1
|
Cao W, Zhang J, Yu S, Gan X, An R. N-acetylcysteine regulates oxalate induced injury of renal tubular epithelial cells through CDKN2B/TGF-β/SMAD axis. Urolithiasis 2024; 52:46. [PMID: 38520518 DOI: 10.1007/s00240-023-01527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/26/2023] [Indexed: 03/25/2024]
Abstract
This study was aimed to investigate the preventive effects of N-acetyl-L-cysteine (NAC) against renal tubular cell injury induced by oxalate and stone formation and further explore the related mechanism. Transcriptome sequencing combined with bioinformatics analysis were performed to identify differentially expressed gene (DEG) and related pathways. HK-2 cells were pretreated with or without antioxidant NAC/with or silencing DEG before exposed to sodium oxalate. Then, the cell viability, oxidative biomarkers of superoxidase dismutase (SOD) and malondialdehyde (MDA), apoptosis and cell cycle were measured through CCK8, ELISA and flow cytometry assay, respectively. Male SD rats were separated into control group, hyperoxaluria (HOx) group, NAC intervention group, and TGF-β/SMAD pathway inhibitor group. After treatment, the structure changes and oxidative stress and CaOx crystals deposition were evaluated in renal tissues by H&E staining, immunohistochemical and Pizzolato method. The expression of TGF-β/SMAD pathway related proteins (TGF-β1, SMAD3 and SMAD7) were determined by Western blot in vivo and in vitro. CDKN2B is a DEG screened by transcriptome sequencing combined with bioinformatics analysis, and verified by qRT-PCR. Sodium oxalate induced declined HK-2 cell viability, in parallel with inhibited cellular oxidative stress and apoptosis. The changes induced by oxalate in HK-2 cells were significantly reversed by NAC treatment or the silencing of CDKN2B. The cell structure damage and CaOx crystals deposition were observed in kidney tissues of HOx group. Meanwhile, the expression levels of SOD and 8-OHdG were detected in kidney tissues of HOx group. The changes induced by oxalate in kidney tissues were significantly reversed by NAC treatment. Besides, expression of SMAD7 was significantly down-regulated, while TGF-β1 and SMAD3 were accumulated induced by oxalate in vitro and in vivo. The expression levels of TGF-β/SMAD pathway related proteins induced by oxalate were reversed by NAC. In conclusion, we found that NAC could play an anti-calculus role by mediating CDKN2B/TGF-β/SMAD axis.
Collapse
Affiliation(s)
- Wei Cao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jingbo Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Xiuguo Gan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, 23 YouZheng Street, HarbinHarbin, Heilongjiang, 150001, China.
| |
Collapse
|
2
|
Bawari S, Sah AN, Gupta P, Zengin G, Tewari D. Himalayan Citrus jambhiri juice reduced renal crystallization in nephrolithiasis by possible inhibition of glycolate oxidase and matrix metalloproteinases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116157. [PMID: 36646157 DOI: 10.1016/j.jep.2023.116157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citrus fruits are a very rich source of electrolytes and citric acid. They have been used traditionally for treating urinary ailments and renal stones. Citrus jambhiri is indigenously used as a diuretic. AIM OF THE STUDY Present study aimed at establishing the antiurolithiatic potential of the juice of Citrus jambhiri fruits along with the elucidation of the mechanism involved in the urolithiasis disease defying activity. METHODS The antiurolithiatic activity was established by means of nucleation, growth and aggregation assay in the in vitro settings and by means of ethylene glycol mediated calcium oxalate urolithiasis in the male Wistar rats. Docking studies were performed in an attempt to determine the mechanism of the antiurolithiatic action. RESULTS Present study revealed the role of C. jambhiri fruit juice in reducing nucleation, growth and aggregation of calcium oxalate crystals by possible reduction in the urinary supersaturation relative to calcium oxalate and raising the zeta potential of the calcium oxalate crystals. C. jambhiri fruit juice treatment in experimental rats produced significant amelioration of hypercalciuria, hyperoxaluria, hyperphosphaturia, hyperproteinuria, hyperuricosuria, hypocitraturia and hypomagnesiuria and ion activity product of calcium oxalate. It exhibited nephroprotection against calcium oxalate crystals induced renal tubular dilation and renal tissue deterioration. Docking studies further revealed high binding potential of the phytoconstituents of C. jambhiri viz. narirutin, neohesperidin, hesperidin, rutin and citric acid with glycolate oxidase and matrix metalloproteinase-9. CONCLUSION C. jambhiri fruit juice possesses excellent antiurolithiatic activity. The study reveals antiurolithiatic mechanism that involves restoration of equilibrium between the promoters and inhibitors of stone formation; and inhibition of matrix metalloproteinases and glycolate oxidase.
Collapse
Affiliation(s)
- Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201313, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal, Kumaun University, Nainital, Uttarakhand, 263136, India.
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Gökhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India.
| |
Collapse
|
3
|
Verhulst A, Dehmel B, Lindner E, Akerman ME, D'Haese PC. Oxalobacter formigenes treatment confers protective effects in a rat model of primary hyperoxaluria by preventing renal calcium oxalate deposition. Urolithiasis 2022; 50:119-130. [PMID: 35122487 DOI: 10.1007/s00240-022-01310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
In primary hyperoxaluria, increased hepatic oxalate production sometimes leads to severe nephrocalcinosis and early end-stage kidney disease. Oral administration of Oxalobacter formigenes (O. formigenes), an oxalate-degrading bacterium, is thought to derive oxalate from systemic sources by inducing net enteric oxalate secretion. Here, the impact of O. formigenes on nephrocalcinosis was investigated in an ethylene glycol rat model mimicking hepatic oxalate overproduction in primary hyperoxaluria. Eighteen rats were administered ethylene glycol (0.75% in drinking water) for 6 weeks, of which 9 were treated by oral gavage with O. formigenes and 9 received vehicle. Five control rats did not receive ethylene glycol or O. formigenes. Plasma and urinary oxalate levels, calcium oxalate crystalluria, urinary volume, fluid intake, and serum creatinine were monitored during the study. On killing, nephrocalcinosis was quantified. Ethylene glycol intake induced pronounced hyperoxalemia, hyperoxaluria, calcium oxalate crystalluria and nephrocalcinosis. Concomitant O. formigenes treatment partially prevented the ethylene glycol-induced increase in plasma oxalate and completely prevented nephrocalcinosis. Urinary oxalate excretion was not reduced by O. formigenes treatment. Nevertheless, absence of crystals in renal tissue of O. formigenes-treated ethylene glycol animals indicates that the propensity for oxalate to crystallize in the kidneys was reduced compared to non-treated animals. This is supported by the lower plasma oxalate concentrations in O. formigenes-treated animals. This study shows a beneficial effect of O. formigenes treatment on ethylene glycol-induced hyperoxalemia and nephrocalcinosis, and thus supports a possible beneficial effect of O. formigenes in primary hyperoxaluria.
Collapse
Affiliation(s)
- A Verhulst
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | | | | | | | - P C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
4
|
The antiurolithic activity of Origanum vulgare on rats treated with ethylene glycol and ammonium chloride: Possible pharmaco-biochemical and ultrastructure effects. Curr Urol 2021; 15:119-125. [PMID: 34168532 PMCID: PMC8221014 DOI: 10.1097/cu9.0000000000000017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Origanum vulgare (OV) Linn is one of the conventional remedies for urolithiasis. Hence, we tested the potential antiurolithic effect of OV active extract, in order to rationalize its medicinal use. Materials and methods: The in vivo study was of male Westar rats receiving lithogenic treatment consisting of two 0.75% ethylene glycol injections with a 1 day interval and then in drinking water given for 3 weeks along with ammonium chloride (NH4Cl) from the 2nd day to the 7th day. Results: The active ethanolic extract of OV treatment (20 mg/kg) reversed toxic changes including loss of body weight gain and appetite, raised serum urea and creatinine levels, and raised blood pressure compared to controls. Conclusions: The acquired data thus suggested that OV showed antiurolithic effects against renal calcium oxalate crystal deposits by combined mechanisms acting on multiple sites through hypoxaliuric, hypocalciuric, and antioxidant effects.
Collapse
|
5
|
Yang X, Yang T, Li J, Yang R, Qi S, Zhao Y, Li L, Li J, Zhang X, Yang K, Xu Y, Liu C. Metformin prevents nephrolithiasis formation by inhibiting the expression of OPN and MCP-1 in vitro and in vivo. Int J Mol Med 2019; 43:1611-1622. [PMID: 30720053 PMCID: PMC6414169 DOI: 10.3892/ijmm.2019.4084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 11/30/2022] Open
Abstract
Treatment targeting osteopontin (OPN) and monocyte chemoattractant protein 1 (MCP-1) has been recognized as a novel approach in renal crystal formation. The present study was designed to investigate the suppressive effects of metformin on nephrolithiasis formation and its potential mechanism. The cytotoxicity of metformin on MDCK and HK-2 cells was determined using a Cell Counting Kit-8 assay in vitro. Subsequently, the mRNA transcription and protein expression levels of MCP-1 and OPN were detected by reverse transcription-quantitative-polymerase chain reaction analysis, western blot analysis and ELISA. Male Sprague-Dawley rats were divided into a control group, ethylene glycol (EG) group and EG + metformin group. The expression levels of MCP-1 and OPN and crystal formations were evaluated in renal tissues following an 8-week treatment period. In vitro, metformin significantly inhibited the production of MCP-1 and OPN induced by oxalate at the mRNA and protein expression levels. In vivo, increased expression levels of MCP-1 and OPN were detected in the EG group compared with the controls, and this upregulation was reversed in the EG + metformin group. Renal crystal deposition in the EG + metformin group was markedly decreased compared with that in the EG group. Therefore, the results of the study suggest that metformin suppressed urinary crystal deposit formation, possibly by mediating the expression of inflammatory mediators OPN and MCP-1.
Collapse
Affiliation(s)
- Xiong Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Tong Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Jie Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Rui Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Shiyong Qi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Liang Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Jingjin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Kuo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| |
Collapse
|
6
|
Whittamore JM, Stephens CE, Hatch M. Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am J Physiol Gastrointest Liver Physiol 2019; 316:G82-G94. [PMID: 30383413 PMCID: PMC6383384 DOI: 10.1152/ajpgi.00299.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The anion exchanger SAT-1 [sulfate anion transporter 1 (Slc26a1)] is considered an important regulator of oxalate and sulfate homeostasis, but the mechanistic basis of these critical roles remain undetermined. Previously, characterization of the SAT-1-knockout (KO) mouse suggested that the loss of SAT-1-mediated oxalate secretion by the intestine was responsible for the hyperoxaluria, hyperoxalemia, and calcium oxalate urolithiasis reportedly displayed by this model. To test this hypothesis, we compared the transepithelial fluxes of 14C-oxalate, 35SO42- , and 36Cl- across isolated, short-circuited segments of the distal ileum, cecum, and distal colon from wild-type (WT) and SAT-1-KO mice. The absence of SAT-1 did not impact the transport of these anions by any part of the intestine examined. Additionally, SAT-1-KO mice were neither hyperoxaluric nor hyperoxalemic. Instead, 24-h urinary oxalate excretion was almost 50% lower than in WT mice. With no contribution from the intestine, we suggest that this may reflect the loss of SAT-1-mediated oxalate efflux from the liver. SAT-1-KO mice were, however, profoundly hyposulfatemic, even though there were no changes to intestinal sulfate handling, and the renal clearances of sulfate and creatinine indicated diminished rates of sulfate reabsorption by the proximal tubule. Aside from this distinct sulfate phenotype, we were unable to reproduce the hyperoxaluria, hyperoxalemia, and urolithiasis of the original SAT-1-KO model. In conclusion, oxalate and sulfate transport by the intestine were not dependent on SAT-1, and we found no evidence supporting the long-standing hypothesis that intestinal SAT-1 contributes to oxalate and sulfate homeostasis. NEW & NOTEWORTHY SAT-1 is a membrane-bound transport protein expressed in the intestine, liver, and kidney, where it is widely considered essential for the excretion of oxalate, a potentially toxic waste metabolite. Previously, calcium oxalate kidney stone formation by the SAT-1-knockout mouse generated the hypothesis that SAT-1 has a major role in oxalate excretion via the intestine. We definitively tested this proposal and found no evidence for SAT-1 as an intestinal anion transporter contributing to oxalate homeostasis.
Collapse
Affiliation(s)
- Jonathan M. Whittamore
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Christine E. Stephens
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Marguerite Hatch
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Ergul AB, Kara M, Karakukcu C, Tasdemir A, Aslaner H, Ergul MA, Muhtaroglu S, Zararsiz GE, Torun YA. High Doses of Boron Have No Protective Effect Against Nephrolithiasis or Oxidative Stress in a Rat Model. Biol Trace Elem Res 2018. [PMID: 29520723 DOI: 10.1007/s12011-018-1294-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Boron plays roles in the metabolism of calcium, vitamin D, steroid hormones, healthy bone development, and maintenance of cell membranes. The biological effects of boron are dose-dependent but follow a U-shaped pattern, rendering it important to define the active range. The studies of Bahadoran et al. on rats and Naghii et al. on humans showed that low doses of boron (3 and 10 mg/day) prevented kidney stone formation. The aim of this study was to determine whether high doses of boron have an anti-urolithiatic or antioxidant effect on nephrolithiasis in an experimental rat model. The study was conducted on 50 adult male Wistar rats randomized to five groups. Nephrolithiasis was induced with water containing 0.75% ethylene glycol (EG) and 2% ammonium chloride (AC). This treatment was given to animals in all groups for 10 days, except the positive and negative controls. Simultaneously, groups 2, 3, and 4 were given boric acid via gavage at doses of 25, 50, and 100 mg/kg/day (equivalent to 4/8/16 mg boron respectively) as the source of boron. Animals in the negative and positive control groups were given 6 μL/g distilled water without boric acid. At day 10, intra-cardiac blood samples were drawn from all animals. The right and left kidneys were removed for biochemical and histopathological examinations, respectively. The groups were compared with respect to serum urea, creatinine, calcium, phosphorous, total antioxidant status (TAS), total oxidant status (TOS), serum paraoxonase (PON1) activity, tissue calcium and oxalate levels, and stone burden as determined by histopathological examination. Serum urea and creatinine levels were significantly higher (p < 0.001 and p < 0.05, respectively), while serum calcium and phosphorous levels were significantly lower (p < 0.001 and p < 0.001, respectively), in animals given EG/AC compared to negative controls. No significant differences were detected in serum calcium, phosphorous, urea, or creatinine levels between animals treated with boron and positive controls (p > 0.05). Serum PON1 activity was significantly lower in animals given EG/AC than in negative controls (p < 0.001), while no significant difference in serum PON1 level was detected between rats treated with boron and positive controls. No significant differences were detected in vitamin D, TAS, TOS, tissue calcium, or tissue oxalate levels among groups. No stone formation was detected on histopathological examination in negative controls. No significant differences were found in stone formation between rats treated with boron and positive controls. Based on this study, high doses of boron had no protective effect against nephrolithiasis and oxidative stress.
Collapse
Affiliation(s)
- Ayse Betul Ergul
- Department of Pediatrics, University of Health Sciences, Kayseri Training and Research Hospital, Kayseri, Turkey.
| | - Mehmet Kara
- Department of Pharmacology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cigdem Karakukcu
- Department of Pediatrics, University of Health Sciences, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Arzu Tasdemir
- Department of Pathology, University of Health Sciences, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Humeyra Aslaner
- Department of Pediatrics, University of Health Sciences, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Mehmet Ali Ergul
- Department of Urology, University of Health Sciences, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Sebahattin Muhtaroglu
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gozde Erturk Zararsiz
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yasemin Altuner Torun
- Department of Pediatrics, University of Health Sciences, Kayseri Training and Research Hospital, Kayseri, Turkey
| |
Collapse
|
8
|
Evaluation of anti-urolithiatic and diuretic activities of watermelon (Citrullus lanatus) using in vivo and in vitro experiments. Biomed Pharmacother 2018; 97:1212-1221. [DOI: 10.1016/j.biopha.2017.10.162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/14/2017] [Accepted: 10/28/2017] [Indexed: 11/24/2022] Open
|
9
|
Metformin Prevents Renal Stone Formation through an Antioxidant Mechanism In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4156075. [PMID: 27781075 PMCID: PMC5066015 DOI: 10.1155/2016/4156075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/14/2016] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a causal factor and key promoter of urolithiasis associated with renal tubular epithelium cell injury. The present study was designed to investigate the preventive effects of metformin on renal tubular cell injury induced by oxalate and stone formation in a hyperoxaluric rat model. MTT assays were carried out to determine the protection of metformin from oxalate-induced cytotoxicity. The intracellular superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels were measured in vitro. Male Sprague-Dawley rats were divided into control group, ethylene glycol (EG) treated group, and EG + metformin treated group. Oxidative stress and crystal formations were evaluated in renal tissues after 8-week treatment. Metformin significantly inhibited the decrease of the viability in MDCK cells and HK-2 cells induced by oxalate. Besides, metformin markedly prevented the increased concentration of MDA and the decreased tendency of SOD in oxalate-induced MDCK cells and HK-2 cells. In vivo, the increased MDA levels and the reduction of SOD activity were detected in the EG treated group compared with controls, while these parameters reversed in the EG + metformin treated group. Kidney crystal formation in the EG + metformin treated group was decreased significantly compared with the EG treated group. Metformin suppressed urinary crystal deposit formation through renal tubular cell protection and antioxidative effects.
Collapse
|
10
|
Differential Roles of Peroxisome Proliferator-Activated Receptor-α and Receptor-γ on Renal Crystal Formation in Hyperoxaluric Rodents. PPAR Res 2016; 2016:9605890. [PMID: 27022389 PMCID: PMC4789040 DOI: 10.1155/2016/9605890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/10/2016] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) and related inflammatory and oxidative molecule expression were investigated in a hyperoxaluric rodent model to evaluate the in vivo efficacy of PPAR agonists in preventing renal crystal formation. PPAR expression was examined in a mouse hyperoxaluria kidney stone model induced by daily intra-abdominal glyoxylate injection. Therapeutic effects of the PPARα agonist fenofibrate and PPARγ agonist pioglitazone were also assessed in a 1% ethylene glycol-induced rat model of hyperoxaluria. Crystal formation, inflammation, cell injury, apoptosis, and oxidative stress were compared to those of vehicle-treated controls. Quantitative reverse transcription-polymerase chain reaction revealed that PPARα and PPARγ expression decrease and increase, respectively, during crystal formation in hyperoxaluric kidneys. In addition, PPARα localized to the cytoplasm of both proximal and distal tubular cells, whereas PPARγ accumulated in the nucleus of proximal tubular cells. Furthermore, renal crystal formation was significantly less prevalent in pioglitazone-treated rats but higher in the fenofibrate-treated and fenofibrate/pioglitazone-cotreated groups compared to controls, thus indicating that pioglitazone, but not fenofibrate, markedly decreased cell inflammation, oxidative stress, and apoptosis. Collectively, the results demonstrated that PPARγ suppressed renal crystal formation via its antioxidative and anti-inflammatory effects; however, the renotoxicity of PPARα may elicit the opposite effect.
Collapse
|
11
|
Landry GM, Dunning CL, Abreo F, Latimer B, Orchard E, McMartin KE. Diethylene glycol-induced toxicities show marked threshold dose response in rats. Toxicol Appl Pharmacol 2014; 282:244-51. [PMID: 25545985 DOI: 10.1016/j.taap.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/16/2022]
Abstract
Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10g/kg DEG and blood, kidney and liver tissues were collected at 48h. Both rat strains treated with 10g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUN and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10g/kg DEG, but no DGA was present at 2 or 5g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments.
Collapse
Affiliation(s)
- Greg M Landry
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Cody L Dunning
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Fleurette Abreo
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Brian Latimer
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Elysse Orchard
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States; Division of Animal Resources, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
12
|
Oral Reference Dose for ethylene glycol based on oxalate crystal-induced renal tubule degeneration as the critical effect. Regul Toxicol Pharmacol 2012; 65:229-41. [PMID: 23266425 DOI: 10.1016/j.yrtph.2012.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
Abstract
Several risk assessments have been conducted for ethylene glycol (EG). These assessments identified the kidney as the primary target organ for chronic effects. None of these assessments have incorporated the robust database of species-specific toxicokinetic and toxicodynamic studies with EG and its metabolites in defining uncertainty factors used in reference value derivation. Pertinent in vitro and in vivo studies related to one of these metabolites, calcium oxalate, and its role in crystal-induced nephropathy are summarized, and the weight of evidence to establish the mode of action for renal toxicity is reviewed. Previous risk assessments were based on chronic rat studies using a strain of rat that was later determined to be less sensitive to the toxic effects of EG. A recently published 12-month rat study using the more sensitive strain (Wistar) was selected to determine the point of departure for a new risk assessment. This approach incorporated toxicokinetic and toxicodynamic data and used Benchmark Dose methods to calculate a Human Equivalent Dose. Uncertainty factors were chosen, depending on the quality of the studies available, the extent of the database, and scientific judgment. The Reference Dose for long-term repeat oral exposure to EG was determined to be 15 mg/kg bw/d.
Collapse
|
13
|
Frazier KS, Seely JC, Hard GC, Betton G, Burnett R, Nakatsuji S, Nishikawa A, Durchfeld-Meyer B, Bube A. Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol Pathol 2012; 40:14S-86S. [PMID: 22637735 DOI: 10.1177/0192623312438736] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying lesions observed in the urinary tract of rats and mice. The standardized nomenclature of urinary tract lesions presented in this document is also available electronically on the Internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous developmental and aging lesions as well as those induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for urinary tract lesions in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Kendall S Frazier
- GlaxoSmithKline-Safety Assessment, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Khandrika L, Koul S, Meacham RB, Koul HK. Kidney injury molecule-1 is up-regulated in renal epithelial cells in response to oxalate in vitro and in renal tissues in response to hyperoxaluria in vivo. PLoS One 2012; 7:e44174. [PMID: 22984472 PMCID: PMC3440413 DOI: 10.1371/journal.pone.0044174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/30/2012] [Indexed: 01/28/2023] Open
Abstract
Oxalate is a metabolic end product excreted by the kidney. Mild increases in urinary oxalate are most commonly associated with Nephrolithiasis. Chronically high levels of urinary oxalate, as seen in patients with primary hyperoxaluria, are driving factor for recurrent renal stones, and ultimately lead to renal failure, calcification of soft tissue and premature death. In previous studies others and we have demonstrated that high levels of oxalate promote injury of renal epithelial cells. However, methods to monitor oxalate induced renal injury are limited. In the present study we evaluated changes in expression of Kidney Injury Molecule-1 (KIM-1) in response to oxalate in human renal cells (HK2 cells) in culture and in renal tissue and urine samples in hyperoxaluric animals which mimic in vitro and in vivo models of hyper-oxaluria. Results presented, herein demonstrate that oxalate exposure resulted in increased expression of KIM-1 m RNA as well as protein in HK2 cells. These effects were rapid and concentration dependent. Using in vivo models of hyperoxaluria we observed elevated expression of KIM-1 in renal tissues of hyperoxaluric rats as compared to normal controls. The increase in KIM-1 was both at protein and mRNA level, suggesting transcriptional activation of KIM-1 in response to oxalate exposure. Interestingly, in addition to increased KIM-1 expression, we observed increased levels of the ectodomain of KIM-1 in urine collected from hyperoxaluric rats. To the best of our knowledge our studies are the first direct demonstration of regulation of KIM-1 in response to oxalate exposure in renal epithelial cells in vitro and in vivo. Our results suggest that detection of KIM-1 over-expression and measurement of the ectodomain of KIM-1 in urine may hold promise as a marker to monitor oxalate nephrotoxicity in hyperoxaluria.
Collapse
Affiliation(s)
- Lakshmipathi Khandrika
- Signal Transduction and Molecular Urology Laboratory-Program in Urosciences, Division of Urology- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Sweaty Koul
- Signal Transduction and Molecular Urology Laboratory-Program in Urosciences, Division of Urology- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Randall B. Meacham
- Signal Transduction and Molecular Urology Laboratory-Program in Urosciences, Division of Urology- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Hari K. Koul
- Signal Transduction and Molecular Urology Laboratory-Program in Urosciences, Division of Urology- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
- University of Colorado Comprehensive Cancer Center, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Denver Veterans Administration Medical Center, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chen WC, Lin WY, Chen HY, Chang CH, Tsai FJ, Man KM, Shen JL, Chen YH. Melamine-induced urolithiasis in a Drosophila model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2753-7. [PMID: 22352299 DOI: 10.1021/jf204647p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Melamine-tainted food can induce renal stones in both humans and animals. We have previously reported a novel Drosophila model for the study of renal stone disease. In addition to hyperoxaluria-causing agents, we also tested herein the effect of melamine on crystal formation in Drosophila . The results indicate that administration of melamine alone caused crystal formation in a dose-dependent manner. The crystals also appeared after ingestion of melamine for 3 weeks in the Malpighian tubules of Drosophila when viewed with polarized light. Administration of potassium citrate (K citrate) was found to significantly ameliorate the melamine-induced reduction of lifespan. However, administration of K citrate failed to reduce the quantity of crystals. Because calcium oxalate is not the major crystal induced by melamine, the predominant components of melamine-induced crystals and the potential crystal inhibitors warrant further investigation.
Collapse
Affiliation(s)
- Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Saha S, Verma RJ. Efficacy Study of Dolichos biflorus in the Management of Nephrotoxicity. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60440-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Khan A, Bashir S, Khan SR, Gilani AH. Antiurolithic activity of Origanum vulgare is mediated through multiple pathways. Altern Ther Health Med 2011; 11:96. [PMID: 22004514 PMCID: PMC3222619 DOI: 10.1186/1472-6882-11-96] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/17/2011] [Indexed: 11/17/2022]
Abstract
Background Origanum vulgare Linn has traditionally been used in the treatment of urolithiasis. Therefore, we investigated the crude extract of Origanum vulgare for possible antiurolithic effect, to rationalize its medicinal use. Methods The crude aqueous-methanolic extract of Origanum vulgare (Ov.Cr) was studied using the in vitro and in vivo methods. In the in vitro experiments, supersaturated solution of calcium and oxalate, kidney epithelial cell lines (MDCK) and urinary bladder of rabbits were used, whereas, in the in vivo studies, rat model of urolithiasis was used for the study of preventive and curative effect. Results In the in vitro experiments, Ov.Cr exhibited a concentration-dependent (0.25-4 mg/ml) inhibitory effect on the slope of nucleation and aggregation and also decreased the number of calcium oxalate monohydrate crystals (COM) produced in calcium oxalate metastable solutions. It also showed concentration-dependent antioxidant effect against DPPH free radical and lipid peroxidation induced in rat kidney tissue homogenate. Ov.Cr reduced the cell toxicity using MTT assay and LDH release in renal epithelial cells (MDCK) exposed to oxalate (0.5 mM) and COM (66 μg/cm2) crystals. Ov.Cr relaxed high K+ (80 mM) induced contraction in rabbit urinary bladder strips, and shifted the calcium concentration-response curves (CRCs) towards right with suppression of the maximum response similar to that of verapamil, a standard calcium channel blocker. In male Wistar rats receiving lithogenic treatment comprising of 0.75% ethylene glycol in drinking water given for 3 weeks along with ammonium chloride (NH4Cl) for the first 5 days, Ov.Cr treatment (10-30 mg/kg) prevented as well as reversed toxic changes including loss of body weight, polyurea, crystalluria, oxaluria, raised serum urea and creatinine levels and crystal deposition in kidneys compared to their respective controls. Conclusion These data indicating the antiurolithic activity in Ov.Cr, possibly mediated through inhibition of CaOx crystallization, antioxidant, renal epithelial cell protective and antispasmodic activities, rationalizes its medicinal use in urolithiasis.
Collapse
|
18
|
Besenhofer LM, McLaren MC, Latimer B, Bartels M, Filary MJ, Perala AW, McMartin KE. Role of Tissue Metabolite Accumulation in the Renal Toxicity of Diethylene Glycol. Toxicol Sci 2011; 123:374-83. [DOI: 10.1093/toxsci/kfr197] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Shimo T, Moto M, Ashizawa N, Oba K, Nagata O. Study on toxicological aspects of crystal-mediated nephrotoxicity induced by FYX-051, a xanthine oxidoreductase inhibitor, in rats. Drug Chem Toxicol 2011; 34:192-8. [PMID: 21314469 DOI: 10.3109/01480545.2010.500291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To clarify the toxicological aspects of crystal-mediated nephrotoxicity, we performed analysis concerning the correlation between representative kidney-related parameters and renal histopathology, using the individual data obtained from the 4-week toxicity studies of FYX-051, a xanthine oxidoreductase inhibitor, by oral administration at 1 and 3 mg/kg to Sprague-Dawley (SD) rats and at 3 and 10 mg/kg to F344 rats. In SD rats, the correlation coefficient on histopathology between the right and left kidneys was 0.7826 and remained within a lower range of strong correlation (range: ±0.7 ∼ ±0.9). The correlation coefficient between body-weight gains, urinary volume, osmolarity, serum blood urea nitrogen (BUN), creatinine, and relative kidney weights and renal histopathology was -0.6648, 0.7896, -0.7751, 0.8195, 0.8479, and 0.8969, respectively, showing a strong correlation, except a moderate correlation in body-weight gains (range: ±0.4 ∼ ±0.7). In F344 rats, the correlation coefficient on histopathology between the right and left kidneys was 0.8637, remaining within an upper range of strong correlation. The correlation coefficient between the above parameters and renal histopathology was -0.8175, 0.8616, -0.9045, 0.9010, 0.8991, and 0.9524, respectively, showing an extremely strong correlation in urinary osmolarity, serum BUN, and relative kidney weights (range: ±0.9 ∼ ±1.0). Therefore, the present study suggests that FYX-051-induced nephrotoxicity may occur with more inconsistency in the degree of nephropathy between the right and left kidneys in SD rats than in F344 rats, which would explain the above outcomes.
Collapse
Affiliation(s)
- Takeo Shimo
- Research Laboratories, Fuji Yakuhin Co., Ltd., Saitama, Japan.
| | | | | | | | | |
Collapse
|
20
|
Corley R, Saghir S, Bartels M, Hansen S, Creim J, McMartin K, Snellings W. Extension of a PBPK model for ethylene glycol and glycolic acid to include the competitive formation and clearance of metabolites associated with kidney toxicity in rats and humans. Toxicol Appl Pharmacol 2011; 250:229-44. [DOI: 10.1016/j.taap.2010.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/06/2010] [Accepted: 10/11/2010] [Indexed: 11/26/2022]
|
21
|
Li Y, McLaren MC, McMartin KE. Involvement of urinary proteins in the rat strain difference in sensitivity to ethylene glycol-induced renal toxicity. Am J Physiol Renal Physiol 2010; 299:F605-15. [DOI: 10.1152/ajprenal.00419.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethylene glycol (EG) exposure is a common model for kidney stones, because animals accumulate calcium oxalate monohydrate (COM) in kidneys. Wistar rats are more sensitive to EG than Fischer 344 (F344) rats, with greater COM deposition in kidneys. The mechanisms by which COM accumulates differently among strains are poorly understood. Urinary proteins inhibit COM adhesion to renal cells, which could alter COM deposition in kidneys. We hypothesize that COM accumulates more in Wistar rat kidneys because of lower levels of inhibitory proteins in urine. Wistar and F344 rats were treated with 0.75% EG in drinking water for 8 wk. Twenty-four-hour urine was collected every 2 wk for analysis of urinary proteins. Similar studies were conducted for 2 wk using 2% hydroxyproline (HP) as an alternative oxalate source. Total urinary protein was higher in F344 than Wistar rats at all times. Tamm-Horsfall protein was not different between strains. Osteopontin (OPN) levels in Wistar urine and kidney tissue were higher and were further increased by EG treatment. This increase in OPN occurred before renal COM accumulation. Untreated F344 rats showed greater CD45 and ED-1 staining in kidneys than untreated Wistars; in contrast, EG treatment increased CD45 and ED-1 staining in Wistars more than in F344 rats, indicating macrophage infiltration. This increase occurred in parallel with the increase in OPN and before COM accumulation. Like EG, HP induced markedly greater oxalate concentrations in the plasma and urine of Wistar rats compared with F344 rats. These results suggest that OPN upregulation and macrophage infiltration do not completely protect against COM accumulation and may be a response to crystal retention. Because the two oxalate precursors, EG and HP, produced similar elevations of oxalate, the strain difference in COM accumulation may result more so from metabolic differences between strains than from differences in urinary proteins or inflammatory responses.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Marie C. McLaren
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Kenneth E. McMartin
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
22
|
Khan SR, Glenton PA. Experimental induction of calcium oxalate nephrolithiasis in mice. J Urol 2010; 184:1189-96. [PMID: 20663521 DOI: 10.1016/j.juro.2010.04.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Indexed: 02/08/2023]
Abstract
PURPOSE The availability of various transgenic and knockout mice provides an excellent opportunity to better understand the pathophysiology of calcium oxalate stone disease. However, attempts to produce calcium oxalate nephrolithiasis in mice have not been successful. We hypothesized that calcium oxalate nephrolithiasis in mice requires increasing urine calcium and oxalate excretion, and experimentally induced hyperoxaluria alone is not sufficient. To provide evidence we induced hyperoxaluria by administering hyperoxaluria inducing agents in normocalciuric and hypercalciuric mice, and investigating various aspects of nephrolithiasis. MATERIALS AND METHODS We administered ethylene glycol, glyoxylate or hydroxyl proline via diet in male and female normocalciuric B6 mice, and in hypercalciuric sodium phosphate co-transporter type 2 a -/- mice for 4 weeks. We collected 24-hour urine samples on days 0, 3, 7, 14, 21 and 28, and analyzed them for pH, creatinine, lactate dehydrogenase calcium and oxalate. Kidneys were examined using light microscopy. Urine was examined for crystals using light and scanning electron microscopy. RESULTS Hypercalciuric mice on hydroxyl proline did not tolerate treatment and were sacrificed before 28 days. All mice on ethylene glycol, glyoxylate or hydroxyl proline became hyperoxaluric and showed calcium oxalate crystalluria. No female, normocalciuric or hypercalciuric mice showed renal calcium oxalate crystal deposits. Calcium oxalate nephrolithiasis developed in all mice on glyoxylate and in some on ethylene glycol. In all mice the kidneys showed epithelial injury. Male mice particularly on glyoxylate had more renal injury and inflammatory cell migration into the interstitium around the crystal deposits. CONCLUSIONS Results confirm that hyperoxaluria induction alone is not sufficient to create calcium oxalate nephrolithiasis in mice. Hypercalciuria is also required. Kidneys in male mice are more prone to injury than those in female mice and are susceptible to calcium oxalate crystal deposition. Perhaps epithelial injury promotes crystal retention. Thus, calcium oxalate nephrolithiasis in mice is gender dependent, and requires hypercalciuria and hyperoxaluria.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
23
|
Hovda KE, Guo C, Austin R, McMartin KE. Renal toxicity of ethylene glycol results from internalization of calcium oxalate crystals by proximal tubule cells. Toxicol Lett 2009; 192:365-72. [PMID: 19931368 DOI: 10.1016/j.toxlet.2009.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/17/2022]
Abstract
Ethylene glycol exposure can lead to the development of renal failure due to the metabolic formation of calcium oxalate monohydrate (COM) crystals. The renal damage is closely linked to the degree of COM accumulation in the kidney and most likely results from a COM-induced injury to proximal tubule (PT) cells. The present studies have measured the binding and internalization of COM by primary cultures of normal PT cells from humans and from Wistar and Fischer-344 rats in order to examine the roles of these uptake processes in the resulting cytotoxicity. Internalization was determined by incubation of cells with [(14)C]-COM at 37 degrees C, removal of bound COM with an EDTA incubation, followed by solubilization of cells, as well as by transmission electron microscopy of COM-exposed cells. COM crystals were internalized by PT cells in time- and concentration-dependent manners. COM crystals were bound to and internalized by rat cells about five times more than by human cells. Binding and internalization values were similar between PT cells from Wistar and Fischer-344 rats, indicating that a differential uptake of COM does not explain the known strain difference in sensitivity to ethylene glycol renal toxicity. Internalization of COM correlated highly with the degree of cell death, which is greater in rat cells than in human cells. Thus, surface binding and internalization of COM by cells play critical roles in cytotoxicity and explain why rat cells are more sensitive to COM crystals. At the same level of COM accumulation after ethylene glycol exposure or hyperoxaluria in vivo, rats would be more susceptible than humans to COM-induced damage.
Collapse
Affiliation(s)
- Knut Erik Hovda
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
24
|
McMartin K. Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning? Clin Toxicol (Phila) 2009; 47:859-69. [PMID: 19852621 DOI: 10.3109/15563650903344793] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Ethylene glycol (EG) poisoning often results in acute renal failure, particularly if treatment with fomepizole or ethanol is delayed because of late presentation or diagnosis. The mechanism has not been established but is thought to result from the production of a toxic metabolite. METHODS A literature review utilizing PubMed identified papers dealing with renal toxicity and EG or oxalate. The list of papers was culled to those relevant to the mechanism and treatment of the renal toxicity associated with either compound. ROLE OF METABOLITES: Although the "aldehyde" metabolites of EG, glycolaldehyde, and glyoxalate, have been suggested as the metabolites responsible, recent studies have shown definitively that the accumulation of calcium oxalate monohydrate (COM) crystals in kidney tissue produces renal tubular necrosis that leads to kidney failure. In vivo studies in EG-dosed rats have correlated the severity of renal damage with the total accumulation of COM crystals in kidney tissue. Studies in cultured kidney cells, including human proximal tubule (HPT) cells, have demonstrated that only COM crystals, not the oxalate ion, glycolaldehyde, or glyoxylate, produce a necrotic cell death at toxicologically relevant concentrations. COM CRYSTAL ACCUMULATION: In EG poisoning, COM crystals accumulate to high concentrations in the kidney through a process involving adherence to tubular cell membranes, followed by internalization of the crystals. MECHANISM OF TOXICITY: COM crystals have been shown to alter membrane structure and function, to increase reactive oxygen species and to produce mitochondrial dysfunction. These processes are likely to be involved in the mechanism of cell death. CONCLUSIONS Accumulation of COM crystals in the kidney is responsible for producing the renal toxicity associated with EG poisoning. The development of a pharmacological approach to reduce COM crystal adherence to tubular cells and its cellular interactions would be valuable as this would decrease the renal toxicity not only in late treated cases of EG poisoning, but also in other hyperoxaluric diseases such as primary hyperoxaluria and kidney stone formation.
Collapse
Affiliation(s)
- Kenneth McMartin
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|