1
|
ATP-Sensitive Potassium Channels in Migraine: Translational Findings and Therapeutic Potential. Cells 2022; 11:cells11152406. [PMID: 35954249 PMCID: PMC9367966 DOI: 10.3390/cells11152406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Globally, migraine is a leading cause of disability with a huge impact on both the work and private life of affected persons. To overcome the societal migraine burden, better treatment options are needed. Increasing evidence suggests that ATP-sensitive potassium (KATP) channels are involved in migraine pathophysiology. These channels are essential both in blood glucose regulation and cardiovascular homeostasis. Experimental infusion of the KATP channel opener levcromakalim to healthy volunteers and migraine patients induced headache and migraine attacks in 82-100% of participants. Thus, this is the most potent trigger of headache and migraine identified to date. Levcromakalim likely induces migraine via dilation of cranial arteries. However, other neuronal mechanisms are also proposed. Here, basic KATP channel distribution, physiology, and pharmacology are reviewed followed by thorough review of clinical and preclinical research on KATP channel involvement in migraine. KATP channel opening and blocking have been studied in a range of preclinical migraine models and, within recent years, strong evidence on the importance of their opening in migraine has been provided from human studies. Despite major advances, translational difficulties exist regarding the possible anti-migraine efficacy of KATP channel blockage. These are due to significant species differences in the potency and specificity of pharmacological tools targeting the various KATP channel subtypes.
Collapse
|
2
|
Zhao G, Kaplan A, Greiser M, Lederer WJ. The surprising complexity of KATP channel biology and of genetic diseases. J Clin Invest 2020; 130:1112-1115. [PMID: 32065592 DOI: 10.1172/jci135759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ATP-sensitive K+ channel (KATP) is formed by the association of four inwardly rectifying K+ channel (Kir6.x) pore subunits with four sulphonylurea receptor (SUR) regulatory subunits. Kir6.x or SUR mutations result in KATP channelopathies, which reflect the physiological roles of these channels, including but not limited to insulin secretion, cardiac protection, and blood flow regulation. In this issue of the JCI, McClenaghan et al. explored one of the channelopathies, namely Cantu syndrome (CS), which is a result of one kind of KATP channel mutation. Using a knockin mouse model, the authors demonstrated that gain-of-function KATP mutations in vascular smooth muscle resulted in cardiac remodeling. Moreover, they were able to reverse the cardiovascular phenotypes by administering the KATP channel blocker glibenclamide. These results exemplify how genetic mutations can have an impact on developmental trajectories, and provide a therapeutic approach to mitigate cardiac hypertrophy in cases of CS.
Collapse
Affiliation(s)
- Guiling Zhao
- Center for Biomedical Engineering and Technology and Department of Physiology
| | - Aaron Kaplan
- Center for Biomedical Engineering and Technology and Department of Physiology.,Department of Medicine and Division of Cardiology, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Maura Greiser
- Center for Biomedical Engineering and Technology and Department of Physiology
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology
| |
Collapse
|
3
|
Rembetski BE, Sanders KM, Drumm BT. Contribution of Ca v1.2 Ca 2+ channels and store-operated Ca 2+ entry to pig urethral smooth muscle contraction. Am J Physiol Renal Physiol 2020; 318:F496-F505. [PMID: 31904286 DOI: 10.1152/ajprenal.00514.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Urethral smooth muscle (USM) generates tone to prevent urine leakage from the bladder during filling. USM tone has been thought to be a voltage-dependent process, relying on Ca2+ influx via voltage-dependent Ca2+ channels in USM cells, modulated by the activation of Ca2+-activated Cl- channels encoded by Ano1. However, recent findings in the mouse have suggested that USM tone is voltage independent, relying on Ca2+ influx through Orai channels via store-operated Ca2+ entry (SOCE). We explored if this pathway also occurred in the pig using isometric tension recordings of USM tone. Pig USM strips generated myogenic tone, which was nearly abolished by the Cav1.2 channel antagonist nifedipine and the ATP-dependent K+ channel agonist pinacidil. Pig USM tone was reduced by the Orai channel blocker GSK-7975A. Electrical field stimulation (EFS) led to phentolamine-sensitive contractions of USM strips. Contractions of pig USM were also induced by phenylephrine. Phenylephrine-evoked and EFS-evoked contractions of pig USM were reduced by ~50-75% by nifedipine and ~30% by GSK-7975A. Inhibition of Ano1 channels had no effect on tone or EFS-evoked contractions of pig USM. In conclusion, unlike the mouse, pig USM exhibited voltage-dependent tone and agonist/EFS-evoked contractions. Whereas SOCE plays a role in generating tone and agonist/neural-evoked contractions in both species, this dominates in the mouse. Tone and agonist/EFS-evoked contractions of pig USM are the result of Ca2+ influx primarily through Cav1.2 channels, and no evidence was found supporting a role of Ano1 channels in modulating these mechanisms.
Collapse
Affiliation(s)
- Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| |
Collapse
|
4
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Zhang B, Shi Y, Zou J, Chen X, Tang W, Ye F, Liu Z. KATP channels in high glucose-induced rat mesangial cell proliferation and release of MMP-2 and fibronectin. Exp Ther Med 2017; 14:135-140. [PMID: 28672904 PMCID: PMC5488473 DOI: 10.3892/etm.2017.4458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/01/2017] [Indexed: 11/21/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels are well characterized in cardiac, pancreatic and many other muscle cells. The purpose of this study was to determine if KATP channels play a role in diabetic nephropathy (DN). In the present study, functional expression of the KATP channel was examined in rat mesangial cells with or without high glucose (HG) stimulation. The mesangial cell proliferation and the release of matrix metalloproteinase (MMP)-2 and fibronectin in response to high glucose with a selective opener of KATP (diazoxide, DZX), or with a selective inhibitor of KATP (5-hydroxydecanoate, 5-HD) were also measured. The cell proliferation was observed using Cell Counting Kit-8 assay, and the mRNA expressions of KATP subunit, including Kir6.1, Kir6.2, sulfonylurea receptor 1 (SUR1), SUR2A and SUR2B, were assessed using quantitative real-time PCR. MMP-2 and fibronectin release was measured by ELISA. The present study clarified expression of SUR subunit of KATP in plasma. HG treatment could cause increased cell proliferation and release of MMP-2 and fibronectin in a dose-dependent manner. HG also significantly decreased the expression of Kir6.1, SUR2A and SUR2B. Pretreatment of DZX markedly decreased the expression of SUR1, SUR2A and SUR2B, but had no effect on Kir6.1 expression compared with HG alone, while these changes were inhibited by 5-HD pretreatment. Moreover, DZX also inhibited cell proliferation and release of MMP-2 and fibronectin in HG-induced rat mesangial cells, and that was corrected by 5-HD. These data suggest that HG stimulates mesangial cell proliferation and cellular matrix release via inhibiting KATP channel activity, leading us to propose that KATP channel dysfunction may be involved in the development of DN.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Yongquan Shi
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Junjie Zou
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Xiangfang Chen
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Wei Tang
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Fei Ye
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Zhimin Liu
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| |
Collapse
|
6
|
ATP-sensitive K + channels maintain resting membrane potential in interstitial cells of Cajal from the mouse colon. Eur J Pharmacol 2017; 809:98-104. [PMID: 28511870 DOI: 10.1016/j.ejphar.2017.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022]
Abstract
To investigate the role of ATP-sensitive K+(KATP) channels on pacemaker activity in interstitial cells of Cajal (ICC), whole-cell patch clamping, RT-PCR, and intracellular Ca2+([Ca2+]i) imaging were performed in cultured colonic ICC. Pinacidil (a K+ channel opener) hyperpolarized the membrane and inhibited the generation of pacemaker potential, and this effect was reversed by glibenclamide (a KATP channel blocker). RT-PCR showed that Kir 6.1 and SUR2B were expressed in Ano-1 positive colonic ICC. Glibenclamide depolarized the membrane and increased pacemaker potential frequency. However, 5-hydroxydecanoic acid (a mitochondrial KATP channel blocker) had no effects on pacemaker potentials. Phorbol 12-myristate 13-acetate (PMA; a protein kinase C activator) blocked the pinacidil-induced effects, and PMA alone depolarized the membrane and increased pacemaker potential frequency. Cell-permeable 8-bromo-cyclic AMP also increased pacemaker potential frequency. Recordings of spontaneous intracellular Ca2+([Ca2+]i) oscillations showed that glibenclamide increased the frequency of [Ca2+]i oscillations. In small intestinal ICC, glibenclamide alone did not alter the generation of pacemaker potentials, and Kir 6.2 and SUR2B were expressed in Ano-1 positive ICC. Therefore, KATP channels in colonic ICC are activated in resting state and play an important role in maintaining resting membrane potential.
Collapse
|
7
|
Yamamoto T, Takahara K, Uchida K, Teramoto N. ZD0947, a sulphonylurea receptor modulator, detects functional sulphonylurea receptor subunits in murine vascular smooth muscle ATP-sensitive K + channels. Eur J Pharmacol 2017; 800:34-39. [PMID: 28213290 DOI: 10.1016/j.ejphar.2017.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
In order to identify functional sulphonylurea receptor (SUR.x) subunits of native ATP-sensitive K+ channels (KATP channels) in mouse portal vein, the effects of ZD0947, a SUR.x modulator, were investigated on spontaneous portal vein contractions, macroscopic membrane currents and unitary currents recorded (using patch-clamp techniques) in freshly dispersed mouse portal vein myocytes. Spontaneous contractions in mouse portal vein were reversibly reduced by ZD0947 in a concentration-dependent manner (Ki =293nM). The relaxation elicited by 3µM ZD0947 was antagonized by the additional application of glibenclamide (300nM), but not gliclazide (100-300nM). In the conventional whole-cell configuration, 100µM ZD0947 elicited inward glibenclamide-sensitive currents at a holding potential of -60mV that demonstrated selectivity for K+(i.e. KATP currents). The peak amplitude of the membrane current elicited by 30µM or 100µM ZD0947 was smaller than that elicited by 100µM pinacidil at -60mV. In the cell-attached mode, 100µM ZD0947 activated glibenclamide-sensitive K+ channels with a conductance (35 pS) similar to that of recombinant Kir6.1/SUR2B channels that were expressed in HEK293 cells and activated by 100µM ZD0947. These results demonstrate that ZD0947 caused a significant vascular relaxation through the activation of KATP channels and that SUR2B may be the major functional subunit of SUR.x in mouse portal vein KATP channels, based on its pharmacological selectivity.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kohei Takahara
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Keiichiro Uchida
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Noriyoshi Teramoto
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; Laboratory of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
8
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Abstract
The mammalian urethra is a muscular tube responsible for ensuring that urine remains in the urinary bladder until urination. In order to prevent involuntary urine leakage, the urethral musculature must be capable of constricting the urethral lumen to an extent that exceeds bladder intravesicular pressure during the urine-filling phase. The main challenge in anti-incontinence treatments involves selectively-controlling the excitability of the smooth muscles in the lower urinary tract. Almost all strategies to battle urinary incontinence involve targeting the bladder and as a result, this tissue has been the focus for the majority of research and development efforts. There is now increasing recognition of the value of targeting the urethral musculature in the treatment and management of urinary incontinence. Newly-identified and characterized ion channels and pathways in the smooth muscle of the urethra provides a range of potential therapeutic targets for the treatment of urinary incontinence. This review provides a summary of the current state of knowledge of the ion channels discovered in urethral smooth muscle cells that regulate their excitability.
Collapse
Affiliation(s)
- Barry D Kyle
- a Department of Physiology & Pharmacology; Libin Cardiovascular Institute and The Smooth Muscle Research Group ; University of Calgary ; Calgary , AB Canada
| |
Collapse
|
10
|
Molecular analysis of ATP-sensitive K(+) channel subunits expressed in mouse portal vein. Vascul Pharmacol 2015; 75:29-39. [PMID: 26163942 DOI: 10.1016/j.vph.2015.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Several combinations of inwardly rectifying K(+) channel 6.x family pore-forming (KIR6.x) subunits associated with sulphonylurea receptor (SUR.x) subunits have been detected among ATP-sensitive K(+) (KATP) channels. It remains to be established which of these is expressed in native vascular smooth muscle. METHODS Pharmacological and electrophysiological properties of KATP channels in mouse portal vein were investigated using tension measurements and patch-clamp techniques. Molecular biological analyses were also performed to investigate the structural properties of these channels. RESULTS Spontaneous contractions in mouse portal vein were reversibly reduced by pinacidil and MCC-134, and the pinacidil-induced relaxation was antagonized by glibenclamide and U-37883A. In cell-attached mode, pinacidil activated glibenclamide-sensitive K(+) channels with a conductance (35 pS) similar to that of KIR6.1. RT-PCR analysis revealed the expression of KIR6.1, KIR6.2 and SUR2B transcripts. Using real-time PCR methods, the quantitative expression of KIR6.1 was much greater than that of KIR6.2. Immunohistochemical studies indicated the presence of KIR6.1 and SUR2B proteins in the smooth muscle layers of mouse portal vein and in single smooth muscle cells dispersed from mouse portal vein. CONCLUSIONS The results indicate that native KATP channels in mouse portal vein are likely to be composed of a heterocomplex of KIR6.1 and SUR2B subunits.
Collapse
|
11
|
Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol 2014; 171:12-23. [PMID: 24102106 DOI: 10.1111/bph.12407] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.
Collapse
Affiliation(s)
- Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
12
|
Iwasa K, Zhu HL, Shibata A, Maehara Y, Teramoto N. Molecular analysis of ATP-sensitive K⁺ channel subunits expressed in mouse vas deferens myocytes. Br J Pharmacol 2014; 171:145-57. [PMID: 24117345 DOI: 10.1111/bph.12437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE ATP-sensitive K(+)(K(ATP)) channels, which are composed of K(IR)6.x associated with sulphonylurea receptor (SUR) subunits, have been detected in native smooth muscle cells, but it is currently not known which of these is expressed in mouse vas deferens myocytes. EXPERIMENTAL APPROACH Pharmacological and electrophysiological properties of K(ATP) channels in mouse vas deferens myocytes were investigated using patch clamp techniques. Molecular biological analyses were performed to examine the properties of these K(ATP) channels. KEY RESULTS During conventional whole-cell recording, pinacidil elicited an inward current that was suppressed by glibenclamide, a sulfonylurea agent, and by U-37883A, a selective K(IR)6.1 blocker. When 0.3 mM ATP was added to the pipette solution, the peak amplitude of the pinacidil-induced current was much smaller than that recorded in its absence. When 3 mM UDP, GDP or ADP was included in the pipette solution, an inward current was elicited after establishment of the conventional whole-cell configuration, with potency order being UDP > GDP > ADP. These nucleoside diphosphate-induced inward currents were suppressed by glibenclamide. MCC-134, a SUR modulator, induced glibenclamide-sensitive K(ATP) currents that were similar to those induced by 100 μM pinacidil. In the cell-attached configuration, pinacidil activated channels with a conductance similar to that of K(IR)6.1. Reverse transcription PCR analysis revealed the expression of K(IR)6.1 and SUR2B transcripts and immunohistochemical studies indicated the presence of K(IR)6.1 and SUR2B proteins in the myocytes. CONCLUSIONS AND IMPLICATIONS Our results indicate that native K(ATP) channels in mouse vas deferens myocytes are a heterocomplex of K(IR)6.1 channels and SUR2B subunits.
Collapse
Affiliation(s)
- Kazuomi Iwasa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
13
|
Nomura M, Morinaga H, Zhu HL, Wang L, Hasuzawa N, Takayanagi R, Teramoto N. Activation of activin type IB receptor signals in pancreatic β cells leads to defective insulin secretion through the attenuation of ATP-sensitive K+ channel activity. Biochem Biophys Res Commun 2014; 450:440-6. [PMID: 24928396 DOI: 10.1016/j.bbrc.2014.05.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/16/2022]
Abstract
In studies of gene-ablated mice, activin signaling through activin type IIB receptors (ActRIIB) and Smad2 has been shown to regulate not only pancreatic β cell mass but also insulin secretion. However, it still remains unclear whether gain of function of activin signaling is involved in the modulation of pancreatic β cell mass and insulin secretion. To identify distinct roles of activin signaling in pancreatic β cells, the Cre-loxP system was used to activate signaling through activin type IB receptor (ActRIB) in pancreatic β cells. The resultant mice (pancreatic β cell-specific ActRIB transgenic (Tg) mice; ActRIBCAβTg) exhibited a defect in glucose-stimulated insulin secretion (GSIS) and a progressive impairment of glucose tolerance. Patch-clamp techniques revealed that the activity of ATP-sensitive K(+) channels (KATP channels) was decreased in mutant β cells. These results indicate that an appropriate level of activin signaling may be required for GSIS in pancreatic β cells, and that activin signaling involves modulation of KATP channel activity.
Collapse
Affiliation(s)
- Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi Ward, Fukuoka 812-8582, Japan
| | - Hidetaka Morinaga
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi Ward, Fukuoka 812-8582, Japan
| | - Hai-Lei Zhu
- Department of Pharmacology, Faculty of Medicine, Saga 849-8501, Japan
| | - Lixiang Wang
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi Ward, Fukuoka 812-8582, Japan
| | - Nao Hasuzawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi Ward, Fukuoka 812-8582, Japan
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi Ward, Fukuoka 812-8582, Japan
| | - Noriyoshi Teramoto
- Department of Pharmacology, Faculty of Medicine, Saga 849-8501, Japan; Laboratory of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba Ward, Sendai 980-8575, Japan.
| |
Collapse
|
14
|
ATP-sensitive K(+)-channels in muscle cells: features and physiological role. UKRAINIAN BIOCHEMICAL JOURNAL 2014. [DOI: 10.15407/ubj86.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Burley DS, Cox CD, Zhang J, Wann KT, Baxter GF. Natriuretic peptides modulate ATP-sensitive K(+) channels in rat ventricular cardiomyocytes. Basic Res Cardiol 2014; 109:402. [PMID: 24477916 PMCID: PMC3951884 DOI: 10.1007/s00395-014-0402-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 12/10/2013] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
Abstract
B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), and (Cys-18)-atrial natriuretic factor (4–23) amide (C-ANF), are cytoprotective under conditions of ischemia–reperfusion, limiting infarct size. ATP-sensitive K+ channel (KATP) opening is also cardioprotective, and although the KATP activation is implicated in the regulation of cardiac natriuretic peptide release, no studies have directly examined the effects of natriuretic peptides on cardiac KATP activity. Normoxic cardiomyocytes were patch clamped in the cell-attached configuration to examine sarcolemmal KATP (sKATP) activity. The KATP opener pinacidil (200 μM) increased the open probability of the patch (NPo; values normalized to control) at least twofold above basal value, and this effect was abolished by HMR1098 10 μM, a selective KATP blocker (5.23 ± 1.20 versus 0.89 ± 0.18; P < 0.001). We then examined the effects of BNP, CNP, C-ANF and 8Br-cGMP on the sKATP current. Bath application of BNP (≥10 nM) or CNP (≥0.01 nM) suppressed basal NPo (BNP: 1.00 versus 0.56 ± 0.09 at 10 nM, P < 0.001; CNP: 1.0 versus 0.45 ± 0.16, at 0.01 nM, P < 0.05) and also abolished the pinacidil-activated current at concentrations ≥10 nM. C-ANF (≥10 nM) enhanced KATP activity (1.00 versus 3.85 ± 1.13, at 100 nM, P < 0.05). The cGMP analog 8Br-cGMP 10 nM dampened the pinacidil-activated current (2.92 ± 0.60 versus 1.53 ± 0.32; P < 0.05). Natriuretic peptides modulate sKATP current in ventricular cardiomyocytes. This may be at least partially associated with their ability to augment intracellular cGMP concentrations via NPR-A/B, or their ability to bind NPR-C with high affinity. Although the mechanism of modulation requires elucidation, these preliminary data give new insights into the relationship between natriuretic peptide signaling and sKATP in the myocardium.
Collapse
Affiliation(s)
- Dwaine S Burley
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK,
| | | | | | | | | |
Collapse
|
16
|
Nomura M, Zhu HL, Wang L, Morinaga H, Takayanagi R, Teramoto N. SMAD2 disruption in mouse pancreatic beta cells leads to islet hyperplasia and impaired insulin secretion due to the attenuation of ATP-sensitive K+ channel activity. Diabetologia 2014; 57:157-66. [PMID: 24068386 DOI: 10.1007/s00125-013-3062-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS The TGF-β superfamily of ligands provides important signals for the development of pancreas islets. However, it is not yet known whether the TGF-β family signalling pathway is required for essential islet functions in the adult pancreas. METHODS To identify distinct roles for the downstream components of the canonical TGF-β signalling pathway, a Cre-loxP system was used to disrupt SMAD2, an intracellular transducer of TGF-β signals, in pancreatic beta cells (i.e. Smad2β knockout [KO] mice). The activity of ATP-sensitive K(+) channels (KATP channels) was recorded in mutant beta cells using patch-clamp techniques. RESULTS The Smad2βKO mice exhibited defective insulin secretion in response to glucose and overt diabetes. Interestingly, disruption of SMAD2 in beta cells was associated with a striking islet hyperplasia and increased pancreatic insulin content, together with defective glucose-responsive insulin secretion. The activity of KATP channels was decreased in mutant beta cells. CONCLUSIONS/INTERPRETATION These results suggest that in the adult pancreas, TGF-β signalling through SMAD2 is crucial for not only the determination of beta cell mass but also the maintenance of defining features of mature pancreatic beta cells, and that this involves modulation of KATP channel activity.
Collapse
Affiliation(s)
- Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi Ward, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90:799-829. [PMID: 20664073 DOI: 10.1152/physrev.00027.2009] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.
Collapse
Affiliation(s)
- Thomas P Flagg
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
18
|
Akrouh A, Halcomb SE, Nichols CG, Sala-Rabanal M. Molecular biology of K(ATP) channels and implications for health and disease. IUBMB Life 2009; 61:971-8. [PMID: 19787700 DOI: 10.1002/iub.246] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ATP-sensitive potassium (K(ATP)) channel is expressed in most excitable tissues and plays a critical role in numerous physiological processes by coupling intracellular energetics to electrical activity. The channel is comprised of four Kir6.x subunits associated with four regulatory sulfonylurea receptors (SUR). Intracellular ATP acts on Kir6.x to inhibit channel activity, while MgADP stimulates channel activity through SUR. Changes in the cytosolic [ATP] to [ADP] ratio thus determine channel activity. Multiple mutations in Kir6.x and SUR genes have implicated K(ATP) channels in various diseases ranging from diabetes and hyperinsulinism to cardiac arrhythmias and cardiovascular disease. Continuing studies of channel physiology and pathology will bring new insights to the molecular basis of K(ATP) channel function, leading to a better understanding of the role that K(ATP) channels play in both health and disease.
Collapse
Affiliation(s)
- Alejandro Akrouh
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|