1
|
Xu M, Fu S, Wang B, Song X, Li B, Liu X, Li Y, Wang Y, Wang Q, Ling H, Li A, Liu M, Zhang X. Evaluation of Renal Microhemodynamics Heterogeneity in Different Strains and Sexes of Mice. J Transl Med 2024; 104:102087. [PMID: 38797344 DOI: 10.1016/j.labinv.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Addressing the existing gaps in our understanding of sex- and strain-dependent disparities in renal microhemodynamics, this study conducted an investigation into the variations in renal function and related biological oscillators. Using the genetically diverse mouse models BALB/c, C57BL/6, and Kunming, which serve as established proxies for the study of renal pathophysiology, we implemented laser Doppler flowmetry conjoined with wavelet transform analyses to interrogate dynamic renal microcirculation. Creatinine, urea, uric acid, glucose, and cystatin C levels were quantified to investigate potential divergences attributable to sex and genetic lineage. Our findings reveal marked sexual dimorphism in metabolite concentrations, as well as strain-specific variances, particularly in creatinine and cystatin C levels. Through the combination of Mantel tests and Pearson correlation coefficients, we delineated the associations between renal functional metrics and microhemodynamics, uncovering interactions in female BALB/c mice for creatinine and uric acid, and in male C57BL/6 mice for cystatin C. Histopathologic examination confirmed an augmented microvascular density in female mice and elucidating variations in the expression of estrogen receptor β among the strains. These data collectively highlight the influence of both sex and genetic constitution on renal microcirculation, providing an understanding that may inform the etiologic exploration of renal ailments.
Collapse
Affiliation(s)
- Mengting Xu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sunjing Fu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohong Song
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingyu Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qin Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Ling
- Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Science, Beijing, China.
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China.
| |
Collapse
|
2
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Geng CY, Wang FZ, Zhang R, Liu YY, Wang J. The predictive value of eGFR combined with BNP detection in acute kidney injury after acute myocardial infarction. Afr Health Sci 2023; 23:537-542. [PMID: 38223620 PMCID: PMC10782295 DOI: 10.4314/ahs.v23i2.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Objective The combined detection of eGFR and BNP may provide some value in predicting the occurrence of AKI after AMI, and the study is designed to propose and validate this hypothesis. Methods In retrospective research, AMI patients hospitalized at Weifang People's Hospital from January to December 2020 were included. Whether AKI occurred within a week of admission, patients were divided into two groups. Clinical data from two groups of patients were collected, and the Logistic regression model analysed the risk factors for AKI after AMI. The association between eGFR and BNP was analysed using Pearson linear correlation. The predictive value of eGFR and BNP alone and combined detection on AKI after AMI was analysed using the receiver operating characteristic (ROC) curve. Results Multivariate logistic regression showed that eGFR, BNP, HDLC, UA, and K ions were AKI risk factors (P < 0.05). The eGFR correlates negatively with BNP (R = -0.324, P < 0.05). The area under the curve (AUC) of eGFR and BNP alone and combined prediction for post-AMI AKI were 0.793, 0.826, and 0.831, respectively. Conclusion The combined detection of eGFR and BNP has a high predictive value for AKI development in AMI patients.
Collapse
Affiliation(s)
- Chen-Yu Geng
- School of Clinical Medicine, Weifang Medical University, Weifang 261000, China
| | - Fang-Ze Wang
- Department of Cardiology, Weifang People's Hospital, Weifang 261000, China
| | - Rui Zhang
- Department of Cardiology, Weifang People's Hospital, Weifang 261000, China
| | - Yan-Yu Liu
- School of Clinical Medicine, Weifang Medical University, Weifang 261000, China
| | - Jian Wang
- Department of Cardiology, Weifang People's Hospital, Weifang 261000, China
| |
Collapse
|
4
|
Lee B, Kang W, Oh SH, Cho S, Shin I, Oh EJ, Kim YJ, Ahn JS, Yook JM, Jung SJ, Lim JH, Kim YL, Cho JH, Oh WY. In vivo imaging of renal microvasculature in a murine ischemia-reperfusion injury model using optical coherence tomography angiography. Sci Rep 2023; 13:6396. [PMID: 37076541 PMCID: PMC10115874 DOI: 10.1038/s41598-023-33295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Optical coherence tomography angiography (OCTA) provides three-dimensional structural and semiquantitative imaging of microvasculature in vivo. We developed an OCTA imaging protocol for a murine kidney ischemia-reperfusion injury (IRI) model to investigate the correlation between renal microvascular changes and ischemic damage. Mice were divided into mild and moderate IRI groups according to the duration of ischemia (10 and 35 mins, respectively). Each animal was imaged at baseline; during ischemia; and at 1, 15, 30, 45, and 60 mins after ischemia. Amplitude decorrelation OCTA images were constructed with 1.5-, 3.0-, and 5.8-ms interscan times, to calculate the semiquantitative flow index in the superficial (50-70 μm) and the deep (220-340 μm) capillaries of the renal cortex. The mild IRI group showed no significant flow index change in both the superfial and the deep layers. The moderate IRI group showed a significantly decreased flow index from 15 and 45 mins in the superficial and deep layers, respectively. Seven weeks after IRI induction, the moderate IRI group showed lower kidney function and higher collagen deposition than the mild IRI group. OCTA imaging of the murine IRI model revealed changes in superficial blood flow after ischemic injury. A more pronounced decrease in superficial blood flow than in deep blood flow was associated with sustained dysfunction after IRI. Further investigation on post-IRI renal microvascular response using OCTA may improve our understanding of the relationship between the degree of ischemic insult and kidney function.
Collapse
Affiliation(s)
- ByungKun Lee
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Woojae Kang
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Se-Hyun Oh
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Seungwan Cho
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Inho Shin
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Eun-Joo Oh
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - You-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Sun Ahn
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ju-Min Yook
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Soo-Jung Jung
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Hoon Lim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Lim Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jang-Hee Cho
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Akalay S, Hosgood SA. How to Best Protect Kidneys for Transplantation-Mechanistic Target. J Clin Med 2023; 12:jcm12051787. [PMID: 36902572 PMCID: PMC10003664 DOI: 10.3390/jcm12051787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The increasing number of patients on the kidney transplant waiting list underlines the need to expand the donor pool and improve kidney graft utilization. By protecting kidney grafts adequately from the initial ischemic and subsequent reperfusion injury occurring during transplantation, both the number and quality of kidney grafts could be improved. The last few years have seen the emergence of many new technologies to abrogate ischemia-reperfusion (I/R) injury, including dynamic organ preservation through machine perfusion and organ reconditioning therapies. Although machine perfusion is gradually making the transition to clinical practice, reconditioning therapies have not yet progressed from the experimental setting, pointing towards a translational gap. In this review, we discuss the current knowledge on the biological processes implicated in I/R injury and explore the strategies and interventions that are being proposed to either prevent I/R injury, treat its deleterious consequences, or support the reparative response of the kidney. Prospects to improve the clinical translation of these therapies are discussed with a particular focus on the need to address multiple aspects of I/R injury to achieve robust and long-lasting protective effects on the kidney graft.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, 3000 Leuven, Belgium
| | - Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence:
| |
Collapse
|
6
|
Infante B, Conserva F, Pontrelli P, Leo S, Stasi A, Fiorentino M, Troise D, dello Strologo A, Alfieri C, Gesualdo L, Castellano G, Stallone G. Recent advances in molecular mechanisms of acute kidney injury in patients with diabetes mellitus. Front Endocrinol (Lausanne) 2023; 13:903970. [PMID: 36686462 PMCID: PMC9849571 DOI: 10.3389/fendo.2022.903970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Several insults can lead to acute kidney injury (AKI) in native kidney and transplant patients, with diabetes critically contributing as pivotal risk factor. High glucose per se can disrupt several signaling pathways within the kidney that, if not restored, can favor the instauration of mechanisms of maladaptive repair, altering kidney homeostasis and proper function. Diabetic kidneys frequently show reduced oxygenation, vascular damage and enhanced inflammatory response, features that increase the kidney vulnerability to hypoxia. Importantly, epidemiologic data shows that previous episodes of AKI increase susceptibility to diabetic kidney disease (DKD), and that patients with DKD and history of AKI have a generally worse prognosis compared to DKD patients without AKI; it is therefore crucial to monitor diabetic patients for AKI. In the present review, we will describe the causes that contribute to increased susceptibility to AKI in diabetes, with focus on the molecular mechanisms that occur during hyperglycemia and how these mechanisms expose the different types of resident renal cells to be more vulnerable to maladaptive repair during AKI (contrast- and drug-induced AKI). Finally, we will review the list of the existing candidate biomarkers of diagnosis and prognosis of AKI in patients with diabetes.
Collapse
Affiliation(s)
- Barbara Infante
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesca Conserva
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Serena Leo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Dario Troise
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Carlo Alfieri
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
7
|
Drug-induced de novo thrombotic microangiopathy diagnosed 2 years after renal transplantation: a case report and literature review. RENAL REPLACEMENT THERAPY 2023. [DOI: 10.1186/s41100-022-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
Post-transplant de novo thrombotic microangiopathy (TMA) is a rare yet serious complication that generally can develop in renal transplant recipients immediately after reperfusion or several months after transplantation. Here, we report a case of systemic tacrolimus-associated TMA in a patient diagnosed 2 years after renal transplantation.
Case presentation
A 49-year-old woman presented with severe anemia 18 months after undergoing renal transplantation. Anemia was refractory to recombinant human erythropoietin and was suspected to be due to excessive menstruation. Anemia persisted even after hysterectomy, and thereafter, pancytopenia developed. A bone marrow biopsy was performed and showed no evidence of myeloproliferative neoplasms. Furthermore, an increase in serum lactate dehydrogenase level and the appearance of schistocytes on peripheral blood smear was noted 24 months post-transplant. Other possible causes of de novo TMA were excluded, and an allograft biopsy was performed. Pathological findings of the allograft biopsy showed that some afferent arterioles had formed thrombi. Suspecting tacrolimus to be the cause of TMA, 25 months after the transplant, we switched treatment to cyclosporine. Pancytopenia and renal function improved after switching to this calcineurin inhibitor. Subsequently, her allograft renal function stabilized for three years after renal transplantation.
Conclusion
We encountered a case of secondary drug-induced TMA in the late stages of renal transplantation. Therefore, TMA should be suspected when anemia with hemolysis is observed in recipients of kidney transplant.
Collapse
|
8
|
Ghajar-Rahimi G, Agarwal A. Endothelial KLF11 as a Nephroprotectant in AKI. KIDNEY360 2022; 3:1302-1305. [PMID: 36176668 PMCID: PMC9416841 DOI: 10.34067/kid.0003422022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Gelare Ghajar-Rahimi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Health Care Services, Birmingham, Alabama
| |
Collapse
|
9
|
Freitas F, Attwell D. Pericyte-mediated constriction of renal capillaries evokes no-reflow and kidney injury following ischaemia. eLife 2022; 11:74211. [PMID: 35285797 PMCID: PMC8947765 DOI: 10.7554/elife.74211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury is common, with ~13 million cases and 1.7 million deaths/year worldwide. A major cause is renal ischaemia, typically following cardiac surgery, renal transplant or severe haemorrhage. We examined the cause of the sustained reduction in renal blood flow ('no-reflow'), which exacerbates kidney injury even after an initial cause of compromised blood supply is removed. Adult male Sprague-Dawley rats, or NG2-dsRed male mice were used in this study. After 60 min kidney ischaemia and 30-60 min reperfusion, renal blood flow remained reduced, especially in the medulla, and kidney tubule damage was detected as Kim-1 expression. Constriction of the medullary descending vasa recta and cortical peritubular capillaries occurred near pericyte somata, and led to capillary blockages, yet glomerular arterioles and perfusion were unaffected, implying that the long-lasting decrease of renal blood flow contributing to kidney damage was generated by pericytes. Blocking Rho kinase to decrease pericyte contractility from the start of reperfusion increased the post-ischaemic diameter of the descending vasa recta capillaries at pericytes, reduced the percentage of capillaries that remained blocked, increased medullary blood flow and reduced kidney injury. Thus, post-ischaemic renal no-reflow, contributing to acute kidney injury, reflects pericytes constricting the descending vasa recta and peritubular capillaries. Pericytes are therefore an important therapeutic target for treating acute kidney injury.
Collapse
Affiliation(s)
- Felipe Freitas
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Abstract
Hantavirus induced hemorrhagic fever with renal syndrome (HFRS) is an emerging viral zoonosis affecting up to 200,000 humans annually worldwide. This review article is focused on recent advances in the mechanism, epidemiology, diagnosis, and treatment of hantavirus induced HFRS. The importance of interactions between viral and host factors in the design of therapeutic strategies is discussed. Hantavirus induced HFRS is characterized by thrombocytopenia and proteinuria of varying severities. The mechanism of kidney injury appears immunopathological with characteristic deterioration of endothelial cell function and compromised barrier functions of the vasculature. Although multidisciplinary research efforts have provided insights about the loss of cellular contact in the endothelium leading to increased permeability, the details of the molecular mechanisms remain poorly understood. The epidemiology of hantavirus induced renal failure is associated with viral species and the geographical location of the natural host of the virus. The development of vaccine and antiviral therapeutics is necessary to avoid potentially severe outbreaks of this zoonotic illness in the future. The recent groundbreaking approach to the SARS-CoV-2 mRNA vaccine has revolutionized the general field of vaccinology and has provided new directions for the use of this promising platform for widespread vaccine development, including the development of hantavirus mRNA vaccine. The combinational therapies specifically targeted to inhibit hantavirus replication and vascular permeability in infected patients will likely improve the disease outcome.
Collapse
|
11
|
Abbas F, Abbas SF. De Novo and Recurrent Thrombotic Microangiopathy After Renal Transplantation: Current Concepts in Management. EXP CLIN TRANSPLANT 2021; 20:549-557. [PMID: 34546154 DOI: 10.6002/ect.2021.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Thrombotic microangiopathy is a well-recognized complication of kidney transplantation that leads frequently to allograft failure. This serious outcome can greatly depend on the underlying etiology and on the timing of therapeutic interventions. Thrombotic microangiopathy syndrome may occur with no previous history of thrombotic microangiopathy (that is, de novo thrombotic microangiopathy), mostly due to medica tions or infections. More frequently, it may recur after kidney transplant in patients with endstage renal failure due to atypical hemolytic uremic syndrome. However, for patients with Shiga-toxininduced hemolytic uremic syndrome, particularly pediatric patients, there is a favorable prognosis. A fundamental tool for management of this disease is genetic screening for abnormal mutations; this can recognize the suggested approach of therapy and may determine the outcome of the disease to a large extent. Although patients with complement factor H and I mutations have worse prognosis, other patients with membrane cofactor protein mutations, for example, have a more favorable prognosis. Accordingly, the plan of therapy can be tailored with a better chance of cure. Unfortunately, the successful use of the biological agent eculizumab, an anti-C5 agent, in some of these syndromes is largely impeded by its high cost, which is linked to its use as a life-long therapy. However, newly suggested therapeutic options may ameliorate this drawback.
Collapse
Affiliation(s)
- Fedaei Abbas
- From the Nephrology Department, Jaber El Ahmed Military Hospital, Safat, Kuwait.,the Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
12
|
Novel Insights into the Molecular Mechanisms of Ischemia/Reperfusion Injury in Kidney Transplantation. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the most important mechanisms involved in delayed or reduced graft function after kidney transplantation. It is a complex pathophysiological process, followed by a pro-inflammatory response that enhances the immunogenicity of the graft and the risk of acute rejection. Many biologic processes are involved in its development, such as transcriptional reprogramming, the activation of apoptosis and cell death, endothelial dysfunction and the activation of the innate and adaptive immune response. Recent evidence has highlighted the importance of complement activation in IRI cascade, which expresses a pleiotropic action on tubular cells, on vascular cells (pericytes and endothelial cells) and on immune system cells. The effects of IRI in the long term lead to interstitial fibrosis and tubular atrophy, which contribute to chronic graft dysfunction and subsequently graft failure. Furthermore, several metabolic alterations occur upon IRI. Metabolomic analyses of IRI detected a “metabolic profile” of this process, in order to identify novel biomarkers that may potentially be useful for both early diagnosis and monitoring the therapeutic response. The aim of this review is to update the most relevant molecular mechanisms underlying IRI, and also to discuss potential therapeutic targets in future clinical practice.
Collapse
|
13
|
Doreille A, Azzi F, Larivière-Beaudoin S, Karakeussian-Rimbaud A, Trudel D, Hébert MJ, Dieudé M, Patey N, Cardinal H. Acute Kidney Injury, Microvascular Rarefaction, and Estimated Glomerular Filtration Rate in Kidney Transplant Recipients. Clin J Am Soc Nephrol 2021; 16:415-426. [PMID: 33648972 PMCID: PMC8011007 DOI: 10.2215/cjn.07270520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/14/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Animal studies suggest that microvascular rarefaction is a key factor in the acute kidney disease to CKD transition. Hence, delayed graft function appears as a unique human model of AKI to further explore the role of microvascular rarefaction in kidney transplant recipients. Here, we assessed whether delayed graft function is associated with peritubular capillary loss and evaluated the association between this loss and long-term kidney graft function. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This observational, retrospective cohort study included 61 participants who experienced delayed graft function and 130 who had immediate graft function. We used linear regression models to evaluate associations between delayed graft function and peritubular capillary density expressed as the percentage of efficient cortical area occupied by peritubular capillaries in pre- and post-transplant graft biopsies. eGFRs 1 and 3 years post-transplant were secondary outcomes. RESULTS Post-transplant biopsies were performed at a median of 113 days (interquartile range, 101-128) after transplantation. Peritubular capillary density went from 15.4% to 11.5% in patients with delayed graft function (median change, -3.7%; interquartile range, -6.6% to -0.8%) and from 19.7% to 15.1% in those with immediate graft function (median change, -4.5%; interquartile range, -8.0% to -0.8%). Although the unadjusted change in peritubular capillary density was similar between patients with and without delayed graft function, delayed graft function was associated with more peritubular capillary loss in the multivariable analysis (adjusted difference in change, -2.9%; 95% confidence interval, -4.0 to -1.8). Pretransplant peritubular capillary density and change in peritubular capillary density were associated with eGFR 1 and 3 years post-transplantation. CONCLUSIONS Perioperative AKI is associated with lower density in peritubular capillaries before transplantation and with loss of peritubular capillaries following transplantation. Lower peritubular capillary density is linked to lower long-term eGFR.
Collapse
Affiliation(s)
- Alice Doreille
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Faculté de Médecine, Université Paris-Sud, Paris, France
| | - Féryel Azzi
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Stéphanie Larivière-Beaudoin
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Annie Karakeussian-Rimbaud
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Dominique Trudel
- Institut du cancer de Montréal, Montreal, Quebec, Canada,Pathology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Hébert
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada,Nephrology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Mélanie Dieudé
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Natacha Patey
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Pathology Department, Sainte-Justine Hospital, Montreal, Quebec, Canada
| | - Héloïse Cardinal
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada,Nephrology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Ullah MM, Basile DP. Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease. Semin Nephrol 2020; 39:567-580. [PMID: 31836039 DOI: 10.1016/j.semnephrol.2019.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, there has been an increased appreciation of the long-term sequelae of acute kidney injury (AKI) and the potential development of chronic kidney disease (CKD). Several pathophysiologic features have been proposed to mediate AKI to CKD progression including maladaptive alterations in tubular, interstitial, inflammatory, and vascular cells. These alterations likely interact to culminate in the progression to CKD. In this article we focus primarily on evidence of vascular rarefaction secondary to AKI, and the potential mechanisms by which rarefaction occurs in relation to other alterations in tubular and interstitial compartments. We further focus on the potential that rarefaction contributes to renal hypoxia. Consideration of the role of hypoxia in AKI to CKD transition focuses on experimental evidence of persistent renal hypoxia after AKI and experimental maneuvers to evaluate the influence of hypoxia, per se, in progressive disease. Finally, consideration of methods to evaluate hypoxia in patients is provided with the suggestion that noninvasive measurement of renal hypoxia may provide insight into progression in post-AKI patients.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN
| | - David P Basile
- Department of Medicine, Division of Nephrology, Indiana University, Indianapolis, IN.
| |
Collapse
|
15
|
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, Ploeg RJ, Leuvenink HGD. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J Clin Med 2020; 9:jcm9010253. [PMID: 31963521 PMCID: PMC7019324 DOI: 10.3390/jcm9010253] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Søren E. Pischke
- Clinic for Emergencies and Critical Care, Department of Anesthesiology, Department of Immunology, Oslo University Hospital, 4950 Nydalen, 0424 Oslo, Norway;
| | - Stefan P. Berger
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Jan Stephan F. Sanders
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Robert A. Pol
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Basic and Applied Medical Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Rutger J. Ploeg
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| |
Collapse
|
16
|
Kang W, Cheng Y, Zhou F, Wang L, Zhong L, Li HT, Wang X, Dang S, Wang X. Neuregulin‑1 protects cardiac function in septic rats through multiple targets based on endothelial cells. Int J Mol Med 2019; 44:1255-1266. [PMID: 31432099 PMCID: PMC6713419 DOI: 10.3892/ijmm.2019.4309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023] Open
Abstract
The primary mechanism underlying sepsis-induced cardiac dysfunction is loss of endothelial barrier function. Neuregulin-1 (NRG-1) exerts its functions on multiple targets. The present study aimed to identify the protective effects of NRG-1 in myocardial cells, including endothelial, anti-inflammatory and anti-apoptotic effects. Subsequent to lipopolysaccharide (LPS)-induced sepsis, rats were administered with either a vehicle or recombinant human NRG-1 (rhNRG-1; 10 µg/kg/day) for one or two days. H9c2 cardio-myoblasts were subjected to LPS (10 µg/ml) treatment for 12 and 24 h with or without rhNRG-1 (1 µg/ml). Survival rates were recorded at 48 h following sepsis induction. The hemo-dynamic method was performed to evaluate cardiac function, and myocardial morphology was observed. Von Willebrand Factor levels were detected using an immunofluorescence assay. Serum levels of tumor necrosis factor α, interleukin-6, intercellular cell adhesion molecule-1 and vascular endothelial growth factor were detected using an enzyme-linked immuno-sorbent assay; the reductase method was performed to detect serum nitric oxide levels. Apoptosis rates were determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Ras homolog family member A (RhoA) and Rho-associated protein kinase 1 (ROCK1) protein levels were assessed using western blotting. Transmission electron microscopy was used to observe endothelial cells and myocardial ultrastructure changes. Results revealed that NRG-1-treated rats displayed less myocardial damage compared with sham rats. NRG-1 administration strengthened the barrier function of the vasculature, reduced the secretion of endothelial-associated biomarkers and exerted anti-inflammatory and anti-apoptotic effects. In addition, NRG-1 inhibited RhoA and ROCK1 signaling. The results revealed that NRG-1 improves cardiac function, increases the survival rate of septic rats and exerts protective effects via multiple targets throughout the body. The present results contribute to the development of a novel approach to reverse damage to myocardial and endothelial cells during sepsis.
Collapse
Affiliation(s)
- Wen Kang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei 430060, P.R. China
| | - Hai Tao Li
- Department of Cardiology, Hainan General Hospital, Haikou, Hainan 570100, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Song Dang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
17
|
Sánchez-Fructuoso AI, Pérez-Flores I, Del Río F, Blázquez J, Calvo N, Moreno de la Higuera MÁ, Gómez A, Alonso-Lera S, Soria A, González M, Corral E, Mateos A, Moreno-Sierra J, Fernández Pérez C. Uncontrolled donation after circulatory death: A cohort study of data from a long-standing deceased-donor kidney transplantation program. Am J Transplant 2019; 19:1693-1707. [PMID: 30589507 DOI: 10.1111/ajt.15243] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 01/25/2023]
Abstract
Despite good long-term outcomes of kidney transplants from controlled donation after circulatory death (DCD) donors, there are few uncontrolled DCD (uDCD) programs. This longitudinal study compares outcomes for all uDCD (N = 774) and all donation after brain death (DBD) (N = 613) kidney transplants performed from 1996 to 2015 at our center. DBD transplants were divided into those from standard-criteria (SCD) (N = 366) and expanded-criteria (N = 247) brain-dead donors (ECD). One-, 5-, and 10-year graft survival rates were 91.7%, 85.7%, and 80.6% for SCD; 86.0%, 75.8%, and 61.4% for ECD; and 85.1%, 78.1%, and 72.2% for uDCD, respectively. Graft survival was worse in recipients of uDCD kidneys than of SCD (P = .004) but better than in transplants from ECD (P = .021). The main cause of graft loss in the uDCD transplants was primary nonfunction. Through logistic regression, donor death due to pulmonary embolism (OR 4.31, 95% CI 1.65-11.23), extrahospital CPR time ≥75 minutes (OR1.94, 95%CI 1.18-3.22), and in-hospital CPR time ≥50 minutes (OR 1.79, 95% CI 1.09-2.93) emerged as predictive factors of primary nonunction. According to the outcomes of our long-standing kidney transplantation program, uDCD could help expand the kidney donor pool.
Collapse
Affiliation(s)
| | - Isabel Pérez-Flores
- Nephrology Department, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - Francisco Del Río
- Transplantation Coordination Unit, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - Jesús Blázquez
- Urology Department, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - Natividad Calvo
- Nephrology Department, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | | | - Angel Gómez
- Urology Department, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - Santiago Alonso-Lera
- Surgery Department, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - Ana Soria
- Transplantation Coordination Unit, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - Manuel González
- Transplantation Coordination Unit, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | | | - Alonso Mateos
- SUMMA112, School of Medicine, Francisco de Vitoria University, Madrid, Spain
| | - Jesús Moreno-Sierra
- Transplantation Coordination Unit, Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
18
|
Sharapov MG, Fesenko EE, Novoselov VI. The Role of Peroxiredoxins in Various Diseases Caused by Oxidative Stress and the Prospects of Using Exogenous Peroxiredoxins. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
19
|
Rosen S, Heyman S. Concerning cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int 2018; 94:218. [DOI: 10.1016/j.kint.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
|
20
|
Cardinal H, Dieudé M, Hébert MJ. Endothelial Dysfunction in Kidney Transplantation. Front Immunol 2018; 9:1130. [PMID: 29875776 PMCID: PMC5974048 DOI: 10.3389/fimmu.2018.01130] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Kidney transplantation entails a high likelihood of endothelial injury. The endothelium is a target of choice for injury by ischemia-reperfusion, alloantibodies, and autoantibodies. A certain degree of ischemia-reperfusion injury inevitably occurs in the immediate posttransplant setting and can manifest as delayed graft function. Acute rejection episodes, whether T-cell or antibody-mediated, can involve the graft micro- and macrovasculature, leading to endothelial injury and adverse long-term consequences on graft function and survival. In turn, caspase-3 activation in injured and dying endothelial cells favors the release of extracellular vesicles (apoptotic bodies and apoptotic exosome-like vesicles) that further enhance autoantibody production, complement deposition, and microvascular rarefaction. In this review, we present the evidence for endothelial injury, its causes and long-term consequences on graft outcomes in the field of kidney transplantation.
Collapse
Affiliation(s)
- Héloïse Cardinal
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Montreal, QC, Canada.,University of Montreal, Montreal, QC, Canada
| | - Mélanie Dieudé
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Montreal, QC, Canada
| | - Marie-Josée Hébert
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Montreal, QC, Canada.,University of Montreal, Montreal, QC, Canada
| |
Collapse
|
21
|
Fischer D, Seifen C, Baer P, Jung M, Mertens C, Scheller B, Zacharowski K, Hofmann R, Maier TJ, Urbschat A. The Fibrin Cleavage Product Bβ 15-42 Channels Endothelial and Tubular Regeneration in the Post-acute Course During Murine Renal Ischemia Reperfusion Injury. Front Pharmacol 2018; 9:369. [PMID: 29755348 PMCID: PMC5934548 DOI: 10.3389/fphar.2018.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Early and adequate restoration of endothelial and tubular renal function is a substantial step during regeneration after ischemia reperfusion (IR) injury, occurring, e.g., in kidney transplantation, renal surgery, and sepsis. While tubular epithelial cell injury has long been of central importance, recent perception includes the renal vascular endothelium. In this regard, the fibrin cleavage product fibrinopeptide Bβ15-42 mitigate IR injury by stabilizing interendothelial junctions through its affinity to VE-cadherin. Therefore, this study focused on the effect of Bβ15-42 on post-acute physiological renal regeneration. For this, adult male C57BL/6 mice were exposed to a 30 min bilateral renal ischemia and reperfusion for 24 h or 48 h. Animals were randomized in a non-operative control group, two operative groups each treated with i.v. administration of either saline or Bβ15-42 (2.4 mg/kg) immediately prior to reperfusion. Endothelial activation and inflammatory response was attenuated in renal tissue homogenates by single application of Bβ15-42. Meanwhile, Bβ15-42 did not affect acute kidney injury markers. Regarding the angiogenetic players VEGF-A, Angiopoietin-1, Angiopoietin-2, however, we observed significant higher expressions at mRNA and trend to higher protein level in Bβ15-42 treated mice, compared to saline treated mice after 48 h of IR, thus pointing toward an increased angiogenetic activity. Similar dynamics were observed for the intermediate filament vimentin, the cytoprotective protein klotho, stathmin and the proliferation cellular nuclear antigen, which were significantly up-regulated at the same points in time. These results suggest a beneficial effect of anatomical contiguously located endothelial cells on tubular regeneration through stabilization of endothelial integrity. Therefore, it seems that Bβ15-42 represents a novel pharmacological approach in the targeted therapy of acute renal failure in everyday clinical practice.
Collapse
Affiliation(s)
- Dania Fischer
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Christopher Seifen
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Patrick Baer
- Clinic of Internal Medicine III, Division of Nephrology, University Hospital Frankfurt, Frankfurt, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Christina Mertens
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bertram Scheller
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Rainer Hofmann
- Clinic of Urology and Pediatric Urology, Philipps University of Marburg, Marburg, Germany
| | - Thorsten J Maier
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anja Urbschat
- Clinic of Urology and Pediatric Urology, Philipps University of Marburg, Marburg, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Ferré F, Marty P, Folcher C, Kurrek M, Minville V. Effect of fluid challenge on renal resistive index after major orthopaedic surgery: A prospective observational study using Doppler ultrasonography. Anaesth Crit Care Pain Med 2018; 38:147-152. [PMID: 29684655 DOI: 10.1016/j.accpm.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/07/2018] [Accepted: 04/15/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND A postoperative renal resistive index (RRI)>0.70 has the best threshold to early predict acute kidney injury (AKI). The response of RRI to a postoperative fluid challenge (FC) is unknown. The aim of our study was to assess the impact of a FC on RRI in suspected hypovolaemia patients after orthopaedic surgery. DESIGN In this single-centre observational study, we prospectively screened 156 patients in the recovery room after having undergone a hip or knee replacement. INTERVENTIONS Forty-six patients with a RRI>0.70 and requiring FC were included. RRI and cardiac output (CO) were measured before and immediately after a fluid challenge with 500mL of isotonic saline. A decrease in RRI>5% was considered significant (renal responders). RESULTS Overall, FC resulted in a consistent decrease in RRI (from 0.74 [0.72-0.79] to 0.70 [0.68-0.73], P<0.01). Thirty-four patients (74%) showed a significant decrease in their RRI (from 0.74 [0.73-0.79] to 0.69 [0.67-0.72], P<0.05, versus non-responders: from 0.73 [0.72-0.75] to 0.72 [0.71-0.79], P=NS). CO increased equally among renal responders and non-responders (P=0.56). No correlation was found between changes in RRI and CO (r2=0.04; P=0.064). AKI was more common in renal non-responders (7/12) than in responders (3/34, P=0.001). CONCLUSIONS After major orthopaedic surgery, a FC can decrease RRI in suspected hypovolaemia patients at risk of postoperative AKI, but the changes are not correlated to changes in CO. Decreases in RRI were associated with better renal outcome.
Collapse
Affiliation(s)
- Fabrice Ferré
- Deparment of anaesthesia and intensive care, CHU Purpan, place du Dr Baylac, TSA 40031, 31059 Toulouse cedex 9, France.
| | - Philippe Marty
- Deparment of anaesthesia and intensive care, CHU Purpan, place du Dr Baylac, TSA 40031, 31059 Toulouse cedex 9, France
| | - Cédric Folcher
- Deparment of anaesthesia and intensive care, CHU Purpan, place du Dr Baylac, TSA 40031, 31059 Toulouse cedex 9, France
| | - Matt Kurrek
- Deparment of anaesthesia and intensive care, CHU Purpan, place du Dr Baylac, TSA 40031, 31059 Toulouse cedex 9, France; Department of anaesthesia, university of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Vincent Minville
- Deparment of anaesthesia and intensive care, CHU Purpan, place du Dr Baylac, TSA 40031, 31059 Toulouse cedex 9, France
| |
Collapse
|
23
|
Abstract
Critically ill patients with acute kidney injury (AKI) are heterogeneous on pathophysiology and prognosis. The role of endothelial damage in the pathogenesis of refractory AKI has not been clarified. The aim was to determine if biomarkers of endothelial damage, independently of the inflammatory insult on the kidney, can predict recovery of acute kidney injury. METHODS From the "Procalcitonin And Survival Study" multicenter intensive care unit cohort, followed for 28 days after admission, we included patients without chronic kidney disease, who survived >24 h after admission and with plasma samples at admission available for biomarker analysis. We defined AKI by the "Kidney Disease: Improving Global Outcomes" guidelines and recovery of prior kidney function as alive for five consecutive days after admission with no need for renal replacement therapy and creatinine levels consistently below ×1.5 the level before admission. We adjusted models for age, gender, vasopressor treatment, mechanical ventilation and levels of creatinine, procalcitonin, platelets, and bilirubin at admission. RESULTS Of a total 213 with AKI at admission, 99 recovered prior kidney function during follow-up. Endothelial damage on admission, measured by Soluble Thrombomodulin (sTM), was the strongest predictor of a reduced chance of recovery of prior kidney function (sTM in the highest vs. three lower quartiles hazard ratio 0.39; 95% confidence interval 0.21-0.73, P = 0.003). In contrast, the degree of the initial inflammatory insult on the kidney, measured by neutrophil gelatinase-associated lipocalin (NGAL), failed to predict this outcome (NGAL in highest vs. three lower quartiles hazard ratio = 1.20; 95% CI 0.72-2.00; P = 0.48). Procalcitonin, a specific marker of bacterial infection, was also associated with the rate of recovery (PCT in highest vs. three lower quartiles hazard ratio = 0.59; 95% CI 0.36-0.98; P = 0.04). CONCLUSION AKI patients with high levels of sTM had a reduced chance of recovering prior renal function. Our findings support disintegration of the endothelium as a critical point in the pathogenesis of AKI that is refractory to treatment.
Collapse
|
24
|
Basile DP, Collett JA, Yoder MC. Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12914. [PMID: 28656611 PMCID: PMC5745310 DOI: 10.1111/apha.12914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) represents a significant clinical concern that is associated with high mortality rates and also represents a significant risk factor for the development of chronic kidney disease (CKD). This article will consider alterations in renal endothelial function in the setting of AKI that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD. We provide updated terminology for cells previously classified as 'endothelial progenitor' that may mediate vascular repair such as pro-angiogenic cells and endothelial colony-forming cells. We consider how endothelial repair may be mediated by these different cell types following vascular injury, particularly in models of AKI. We further summarize the potential ability of these different cells to mitigate the severity of AKI, improve perfusion and maintain vascular structure in pre-clinical studies.
Collapse
Affiliation(s)
- David P. Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Jason A. Collett
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine
| |
Collapse
|
25
|
Smith LE, Smith DK, Blume JD, Linton MF, Billings FT. High-Density Lipoprotein Cholesterol Concentration and Acute Kidney Injury After Cardiac Surgery. J Am Heart Assoc 2017; 6:JAHA.117.006975. [PMID: 29223955 PMCID: PMC5779016 DOI: 10.1161/jaha.117.006975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Acute kidney injury (AKI) after cardiac surgery is associated with increased short‐ and long‐term mortality. Inflammation, oxidative stress, and endothelial dysfunction and damage play important roles in the development of AKI. High‐density lipoproteins (HDLs) have anti‐inflammatory and antioxidant properties and improve endothelial function and repair. Statins enhance HDL's anti‐inflammatory and antioxidant capacities. We hypothesized that a higher preoperative HDL cholesterol concentration is associated with decreased AKI after cardiac surgery and that perioperative statin exposure potentiates this association. Methods and Results We tested our hypothesis in 391 subjects from a randomized clinical trial of perioperative atorvastatin to reduce AKI after cardiac surgery. A 2‐component latent variable mixture model was used to assess the association between preoperative HDL cholesterol concentration and postoperative change in serum creatinine, adjusted for known AKI risk factors and suspected confounders. Interaction terms were used to examine the effects of preoperative statin use, preoperative statin dose, and perioperative atorvastatin treatment on the association between preoperative HDL and AKI. A higher preoperative HDL cholesterol concentration was independently associated with a decreased postoperative serum creatinine change (P=0.02). The association between a high HDL concentration and an attenuated increase in serum creatinine was strongest in long‐term statin‐using patients (P=0.008) and was further enhanced with perioperative atorvastatin treatment (P=0.004) and increasing long‐term statin dose (P=0.003). Conclusions A higher preoperative HDL cholesterol concentration was associated with decreased AKI after cardiac surgery. Preoperative and perioperative statin treatment enhanced this association, demonstrating that pharmacological potentiation is possible during the perioperative period. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique Identifier: NCT00791648.
Collapse
Affiliation(s)
- Loren E Smith
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Derek K Smith
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey D Blume
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - MacRae F Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Frederic T Billings
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
26
|
Pannabecker TL. Renal vascular pericytes: long overlooked and poorly understood, but clearly important, and what about those regulatory pathways? Am J Physiol Renal Physiol 2017; 314:F67-F69. [PMID: 28971993 DOI: 10.1152/ajprenal.00468.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Thomas L Pannabecker
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| |
Collapse
|
27
|
Crislip GR, O'Connor PM, Wei Q, Sullivan JC. Vasa recta pericyte density is negatively associated with vascular congestion in the renal medulla following ischemia reperfusion in rats. Am J Physiol Renal Physiol 2017; 313:F1097-F1105. [PMID: 28794065 DOI: 10.1152/ajprenal.00261.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Recent evidence suggests that a greater density of pericytes in renal cadaveric allografts is associated with better recovery following transplant. The physiological mechanism(s) through which pericyte density may be beneficial is not well understood. The goal of this study was to test the hypothesis that lower medullary pericyte density is associated with greater renal injury following ischemia reperfusion (IR) in a rat model, providing a basis for future studies to better understand pericytes in a pathological environment. To test our hypothesis, we determined the association between medullary pericyte density and renal injury in spontaneously hypertensive rats (SHR) following 45 min of warm bilateral IR. We found that there was a significant negative relationship between pericyte density and plasma creatinine (slope = -0.03, P = 0.02) and blood urea nitrogen (slope = -0.5, P = 0.01) in female but not male SHR. Pericyte density was negatively associated with medullary peritubular capillary (PT) congestion in both sexes following IR (male: slope = -0.04, P = 0.009; female: slope = -0.03, P = 0.0001). To further test this relationship, we used a previously reported method to reduce pericyte density in SHR. Medullary erythrocyte congestion in vasa recta (VR) and PT significantly increased following IR in both sexes when pericyte density was pharmacologically decreased (VR: P = 0.03; PT: P = 0.03). Our data support the hypothesis that pericyte density is negatively associated with the development of IR injury in SHR, which may be mediated by erythrocyte congestion in the medullary vasculature.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Physiology, Augusta University, Augusta, Georgia; and
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia; and
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia
| | | |
Collapse
|
28
|
Jankauskas SS, Andrianova NV, Alieva IB, Prusov AN, Matsievsky DD, Zorova LD, Pevzner IB, Savchenko ES, Pirogov YA, Silachev DN, Plotnikov EY, Zorov DB. Dysfunction of Kidney Endothelium after Ischemia/Reperfusion and Its Prevention by Mitochondria-Targeted Antioxidant. BIOCHEMISTRY (MOSCOW) 2017; 81:1538-1548. [PMID: 28259131 DOI: 10.1134/s0006297916120154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One of the most important pathological consequences of renal ischemia/reperfusion (I/R) is kidney malfunctioning. I/R leads to oxidative stress, which affects not only nephron cells but also cells of the vascular wall, especially endothelium, resulting in its damage. Assessment of endothelial damage, its role in pathological changes in organ functioning, and approaches to normalization of endothelial and renal functions are vital problems that need to be resolved. The goal of this study was to examine functional and morphological impairments occurring in the endothelium of renal vessels after I/R and to explore the possibility of alleviation of the severity of these changes using mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decylrhodamine 19 (SkQR1). Here we demonstrate that 40-min ischemia with 10-min reperfusion results in a profound change in the structure of endothelial cells mitochondria, accompanied by vasoconstriction of renal blood vessels, reduced renal blood flow, and increased number of endothelial cells circulating in the blood. Permeability of the kidney vascular wall increased 48 h after I/R. Injection of SkQR1 improves recovery of renal blood flow and reduces vascular resistance of the kidney in the first minutes of reperfusion; it also reduces the severity of renal insufficiency and normalizes permeability of renal endothelium 48 h after I/R. In in vitro experiments, SkQR1 provided protection of endothelial cells from death provoked by oxygen-glucose deprivation. On the other hand, an inhibitor of NO-synthases, L-nitroarginine, abolished the positive effects of SkQR1 on hemodynamics and protection from renal failure. Thus, dysfunction and death of endothelial cells play an important role in the development of reperfusion injury of renal tissues. Our results indicate that the major pathogenic factors in the endothelial damage are oxidative stress and mitochondrial damage within endothelial cells, while mitochondria-targeted antioxidants could be an effective tool for the protection of tissue from negative effects of ischemia.
Collapse
Affiliation(s)
- S S Jankauskas
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Park JS, Choi HI, Bae EH, Ma SK, Kim SW. Small heterodimer partner attenuates hydrogen peroxide-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase by suppression of activator protein-1 and nuclear factor-κB in renal proximal tubule epithelial cells. Int J Mol Med 2017; 39:701-710. [DOI: 10.3892/ijmm.2017.2883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
|
30
|
Salvadori M, Bertoni E. Complement related kidney diseases: Recurrence after transplantation. World J Transplant 2016; 6:632-645. [PMID: 28058212 PMCID: PMC5175220 DOI: 10.5500/wjt.v6.i4.632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 02/05/2023] Open
Abstract
The recurrence of renal disease after renal transplantation is becoming one of the main causes of graft loss after kidney transplantation. This principally concerns some of the original diseases as the atypical hemolytic uremic syndrome (HUS), the membranoproliferative glomerulonephritis (MPGN), in particular the MPGN now called C3 glomerulopathy. Both this groups of renal diseases are characterized by congenital (genetic) or acquired (auto-antibodies) modifications of the alternative pathway of complement. These abnormalities often remain after transplantation because they are constitutional and poorly influenced by the immunosuppression. This fact justifies the high recurrence rate of these diseases. Early diagnosis of recurrence is essential for an optimal therapeutically approach, whenever possible. Patients affected by end stage renal disease due to C3 glomerulopathies or to atypical HUS, may be transplanted with extreme caution. Living donor donation from relatives is not recommended because members of the same family may be affected by the same gene mutation. Different therapeutically approaches have been attempted either for recurrence prevention and treatment. The most promising approach is represented by complement inhibitors. Eculizumab, a monoclonal antibody against C5 convertase is the most promising drug, even if to date is not known how long the therapy should be continued and which are the best dosing. These facts face the high costs of the treatment. Eculizumab resistant patients have been described. They could benefit by a C3 convertase inhibitor, but this class of drugs is by now the object of randomized controlled trials.
Collapse
|
31
|
Nephroprotective Effect Exogenous Antioxidant Enzymes during Ischemia/Reperfusion-Induced Damage of Renal Tissue. Bull Exp Biol Med 2016; 160:322-6. [DOI: 10.1007/s10517-016-3161-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 01/24/2023]
|
32
|
Silver SA, Cardinal H, Colwell K, Burger D, Dickhout JG. Acute kidney injury: preclinical innovations, challenges, and opportunities for translation. Can J Kidney Health Dis 2015; 2:30. [PMID: 26331054 PMCID: PMC4556308 DOI: 10.1186/s40697-015-0062-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a clinically important condition that has attracted a great deal of interest from the biomedical research community. However, acute kidney injury AKI research findings have yet to be translated into significant changes in clinical practice. OBJECTIVE This article reviews many of the preclinical innovations in acute kidney injury AKI treatment, and explores challenges and opportunities to translate these finding into clinical practice. SOURCES OF INFORMATION MEDLINE, ISI Web of Science. FINDINGS This paper details areas in biomedical research where translation of pre-clinical findings into clinical trials is ongoing, or nearing a point where trial design is warranted. Further, the paper examines ways that best practice in the management of AKI can reach a broader proportion of the patient population experiencing this condition. LIMITATIONS This review highlights pertinent literature from the perspective of the research interests of the authors for new translational work in AKI. As such, it does not represent a systematic review of all of the AKI literature. IMPLICATIONS Translation of findings from biomedical research into AKI therapy presents several challenges. These may be partly overcome by targeting populations for interventional trials where the likelihood of AKI is very high, and readily predictable. Further, specific clinics to follow-up with patients after AKI events hold promise to provide best practice in care, and to translate therapies into treatment for the broadest possible patient populations.
Collapse
Affiliation(s)
- Samuel A. Silver
- />Division of Nephrology, St. Michael’s Hospital, University of Toronto, Toronto, Canada
| | - Héloise Cardinal
- />Division of Nephrology, Centre Hospitalier de l’Université de Montréal and CHUM research center, Montreal, Quebec Canada
| | - Katelyn Colwell
- />Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario Canada
| | - Dylan Burger
- />Kidney Research Centre, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario Canada
| | - Jeffrey G. Dickhout
- />Department of Medicine, Division of Nephrology, McMaster University and St. Joseph’s Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6 Canada
| |
Collapse
|
33
|
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 2015; 26:1765-76. [PMID: 25810494 PMCID: PMC4520181 DOI: 10.1681/asn.2015010006] [Citation(s) in RCA: 499] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.
Collapse
Affiliation(s)
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wilhelm Kriz
- Medical Fakultät Mannheim, Abteilung Anatomie und Entwicklungsbiologie Mannheim, University of Heidelberg, Baden-Wuerttemberg, Germany; and
| | - Anil K Bidani
- Department of Medicine, Loyola University and Hines Veterans Affairs Hospital, Maywood, Illinois
| |
Collapse
|
34
|
Stefanska A, Eng D, Kaverina N, Duffield JS, Pippin JW, Rabinovitch P, Shankland SJ. Interstitial pericytes decrease in aged mouse kidneys. Aging (Albany NY) 2015; 7:370-82. [PMID: 26081073 PMCID: PMC4505164 DOI: 10.18632/aging.100756] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
With increasing age, the kidney undergoes characteristic changes in the glomerular and tubulo-interstitial compartments, which are ultimately accompanied by reduced kidney function. Studies have shown age-related loss of peritubular vessels. Normal peritubular vessel tone, function and survival depend on neighboring pericytes. Pericyte detachment leads to vascular damage, which can be accompanied by their differentiation to fibroblasts and myofibroblasts, a state that favors matrix production. To better understand the fate of pericytes in the aged kidney, 27 month-old mice were studied. Compared to 3 month-old young adult mice, aged kidneys showed a substantial decrease in capillaries, identified by CD31 staining, in both cortex and medulla. This was accompanied by a marked decrease in surrounding NG2+ / PDGFRβ+ pericytes. This decrease was more pronounced in the medulla. Capillaries devoid of pericytes were typically dilated in aged mice. Aged kidneys were also characterized by interstitial fibrosis due to increased collagen-I and -III staining. This was accompanied by an increase in the number of pericytes that acquired a pro-fibrotic phenotype, identified by increased PDGFRβ+ / αSMA+ staining. These findings are consistent with the decline in kidney interstitial pericytes as a critical step in the development of changes to the peritubular vasculature with aging, and accompanying fibrosis.
Collapse
Affiliation(s)
- Ania Stefanska
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Diana Eng
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Natalya Kaverina
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Jeremy S. Duffield
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Biogen Idec, Cambridge, MA 02142, USA
| | - Jeffrey W. Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Peter Rabinovitch
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stuart J. Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
35
|
Basile DP, Yoder MC. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 2015; 14:3-14. [PMID: 25088124 DOI: 10.2174/1871529x1401140724093505] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 01/11/2023]
Abstract
Acute kidney injury is associated with alterations in vascular tone that contribute to an overall reduction in GFR. Studies in animal models indicate that ischemia triggers alterations in endothelial function that contribute significantly to the overall degree and severity of a kidney injury. Putative mediators of vasoconstriction that may contribute to the initial loss of renal blood flow and GFR are highlighted. In addition, there is discussion of how intrinsic damage to the endothelium impairs homeostatic responses in vascular tone as well as promotes leukocyte adhesion and exacerbating the reduction in renal blood flow. The timing of potential therapies in animal models as they relate to the evolution of AKI, as well as the limitations of such approaches in the clinical setting are discussed. Finally, we discuss how acute kidney injury induces permanent alterations in renal vascular structure. We posit that the cause of the sustained impairment in kidney capillary density results from impaired endothelial growth responses and suggest that this limitation is a primary contributing feature underlying progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Mervin C Yoder
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Med Sci 334, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
Abstract
Chronic progressive renal fibrosis leads to end-stage renal failure many patients with chronic kidney disease (CKD). Loss of the rich peritubular capillary network is a prominent feature, and seems independent of the specific underlying disease. The mechanisms that contribute to peritubular capillary regression include the loss of glomerular perfusion, as flow-dependent shear forces are required to provide the survival signal for endothelial cells. Also, reduced endothelial cell survival signals from sclerotic glomeruli and atrophic or injured tubule epithelial cells contribute to peritubular capillary regression. In response to direct tubular epithelial cell injury, and the inflammatory reaction that ensues, capillary pericytes dissociate from their blood vessels, also reducing endothelial cell survival. In addition, direct inflammatory injury of capillary endothelial cells, for instance in chronic allograft nephropathy, also contributes to capillary dropout. Chronic tissue hypoxia, which ensues from the rarefaction of the peritubular capillary network, can generate both an angiogenic and a fibrogenic response. However, in CKD, the balance is strongly tipped toward fibrogenesis. Understanding the underlying mechanisms for failed angiogenesis in CKD and harnessing endothelial-specific survival and pro-angiogenic mechanisms for therapy should be our goal if we are to reduce the disease burden from CKD.
Collapse
Affiliation(s)
| | - Marya Obeidat
- Department of Medicine, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Abstract
Acute kidney injury is common, dangerous and costly, affecting around one in five patients emergency admissions to hospital. Although survival decreases as disease worsens, it is now apparent that even modest degrees of dysfunction are not only associated with higher mortality but are an independent risk factor for death. This review focuses on the pathophysiology of acute kidney injury secondary to ischaemia - its commonest aetiology. The haemodynamic disturbances, endothelial injury, epithelial cell injury and immunological mechanisms underpinning its initiation and extension will be discussed along with the considerable and complex interplay between these factors that lead to an intense, pro-inflammatory state. Mechanisms of tubular recovery will be discussed but also the pathophysiology of abnormal repair with its direct consequences for long-term renal function. Finally, the concept of 'organ cross-talk' will be introduced as a potential explanation for the higher mortality observed with acute kidney injury that might be deemed modest in conventional biochemical terms.
Collapse
Affiliation(s)
- Nigel Suren Kanagasundaram
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Renal ischemia-reperfusion induces release of angiopoietin-2 from human grafts of living and deceased donors. Transplantation 2014; 96:282-9. [PMID: 23839000 DOI: 10.1097/tp.0b013e31829854d5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Recent insights suggest that endothelial cell (EC) activation plays a major role in renal ischemia-reperfusion (I/R) injury. Interactions between ECs and pericytes via signaling molecules, including angiopoietins, are involved in maintenance of the vascular integrity. Experimental data have shown that enhancement of Angiopoietin (Ang)-1 signaling might be beneficial in renal I/R injury. However, little is known about the role of angiopoietins in human renal I/R injury. METHODS In this study, EC activation and changes in angiopoeitins are assessed in human living-donor (LD) and deceased-donor (DD) kidney transplantation. Local release of angiopoietins was measured by unique, dynamic arteriovenous measurements over the reperfused kidney. RESULTS Renal I/R is associated with acute EC activation shown by a vast Ang-2 release from both LD and DD shortly after reperfusion. Its counterpart Ang-1 was not released. Histologic analysis of kidney biopsies showed EC loss after reperfusion. Baseline protein and mRNA Ang-1 expression was significantly reduced in DD compared with LD and declined further after reperfusion. CONCLUSIONS Human renal I/R injury induces EC activation after reperfusion reflected by Ang-2 release from the kidney. Interventions aimed at maintenance of vascular integrity by modulating angiopoietin signaling may be promising in human clinical kidney transplantation.
Collapse
|
39
|
La modification du débit sanguin rénal influe-t-elle sur le débit de filtration glomérulaire ? MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
De Loor J, Gevaert K, Hoste E, Meyer E. How has urinary proteomics contributed to the discovery of early biomarkers of acute kidney injury? Expert Rev Proteomics 2014; 11:415-24. [PMID: 24961846 DOI: 10.1586/14789450.2014.932252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the past decade, analysis of the urinary proteome (urinary proteomics) has intensified in response to the need for novel biomarkers that support early diagnosis of kidney diseases. In particular, this also applies to acute kidney injury, which is a heterogeneous complex syndrome with a still-increasing incidence at the intensive care unit. Unfortunately, this major need remains largely unmet to date. The current report aims to explain why attempts to implement urinary proteomic-discovered acute kidney injury diagnostic candidates in the intensive care unit setting have not yet led to success. Subsequently, some key notes are provided that should enhance the chance of translating selected urinary proteomic candidates to valuable tools for the nephrologist and intensivist in the near future.
Collapse
Affiliation(s)
- Jorien De Loor
- Ghent University, Department of Pharmacology, Toxicology and Biochemistry, B-9820 Merelbeke, Belgium
| | | | | | | |
Collapse
|
41
|
Curci C, Castellano G, Stasi A, Divella C, Loverre A, Gigante M, Simone S, Cariello M, Montinaro V, Lucarelli G, Ditonno P, Battaglia M, Crovace A, Staffieri F, Oortwijn B, van Amersfoort E, Gesualdo L, Grandaliano G. Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway. Nephrol Dial Transplant 2014; 29:799-808. [PMID: 24463188 DOI: 10.1093/ndt/gft516] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Increasing evidence demonstrates a phenotypic plasticity of endothelial cells (ECs). Endothelial-to-mesenchymal transition (EndMT) contributes to the development of tissue fibrosis. However, the pathogenic factors and signalling pathways regulating this process in ischaemia/reperfusion (I/R) injury are still poorly understood. METHODS We investigated the possible role of complement in the induction of this endothelial dysfunction in a swine model of renal I/R injury by using recombinant C1 inhibitor in vivo. RESULTS Here, we showed that I/R injury reduced the density of renal peritubular capillaries and induced tissue fibrosis with generation of CD31(+)/α-SMA(+) and CD31(+)/FPS-1(+) cells indicating EndMT. When we inhibited complement, the process of EndMT became rare, with preserved density of peritubular capillaries and significant reduction in renal fibrosis. When we activated ECs by anaphylatoxins in vitro, C3a and C5a led to altered endothelial phenotype with increased expression of fibroblast markers and decrease expression of specific endothelial markers. The activation of Akt pathway was pivotal for the C3a and C5a-induced EndMT in vitro. In accordance, inhibition of complement in vivo led to the abrogation of Akt signalling, with hampered EndMT and tissue fibrosis. CONCLUSIONS Our data demonstrate a critical role for complement in the acute induction of EndMT via the Akt pathway. Therapeutic inhibition of these systems may be essential to prevent vascular damage and tissue fibrosis in transplanted kidney.
Collapse
Affiliation(s)
- Claudia Curci
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu M, Tang RN, Liu H, Xu M, Pan MM, Liu BC. Cinacalcet attenuates the renal endothelial-to-mesenchymal transition in rats with adenine-induced renal failure. Am J Physiol Renal Physiol 2014; 306:F138-46. [PMID: 24154694 DOI: 10.1152/ajprenal.00375.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevated serum parathyroid hormone (PTH) is an important complicated phenomenon in patients with chronic kidney disease (CKD). Emerging evidence indicates the involvement of PTH in organ fibrosis, and suppression of PTH by cinacalcet (CINA) ameliorates the progression of fibrotic disorders. However, the underlying mechanisms are largely unknown. The endothelial-to-mesenchymal transition (EndMT) has been shown to be an important mechanism involved in renal fibrosis. The present study aimed to investigate whether CINA treatment attenuated renal EndMT in rats with adenine-induced chronic renal failure (CRF). Compared with the control group, serum PTH was significantly higher in the CRF group and was suppressed after CINA treatment. Serum calcium, phosphorus, and calcium × phosphorus product levels were similar in the CRF group and CINA-treated CRF group. Renal collagen accumulation was significantly increased in the CRF group, which was markedly ameliorated by CINA treatment. Expression of the endothelial marker CD31 was significantly downregulated in rats with CRF, whereas expression of the mesenchymal markers fibroblast specific-protein 1 and α-smooth muscle actin was markedly upregulated. These changes were inhibited by CINA treatment. The protein levels of these EndMT-related markers were strongly correlated with serum PTH concentrations. Furthermore, the in vitro study showed that PTH could significantly increase the expression of fibroblast specific-protein 1 and α-smooth muscle actin and decrease CD31 in mRNA and protein levels in a concentration- and time-dependent manner. In conclusion, our study suggests that reducing serum PTH by CINA treatment could attenuate renal fibrosis via suppression of EndMT in the adenine-induced CRF rat model.
Collapse
Affiliation(s)
- Min Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Xu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ming-Ming Pan
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
43
|
Singh P, Ricksten SE, Bragadottir G, Redfors B, Nordquist L. Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 2013; 40:138-47. [PMID: 23360244 DOI: 10.1111/1440-1681.12036] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
Abstract
Acute kidney injury (AKI) is a major burden on health systems and may arise from multiple initiating insults, including ischaemia-reperfusion injury, cardiovascular surgery, radiocontrast administration and sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase, with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage renal disease. Although the mechanisms for the development of AKI and progression to CKD remain poorly understood, initial impairment of oxygen balance likely constitutes a common pathway, causing renal tissue hypoxia and ATP starvation that, in turn, induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop diuretics, atrial natriuretic peptide and inhibitors of inducible nitric oxide synthase, substances that target kidney oxygen consumption and regulators of renal oxygenation, such as nitric oxide and heme oxygenase-1.
Collapse
Affiliation(s)
- Prabhleen Singh
- Division of Nephrology-Hypertension, VA San Diego Healthcare System, University of California San Diego, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Tuuminen R, Nykänen AI, Saharinen P, Gautam P, Keränen MAI, Arnaudova R, Rouvinen E, Helin H, Tammi R, Rilla K, Krebs R, Lemström KB. Donor simvastatin treatment prevents ischemia-reperfusion and acute kidney injury by preserving microvascular barrier function. Am J Transplant 2013; 13:2019-34. [PMID: 23773358 DOI: 10.1111/ajt.12315] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/31/2013] [Accepted: 04/07/2013] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) after kidney transplantation may result in delayed graft function. We used rat renal artery clamping and transplantation models to investigate cholesterol-independent effects of clinically relevant single-dose peroral simvastatin treatment 2 h before renal ischemia on microvascular injury. The expression of HMG-CoA reductase was abundant in glomerular and peritubular microvasculature of normal kidneys. In renal artery clamping model with 30-min warm ischemia, simvastatin treatment prevented peritubular microvascular permeability and perfusion disturbances, glomerular barrier disruption, tubular dysfunction and acute kidney injury. In fully MHC-mismatched kidney allografts with 16-h cold and 1-h warm ischemia, donor simvastatin treatment increased the expression of flow-regulated transcription factor KLF2 and vasculoprotective eNOS and HO-1, and preserved glomerular and peritubular capillary barrier integrity during preservation. In vitro EC Weibel-Palade body exocytosis assays showed that simvastatin inhibited ischemia-induced release of vasoactive angiopoietin-2 and endothelin-1. After reperfusion, donor simvastatin treatment prevented microvascular permeability, danger-associated ligand hyaluronan induction, tubulointerstitial injury marker Kim-1 immunoreactivity and serum creatinine and NGAL levels, and activation of innate and adaptive immune responses. In conclusion, donor simvastatin treatment prevented renal microvascular dysfunction and IRI with beneficial effects on adaptive immune and early fibroproliferative responses. Further studies may determine potential benefits in clinical cadaveric kidney transplantation.
Collapse
Affiliation(s)
- R Tuuminen
- Cardiac Surgery, Heart and Lung Center, Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Renal macro- and microcirculation autoregulatory capacity during early sepsis and norepinephrine infusion in rats. Crit Care 2013; 17:R139. [PMID: 23849307 PMCID: PMC4056525 DOI: 10.1186/cc12818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/12/2013] [Indexed: 11/15/2022] Open
Abstract
Introduction The relationships between systemic hemodynamics and renal blood flow and renal microcirculation are poorly known in sepsis. Norepinephrine (NE) infusion may add another level of complexity. Methods Ventilated and anesthetized rats were submitted to various mean arterial pressure (MAP) steps by blood removal, in presence and absence of sepsis and/or NE. Renal blood flow (RBF) and blood velocity (Vm) in renal cortical capillaries (using Sidestream Dark Field Imaging) were measured. Data were analyzed using linear mixed models enabling us to display the effects of both the considered explanatory variables and their interactions. Results Positive correlations were found between MAP and RBF. Sepsis had no independent impact on RBF whereas norepinephrine decreased RBF, regardless of the presence of sepsis. The relationship between MAP and RBF was weaker above a MAP of 100 mmHg as opposed to below 100 mmHg, with RBF displaying a relative "plateau" above this threshold. Sepsis and NE impacted carotid blood flow (CBF) differently compared to RBF, demonstrating organ specificity. A positive relationship was observed between MAP and Vm. Sepsis increased Vm while nNE decreased Vm irrespective of MAP. Sepsis was associated with an increase in serum creatinine determined at the end of the experiments, which was prevented by NE infusion. Conclusion In our model, sepsis at an early phase did not impact RBF over a large range of MAP. NE elicited a renal vasoconstrictive effect. Autoregulation of RBF appeared conserved in sepsis. Conversely, sepsis was associated with "hypervelocity" of blood flow in cortical peritubular capillaries reversed by NE infusion.
Collapse
|
46
|
Khairoun M, van der Pol P, de Vries DK, Lievers E, Schlagwein N, de Boer HC, Bajema IM, Rotmans JI, van Zonneveld AJ, Rabelink TJ, van Kooten C, Reinders MEJ. Renal ischemia-reperfusion induces a dysbalance of angiopoietins, accompanied by proliferation of pericytes and fibrosis. Am J Physiol Renal Physiol 2013; 305:F901-10. [PMID: 23825073 DOI: 10.1152/ajprenal.00542.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells (ECs) are highly susceptible to hypoxia and easily affected upon ischemia-reperfusion (I/R) during renal transplantation. Pericytes and angiopoeitins play important role in modulating EC function. In the present study, we investigate the effect of renal I/R on the dynamics of angiopoietin expression and its association with pericytes and fibrosis development. Male Lewis rats were subjected to unilateral renal ischemia for 45 min followed by removal of the contralateral kidney. Rats were killed at different time points after reperfusion. Endothelial integrity (RECA-1), pericytes [platelet-derived growth factor receptor-β (PDGFR-β)], angiopoietin-2 (Ang-2)/angiopoietin-1 (Ang-1) expression, and interstitial collagen deposition (Sirius red and α-smooth muscle actin) were assessed using immunohistochemistry and RT-PCR. Our study shows an increase in protein expression of Ang-2 starting at 5 h and remaining elevated up to 72 h, with a consequently higher Ang-2/Ang-1 ratio after renal I/R (P < 0.05 at 48 h). This was accompanied by an increase in protein expression of the pericytic marker PDGFR-β and a loss of ECs (both at 72 h after I/R, P < 0.05). Nine weeks after I/R, when renal function was restored, we observed normalization of the Ang-2/Ang-1 ratio and PDGFR-β expression and increase in cortical ECs, which was accompanied by fibrosis. Renal I/R induces a dysbalance of Ang-2/Ang-1 accompanied by proliferation of pericytes, EC loss, and development of fibrosis. The Ang-2/Ang-1 balance was reversed to baseline at 9 wk after renal I/R, which coincided with restoration of cortical ECs and pericytes. Our findings suggest that angiopoietins and pericytes play an important role in renal microvascular remodeling and development of fibrosis.
Collapse
Affiliation(s)
- Meriem Khairoun
- Dept. of Nephrology, Leiden Univ. Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cavaillé-Coll M, Bala S, Velidedeoglu E, Hernandez A, Archdeacon P, Gonzalez G, Neuland C, Meyer J, Albrecht R. Summary of FDA workshop on ischemia reperfusion injury in kidney transplantation. Am J Transplant 2013; 13:1134-48. [PMID: 23566221 DOI: 10.1111/ajt.12210] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 01/31/2013] [Indexed: 01/25/2023]
Abstract
The Food and Drug Administration (FDA) held an open public workshop in September 2011 to discuss the current state of science related to the effects of ischemia reperfusion injury (IRI) on outcomes in kidney transplantation. Topics included the development of IRI and delayed graft function (DGF), histology and biomarkers, donor factors, recipient factors, organ quality and organ preservation by means of cold storage solutions or machine perfusion. Various mechanisms of injury and maladaptive response to IRI were discussed as potential targets of intervention. Animal models evaluating specific pathophysiological pathways were presented, as were the limitations of extrapolating animal results to humans. Clinical trials of various drug products administered in the peri-transplant period were summarized; a few demonstrated early improvements in DGF, but none demonstrated an improvement in late graft function. Clinical trial design for IRI and DGF were also discussed.
Collapse
Affiliation(s)
- M Cavaillé-Coll
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Office of New Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Evans RG, Ince C, Joles JA, Smith DW, May CN, O'Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 2013; 40:106-22. [DOI: 10.1111/1440-1681.12031] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/21/2012] [Accepted: 11/15/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Roger G Evans
- Department of Physiology; Monash University; Melbourne; Victoria; Australia
| | - Can Ince
- Department of Translational Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension; University Medical Center; Utrecht; The Netherlands
| | - David W Smith
- School of Computer Science and Software Engineering; The University of Western Australia; Perth; Western Australia; Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne; Victoria; Australia
| | - Paul M O'Connor
- Department of Physiology; Georgia Health Sciences University; Augusta; GA; USA
| | - Bruce S Gardiner
- School of Computer Science and Software Engineering; The University of Western Australia; Perth; Western Australia; Australia
| |
Collapse
|
49
|
|
50
|
Lerolle N. Please don't call me RI anymore; I may not be the one you think I am! CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:174. [PMID: 23171782 PMCID: PMC3672580 DOI: 10.1186/cc11831] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The previous issue of Critical Care reports new data on renal resistive index in critically ill patients. Although high renal resistive index may indeed be associated with acute kidney injury, the existence of several determinants of this index, of which renal resistance is only one among many, obscures the usefulness of this index in clinical practice.
Collapse
|