these changes. CONCLUSIONS The ability of mouse lens epithelium to maintain lens transparency would be compromised by activation of calpain 2 and associated necrotic cell death. Since calpain 2 is ubiquitously present in all animal lenses so far observed, the current results may predict the pathological consequences of calpain 2 activation in animal lenses including those of man.
Collapse
Affiliation(s)
- Takeshi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | | | | |
Collapse
|
11
|
Cao X, Zhang Y, Zou L, Xiao H, Chu Y, Chu X. Persistent oxygen-glucose deprivation induces astrocytic death through two different pathways and calpain-mediated proteolysis of cytoskeletal proteins during astrocytic oncosis. Neurosci Lett 2010; 479:118-22. [DOI: 10.1016/j.neulet.2010.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/04/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
|
12
|
Hernando V, Inserte J, Sartório CL, Parra VM, Poncelas-Nozal M, Garcia-Dorado D. Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J Mol Cell Cardiol 2010; 49:271-9. [PMID: 20211186 DOI: 10.1016/j.yjmcc.2010.02.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/09/2010] [Accepted: 02/28/2010] [Indexed: 12/13/2022]
Abstract
Calpains contribute to reperfusion-induced myocardial cell death. However, it remains controversial whether its activation occurs during ischemia or reperfusion. We investigated the regulation and time-course of calpain activation secondary to transient ischemia and the efficacy of its inhibition at reperfusion as a therapeutic strategy to limit infarct size. In isolated rat hearts (Sprague-Dawley), ischemia induced a time-dependent translocation of m-calpain to the membrane that was not associated with calpain activation as assessed by proteolysis of its substrate alpha-fodrin. Translocation of calpain was dependent on Ca(2+) entry through reverse mode Na(+)/Ca(2+)-exchange and was independent of acidosis. Calpain activation occurred during reperfusion, but only after intracellular pH (pHi) normalization, and was not prevented by inhibiting its translocation during ischemia with methyl-beta-cyclodextrin. The intravenous infusion of MDL-28170 in an in vivo rat model with transient coronary occlusion during the first minutes of reperfusion resulted in a reduction of infarct size (43.9+/-3.9% vs. 60.2+/-4.7, P=0.046, n=18) and alpha-fodrin degradation. These results suggest that (1) Ca(2+)-induced calpain translocation to the membrane during ischemia is independent of its activation, (2) intracellular acidosis inhibits calpain activation during ischemia and pHi normalization allows activation upon reperfusion, and (3) calpain inhibition at the time of reperfusion appears as a potentially useful strategy to limit infarct size.
Collapse
Affiliation(s)
- Víctor Hernando
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Hiroshi MANYA
- Molecular Glycobiology, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare
| | - Keiko AKASAKA-MANYA
- Molecular Glycobiology, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare
| | - Tamao ENDO
- Molecular Glycobiology, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare
| |
Collapse
|
14
|
Lee SJ, Kwon CH, Kim YK. Alterations in membrane transport function and cell viability induced by ATP depletion in primary cultured rabbit renal proximal tubular cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:15-22. [PMID: 19885021 DOI: 10.4196/kjpp.2009.13.1.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study was undertaken to elucidate the underlying mechanisms of ATP depletion-induced membrane transport dysfunction and cell death in renal proximal tubular cells. ATP depletion was induced by incubating cells with 2.5 mM potassium cyanide (KCN)/0.1 mM iodoacetic acid (IAA), and membrane transport function and cell viability were evaluated by measuring Na(+)-dependent phosphate uptake and trypan blue exclusion, respectively. ATP depletion resulted in a decrease in Na(+)-dependent phosphate uptake and cell viability in a time-dependent manner. ATP depletion inhibited Na(+)-dependent phosphate uptake in cells, when treated with 2 mM ouabain, a Na(+) pump-specific inhibitor, suggesting that ATP depletion impairs membrane transport functional integrity. Alterations in Na(+)-dependent phosphate uptake and cell viability induced by ATP depletion were prevented by the hydrogen peroxide scavenger such as catalase and the hydroxyl radical scavengers (dimethylthiourea and thiourea), and amino acids (glycine and alanine). ATP depletion caused arachidonic acid release and increased mRNA levels of cytosolic phospholipase A(2) (cPLA(2)). The ATP depletion-dependent arachidonic acid release was inhibited by cPLA(2) specific inhibitor AACOCF(3). ATP depletion-induced alterations in Na(+)-dependent phosphate uptake and cell viability were prevented by AACOCF(3). Inhibition of Na(+)-dependent phosphate uptake by ATP depletion was prevented by antipain and leupetin, serine/cysteine protease inhibitors, whereas ATP depletion-induced cell death was not altered by these agents. These results indicate that ATP depletion-induced alterations in membrane transport function and cell viability are due to reactive oxygen species generation and cPLA(2) activation in renal proximal tubular cells. In addition, the present data suggest that serine/cysteine proteases play an important role in membrane transport dysfunction, but not cell death, induced by ATP depletion.
Collapse
Affiliation(s)
- Sung Ju Lee
- Department of Physiology, MRC for Ischemic Tissue Regeneration, College of Medicine, Pusan National University, Busan 602-739, Korea
| | | | | |
Collapse
|
15
|
Cribb AE, Peyrou M, Muruganandan S, Schneider L. The Endoplasmic Reticulum in Xenobiotic Toxicity. Drug Metab Rev 2008; 37:405-42. [PMID: 16257829 DOI: 10.1080/03602530500205135] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) is involved in an array of cellular functions that play important roles in xenobiotic toxicity. The ER contains the majority of cytochrome P450 enzymes involved in xenobiotic metabolism, as well as a number of conjugating enzymes. In addition to its role in drug bioactivation and detoxification, the ER can be a target for damage by reactive intermediates leading to cell death or immune-mediated toxicity. The ER contains a set of luminal proteins referred to as ER stress proteins (including GRP78, GRP94, protein disulfide isomerase, and calreticulin). These proteins help regulate protein processing and folding of membrane and secretory proteins in the ER, calcium homeostasis, and ER-associated apoptotic pathways. They are induced in response to ER stress. This review discusses the importance of the ER in molecular events leading to cell death following xenobiotic exposure. Data showing that the ER is important in both renal and hepatic toxicity will be discussed.
Collapse
Affiliation(s)
- Alastair E Cribb
- Laboratory of Comparative Pharmacogenetics, Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | | | | | | |
Collapse
|
16
|
Mitochondrial calpain 10 activity and expression in the kidney of multiple species. Biochem Biophys Res Commun 2007; 366:258-62. [PMID: 18054326 DOI: 10.1016/j.bbrc.2007.11.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 11/22/2007] [Indexed: 01/24/2023]
Abstract
Calpains, Ca(2+)-activated cysteine proteases, have been implicated in the progression of multiple disease states. We recently identified calpain 10 as a mitochondrial calpain that is involved in Ca(2+)-induced mitochondrial dysfunction. The goals of this study were to characterize the expression and activity of renal mitochondrial calpain 10 in rabbit, mouse, and rat. Using shRNA technology and immunoblot analysis three previously postulated splice variants of calpain 10 were identified (50, 56, and 75kDa). SLLVY-AMC zymography and immunoblot analysis was used to directly link calpeptin-sensitive calpain activity to calpain 10 splice variants. Rabbit, mouse, and rat kidney mitochondria contained 75kDa (calpain 10a), 56kDa (calpain 10c or 10d), and 50kDa (calpain 10e) splice variants. Interestingly, zymography yielded distinct bands of calpain activity containing multiple calpain 10 splice variants in all species. These results provide evidence that several previously postulated splice variants of calpain 10 are localized to the mitochondria in kidneys of rabbits, rats, and mice.
Collapse
|
17
|
Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32:37-43. [PMID: 17141506 DOI: 10.1016/j.tibs.2006.11.001] [Citation(s) in RCA: 649] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/13/2006] [Accepted: 11/20/2006] [Indexed: 12/20/2022]
Abstract
Necrosis has been defined as a type of cell death that lacks the features of apoptosis and autophagy, and is usually considered to be uncontrolled. Recent research suggests, however, that its occurrence and course might be tightly regulated. After signaling- or damage-induced lesions, necrosis can include signs of controlled processes such as mitochondrial dysfunction, enhanced generation of reactive oxygen species, ATP depletion, proteolysis by calpains and cathepsins, and early plasma membrane rupture. In addition, the inhibition of specific proteins involved in regulating apoptosis or autophagy can change the type of cell death to necrosis. Because necrosis is prominent in ischemia, trauma and possibly some forms of neurodegeneration, further biochemical comprehension and molecular definition of this process could have important clinical implications.
Collapse
Affiliation(s)
- Pierre Golstein
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
18
|
Peltier J, Bellocq A, Perez J, Doublier S, Dubois YCX, Haymann JP, Camussi G, Baud L. Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice. J Am Soc Nephrol 2006; 17:3415-23. [PMID: 17082241 DOI: 10.1681/asn.2006050542] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glomerular injury and albuminuria in acute glomerulonephritis are related to the severity of inflammatory process. Calpain, a calcium-activated cysteine protease, has been shown to participate in the development of the inflammatory process. Therefore, for determination of the role of calpain in the pathophysiology of acute glomerulonephritis, transgenic mice that constitutively express high levels of calpastatin, a calpain-specific inhibitor protein, were generated. Wild-type mice that were subjected to anti-glomerular basement membrane nephritis exhibited elevated levels of calpain activity in kidney cortex at the heterologous phase of the disease. This was associated with the appearance in urine of calpain activity, which originated potentially from inflammatory cells, abnormal transglomerular passage of plasma proteins, and tubular secretion. In comparison with nephritic wild-type mice, nephritic calpastatin-transgenic mice exhibited limited activation of calpain in kidney cortex and limited secretion of calpain activity in urine. This was associated with less severe glomerular injury (including capillary thrombi and neutrophil activity) and proteinuria. There was a reduction in NF-kappaB activation, suggesting that calpain may participate in inflammatory lesions through NF-kappaB activation. There also was a reduction in nephrin disappearance from the surface of podocytes, indicating that calpain activity would enhance proteinuria by affecting nephrin expression. Exposure of cultured podocytes to calpain decreased nephrin expression, and, conversely, exposure of these cells to calpastatin prevented TNF-alpha from decreasing nephrin expression, demonstrating a role for the secreted form of calpain. Thus, both activation and secretion of calpains participate in the development of immune glomerular injury.
Collapse
Affiliation(s)
- Julie Peltier
- INSERM U702, 7Université Pierre et Marie Curie-Paris6, UMRS702, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Moshal KS, Singh M, Sen U, Rosenberger DSE, Henderson B, Tyagi N, Zhang H, Tyagi SC. Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. Am J Physiol Heart Circ Physiol 2006; 291:H2825-35. [PMID: 16877562 DOI: 10.1152/ajpheart.00377.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperhomocysteinemia (HHcy) is associated with atherosclerosis, stroke, and dementia. Hcy causes extracellular matrix remodeling by the activation of matrix metalloproteinase-9 (MMP-9), in part, by inducing redox signaling and modulating the intracellular calcium dynamics. Calpains are the calcium-dependent cysteine proteases that are implicated in mitochondrial damage via oxidative burst. Mitochondrial abnormalities have been identified in HHcy. The mechanism of Hcy-induced extracellular matrix remodeling by MMP-9 activation via mitochondrial pathway is largely unknown. We report a novel role of calpains in mitochondrial-mediated MMP-9 activation by Hcy in cultured rat heart microvascular endothelial cells. Our observations suggested that calpain regulates Hcy-induced MMP-9 expression and activity. We showed that Hcy activates calpain-1, but not calpain-2, in a calcium-dependent manner. Interestingly, the enhanced calpain activity was not mirrored by the decreased levels of its endogenous inhibitor calpastatin. We presented evidence that Hcy induces the translocation of active calpain from cytosol to mitochondria, leading to MMP-9 activation, in part, by causing intramitochondrial oxidative burst. Furthermore, studies with pharmacological inhibitors of calpain (calpeptin and calpain-1 inhibitor), ERK (PD-98059) and the mitochondrial uncoupler FCCP suggested that calpain and ERK-1/2 are the major events within the Hcy/MMP-9 signal axis and that intramitochondrial oxidative stress regulates MMP-9 via ERK-1/2 signal cascade. Taken together, these findings determine the novel role of mitochondrial translocation of calpain-1 in MMP-9 activation during HHcy, in part, by increasing mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Karni S Moshal
- Dept. of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Su LT, Agapito MA, Li M, Simonson WTN, Huttenlocher A, Habas R, Yue L, Runnels LW. TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem 2006; 281:11260-70. [PMID: 16436382 PMCID: PMC3225339 DOI: 10.1074/jbc.m512885200] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
m-Calpain is a protease implicated in the control of cell adhesion through focal adhesion disassembly. The mechanism by which the enzyme is spatially and temporally controlled is not well understood, particularly because the dependence of calpain on calcium exceeds the submicromolar concentrations normally observed in cells. Here we show that the channel kinase TRPM7 localizes to peripheral adhesion complexes with m-calpain, where it regulates cell adhesion by controlling the activity of the protease. Our research revealed that overexpression of TRPM7 in cells caused cell rounding with a concomitant loss of cell adhesion that is dependent upon the channel of the protein but not its kinase activities. Knockdown of m-calpain blocked TRPM7-induced cell rounding and cell detachment. Silencing of TRPM7 by RNA interference, however, strengthened cell adhesion and increased the number of peripheral adhesion complexes in the cells. Together, our results suggest that the ion channel TRPM7 regulates cell adhesion through m-calpain by mediating the local influx of calcium into peripheral adhesion complexes.
Collapse
Affiliation(s)
- Li-Ting Su
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kurian SM, Flechner SM, Kaouk J, Modlin C, Goldfarb D, Cook DJ, Head S, Salomon DR. Laparoscopic donor nephrectomy gene expression profiling reveals upregulation of stress and ischemia associated genes compared to control kidneys. Transplantation 2005; 80:1067-71. [PMID: 16278587 DOI: 10.1097/01.tp.0000176485.85088.f7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We compared gene expression profiles from six donor kidneys prior to surgical manipulation to six kidneys removed after laparoscopic donor nephrectomy (LDN) and several hours of CO2 pneumoperitoneum. Biopsies were obtained from renal cortex and hybridized to Affymetrix HG-U133A GeneChips. For control kidneys, we identified 1380 genes present on all six samples that had a signal intensity >1,000. Functional classification of these revealed genes for cellular signaling (201; 15%), regulation of transcription (156; 11%), cellular transport (144; 10%) and cellular metabolism (111; 8%). A class comparison between the controls and LDN kidneys yielded 865 differentially expressed genes. Functional classification of the 502 genes differentially upregulated in LDN kidneys identified associations with apoptosis, cell adhesion, cell signaling, regulation of cell growth/proliferation, immune/inflammation, ischemia/stress response and proteolysis/peptidolysis. These data demonstrate an altered renal transcriptome induced by several hours of CO2 pneumoperitoneum and laparoscopic surgery characterized by upregulation of ischemia and injury associated genes.
Collapse
Affiliation(s)
- Sunil M Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Markmann A, Schäfer S, Linz W, Löhn M, Busch AE, Wohlfart P. Down-Regulation of Calpain 9 is Linked to Hypertensive Heart and Kidney. Cell Physiol Biochem 2005; 15:109-16. [PMID: 15665521 DOI: 10.1159/000083643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2004] [Indexed: 11/19/2022] Open
Abstract
Calpains are a family of 14 intracellular calcium-dependent proteases, which have been implicated in cardiovascular diseases. We aimed to analyze specifically the expressional regulation of the different calpain isoforms in hypertensive target organ damage. Using real-time PCR, we found calpain 6 and 9 down-regulated by more than 50% and the endogenous calpain inhibitor calpastatin up-regulated by 225%, respectively, in the hearts of Dahl salt-sensitive rats on a high salt (4% NaCl) compared to normal salt diet. On the protein level, calpain 9 but not calpastatin was regulated in the hypertensive target organs heart and kidney. Moreover, the myocardial expression of calpain 9 protein was inversely linked to left ventricular mass (r= -0.93, p<0.01), and renal expression of calpain 9 protein correlated inversely with albuminuria (r= -0.82, p<0.05). In the aorta, there was no regulation of calpain 9 on the protein level. We conclude that differential regulation of calpain 9 may play a role in hypertensive target organ damage.
Collapse
Affiliation(s)
- André Markmann
- Aventis Pharma Deutschland GmbH, DG Cardiovascular Diseases, Building H825, Industriepark Höchst, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Numerous lines of evidence demonstrate that calpains, a family of 14 Ca(2+)-activated neutral cysteine proteases, are involved in oncotic cell death in a variety of models. At this time, the biochemistry of most calpains and the specific roles of different calpains in physiology and pathology remain to be determined. A number of calpain substrates have been identified in cellular systems, including cytoskeletal proteins, and recent studies suggest that calpains mediate the increase in plasma membrane permeability to ions and the progressive breakdown of the plasma membrane observed in oncosis through the proteolysis of cystokeletal and plasma membrane proteins. Further, a number of reports provide evidence that the mitochondrial dysfunction observed in oncosis may be mediated by a mitochondrial calpain of unknown identity. Finally, a number of diverse calpain inhibitors have been developed that show cytoprotective properties in cellular systems and in vivo following diverse insults. It is suggested that future research be directed toward elucidation of the role(s) of specific calpain isozymes in physiological and pathological conditions; identifying and linking specific calpain substrates with altered cellular functions; and developing cell-permeable, potent, isozyme-selective calpain inhibitors.
Collapse
Affiliation(s)
- Xiuli Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
24
|
Jánossy J, Ubezio P, Apáti A, Magócsi M, Tompa P, Friedrich P. Calpain as a multi-site regulator of cell cycle. Biochem Pharmacol 2004; 67:1513-21. [PMID: 15041468 DOI: 10.1016/j.bcp.2003.12.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 12/15/2003] [Indexed: 11/18/2022]
Abstract
Calpain has long been implicated in the regulation of cell cycle, mostly based on studies with inhibitors that lack strict specificity toward the enzyme. Further, previous work has primarily focused on one particular point, the G(1) checkpoint, and made no attempt at dissecting the full cycle in terms of calpain action. To extend and complement these findings, we tested the effect of a specific inhibitor, PD 150606, on granulocyte-macrophage-colony stimulating factor (GM-CSF)-stimulated human TF-1 cells by flow cytometry following single- and double labelling by propidium iodide and bromodeoxyuridine. Using a new algorithm of analysis, we determined the time-dependence of the absolute number of cells leaving G(1), S and G(2)M phases following the application of the inhibitor. Our results point to the simultaneous involvement of calpain activity in promoting the cycle at the G(1) checkpoint and somewhere in the G(2)M compartment. Furthermore, the inhibitor significantly impedes the progress of cells through the S phase, indicating calpain activity in S phase checkpoint signalling. Overall, our analysis suggests that calpain regulates the cell cycle at more points than previously thought.
Collapse
Affiliation(s)
- Judit Jánossy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
25
|
Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 2003; 284:F608-27. [PMID: 12620919 DOI: 10.1152/ajprenal.00284.2002] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In humans and experimental models of renal ischemia, tubular cells in various nephron segments undergo necrotic and/or apoptotic cell death. Various factors, including nucleotide depletion, electrolyte imbalance, reactive oxygen species, endonucleases, disruption of mitochondrial integrity, and activation of various components of the apoptotic machinery, have been implicated in renal cell vulnerability. Several approaches to limit the injury and augment the regeneration process, including nucleotide repletion, administration of growth factors, reactive oxygen species scavengers, and inhibition of inducers and executioners of cell death, proved to be effective in animal models. Nevertheless, an effective approach to limit or prevent ischemic renal injury in humans remains elusive, primarily because of an incomplete understanding of the mechanisms of cellular injury. Elucidation of cell death pathways in animal models in the setting of renal injury and extrapolation of the findings to humans will aid in the design of potential therapeutic strategies. This review evaluates our understanding of the molecular signaling events in apoptotic and necrotic cell death and the contribution of various molecular components of these pathways to renal injury.
Collapse
Affiliation(s)
- Babu J Padanilam
- Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha, Nebraska 68198-4575, USA.
| |
Collapse
|
26
|
Harwood SM, Allen DA, Chesser AMS, New DI, Raftery MJ, Yaqoob MM. Calpain is activated in experimental uremia: is calpain a mediator of uremia-induced myocardial injury? Kidney Int 2003; 63:866-77. [PMID: 12631067 DOI: 10.1046/j.1523-1755.2003.00823.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The cysteine proteases calpain and caspase-3 are known mediators of cell death. The aim of this study was to assess their contribution to the tissue damage found in experimental uremia. METHODS Calpain and caspase-3 activities were measured in the hearts of rats that were sham-operated (control), sham-operated and spontaneously hypertensive (SHR), and those rendered uremic by 5/6 nephrectomy (uremic). In an in vitro study, heart myoblasts (Girardi) were incubated with human serum from healthy subjects (control serum conditioned media, CSCM) or uremic patients (uremic serum conditioned media, USCM), in the presence and absence of calpain and caspase-3 inhibitors. After 48 hours the activity of calpain and caspase-3 was measured, and cell injury determined by DNA fragmentation (ELISA) and lactate dehydrogenase (LDH) release. An in situ assay was designed to study how USCM affects calpain activity over time. RESULTS In the in vivo study, mean calpain activities were almost identical in the control and SHR groups, but calpain and caspase-3 activities were much elevated in the uremic group (P < 0.01 and 0.001 respectively vs. control). The SHR group had significantly higher mean arterial blood pressure (P < 0.001 vs. control, 0.01 vs. uremic). In the in vitro study calpain activity and DNA fragmentation were markedly higher in USCM treated cells compared to CSCM (both P<0.05). Both were reduced in USCM cells containing calpain inhibitors (E64d, calpastatin, or PD 150606). LDH release was raised also in USCM treated cultures (P < 0.05), which only the E64d treatment could significantly reduce (P < 0.02). Caspase-3 activities were similar in USCM and CSCM groups. The in situ assay showed significant increases in calpain activity in USCM treated cells compared to CSCM after just 3.5 hours (P<0.01). CONCLUSIONS In vivo results suggest that the increases in calpain and caspase-3 activity in uremic rat hearts were primarily due to uremia and not to hypertension. In vitro data demonstrate that uremia-induced cell injury can be attenuated by calpain inhibition. Therefore, it is likely that calpain is a mediator of uremia-induced myocardial injury.
Collapse
Affiliation(s)
- Steven M Harwood
- Department of Experimental Medicine and Nephrology, St Bartholomew's, and Royal London School of Medicine and Dentistry, Queen Mary, University of London, London, England, United Kingdom.
| | | | | | | | | | | |
Collapse
|
27
|
Baud L, Fouqueray B, Bellocq A, Peltier J. [Calpains participate in inflammatory reaction development]. Med Sci (Paris) 2003; 19:71-6. [PMID: 12836194 DOI: 10.1051/medsci/200319171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Calpains are cysteine proteases first identified 50 years ago. Because they are present in the cytosol of mammalian cells and because they are activated in response to Ca2+ mobilization, they are thought to be involved mainly in cell signalling pathways. They could participate in cellular responses such as apoptosis, proliferation, extracellular matrix adhesion and motility, that have relevance to pathophysiological issues in ischemia, inflammation, repair and tumor progression. Here we consider calpain functions in inflammatory reaction. We report the recent observation that calpain inhibitors reduce the development of acute and chronic inflammation. This has opened the door for understanding how these enzymes are effective in inflammation. We present data suggesting that calpains are primarily responsible for the activation of nuclear factor-kappa B, a transcription factor with a pivotal role in inflammation. They are involved in inflammatory cell adhesion and migration, pro-inflammatory mediator release and anti-inflammatory hormone resistance as well. In addition, we emphasize the intriguing possibility that calpains are externalized during inflammatory process and that they play a role in the microenvironment of inflammatory cells. Thus, both intracellular and extracellular calpains would offer novel therapeutic targets in inflammation.
Collapse
Affiliation(s)
- Laurent Baud
- Inserm U.489 et Service d'explorations fonctionnelles multidisciplinaires, Hôpital Tenon, 4, rue de la Chine, 75020 Paris, France.
| | | | | | | |
Collapse
|
28
|
Liu X, Schnellmann RG. Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death. J Pharmacol Exp Ther 2003; 304:63-70. [PMID: 12490576 DOI: 10.1124/jpet.102.043406] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of the present study was to determine the role of calpain in changes in plasma membrane permeability and cytoskeleton-associated paxillin, vinculin, talin, and alpha-actinin levels during acute renal cell death. The mitochondrial inhibitor antimycin A or hypoxia produced graded plasma membrane permeability in renal proximal tubules (RPTs), first allowing propidium iodide (PI, molecular mass 668 Da) influx and then lactate dehydrogenase (LDH, molecular mass 130 kDa) release. Cytoskeleton-associated paxillin levels decreased concomitantly with PI influx and before LDH release, whereas cytoskeleton-associated talin and vinculin levels decreased concomitantly with LDH release. Cytoskeleton-associated alpha-actinin levels did not change during antimycin A exposure or hypoxia. Purified micro-calpain cleaved paxillin, talin, vinculin, but not alpha-actinin. The dissimilar calpain inhibitors 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) or chloroacetic acid N'-[6,7-dichloro-4-phenyl)-3-oxo-3,4-dihydroquinoxalin-2-yl] hydrazide (SJA7029) preserved cytoskeleton-associated paxillin, talin, and vinculin levels and prevented PI influx and LDH release in antimycin A-exposed or hypoxic RPTs. These results suggest that calpain mediates increased plasma membrane permeability and hydrolysis of cytoskeleton-associated paxillin, vinculin, and talin during renal cell death.
Collapse
Affiliation(s)
- Xiuli Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | |
Collapse
|
29
|
Caro AA, Cederbaum AI. Ca2+-dependent and independent mitochondrial damage in HepG2 cells that overexpress CYP2E1. Arch Biochem Biophys 2002; 408:162-70. [PMID: 12464267 DOI: 10.1016/s0003-9861(02)00544-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CYP2E1-dependent mitochondrial damage, in the presence or absence of extracellular calcium, was investigated. HepG2 cells expressing CYP2E1 (E47 cells) were preloaded with arachidonic acid (AA), washed, and incubated with iron-nitrilotriacetate 1:3 complex (Fe-NTA) in minimum essential medium (MEM) (1.8mM Ca(2+)) or Ca(2+)-free MEM (SMEM). Toxicity in SMEM was CYP2E1-dependent, necrotic, and lipid peroxidation-dependent. Intracellular calcium did not significantly change during the incubation in SMEM. Mitochondrial damage preceded the loss of plasma membrane integrity and was significant at 12h of incubation, in coincidence with the toxicity. E47 cells treated with AA+Fe in MEM also showed a decline of mitochondrial membrane potential (Delta(Psi)(m)) that preceded the loss of plasma membrane integrity, but starting at earlier times, e.g., 3h than in SMEM. The decline in Delta(Psi)(m) and the toxicity in both MEM and SMEM were inhibited by alpha-tocopherol and cyclosporin A, while the calpain inhibitor calpeptin was only effective in MEM. In conclusion, oxidative damage to mitochondria and the permeability transition plays a role in the CYP2E1-dependent toxicity of Fe+AA in HepG2 cells, both in MEM and SMEM. Ca(2+) mobilization and activation of calpain contributes to the more rapid onset of mitochondrial damage in MEM, while oxidative damage and lipid peroxidation are involved in the Ca(2+)-independent later onset of mitochondrial damage.
Collapse
Affiliation(s)
- Andres A Caro
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|