1
|
Wittenstein J, Huhle R, Leiderman M, Möbius M, Braune A, Tauer S, Herzog P, Barana G, de Ferrari A, Corona A, Bluth T, Kiss T, Güldner A, Schultz MJ, Rocco PRM, Pelosi P, Gama de Abreu M, Scharffenberg M. Effect of patient-ventilator asynchrony on lung and diaphragmatic injury in experimental acute respiratory distress syndrome in a porcine model. Br J Anaesth 2023; 130:e169-e178. [PMID: 34895719 DOI: 10.1016/j.bja.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Patient-ventilator asynchrony during mechanical ventilation may exacerbate lung and diaphragm injury in spontaneously breathing subjects. We investigated whether subject-ventilator asynchrony increases lung or diaphragmatic injury in a porcine model of acute respiratory distress syndrome (ARDS). METHODS ARDS was induced in adult female pigs by lung lavage and injurious ventilation before mechanical ventilation by pressure assist-control for 12 h. Mechanically ventilated pigs were randomised to breathe spontaneously with or without induced subject-ventilator asynchrony or neuromuscular block (n=7 per group). Subject-ventilator asynchrony was produced by ineffective, auto-, or double-triggering of spontaneous breaths. The primary outcome was mean alveolar septal thickness (where thickening of the alveolar wall indicates worse lung injury). Secondary outcomes included distribution of ventilation (electrical impedance tomography), lung morphometric analysis, inflammatory biomarkers (gene expression), lung wet-to-dry weight ratio, and diaphragmatic muscle fibre thickness. RESULTS Subject-ventilator asynchrony (median [interquartile range] 28.8% [10.4] asynchronous breaths of total breaths; n=7) did not increase mean alveolar septal thickness compared with synchronous spontaneous breathing (asynchronous breaths 1.0% [1.6] of total breaths; n=7). There was no difference in mean alveolar septal thickness throughout upper and lower lung lobes between pigs randomised to subject-ventilator asynchrony vs synchronous spontaneous breathing (87.3-92.2 μm after subject-ventilator asynchrony, compared with 84.1-95.0 μm in synchronised spontaneous breathing;). There were also no differences between groups in wet-to-dry weight ratio, diaphragmatic muscle fibre thickness, atelectasis, lung aeration, or mRNA expression levels for inflammatory cytokines pivotal in ARDS pathogenesis. CONCLUSIONS Subject-ventilator asynchrony during spontaneous breathing did not exacerbate lung injury and dysfunction in experimental porcine ARDS.
Collapse
Affiliation(s)
- Jakob Wittenstein
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Robert Huhle
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Mark Leiderman
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Marius Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Anja Braune
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Nuclear Medicine, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Tauer
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Paul Herzog
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Giulio Barana
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology, Hospital Thurgau AG, Frauenfeld, Switzerland
| | - Alessandra de Ferrari
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesia and Intensive Care, IRCCS AOU San Martino IST, Genoa, Italy
| | - Andrea Corona
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology and Intensive Care, Mater Olbia Hospital, Olbia, Italy
| | - Thomas Bluth
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Thomas Kiss
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Anaesthesiology, Intensive-, Pain- and Palliative Care Medicine, Radebeul Hospital, Academic Hospital of the Technische Universität Dresden, Radebeul, Germany
| | - Andreas Güldner
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Marcus J Schultz
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anaesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Marcelo Gama de Abreu
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany; Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Martin Scharffenberg
- Department of Anaesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| |
Collapse
|
2
|
Comparative effects of neurally adjusted ventilatory assist and variable pressure support on lung and diaphragmatic function in a model of acute respiratory distress syndrome: A randomised animal study. Eur J Anaesthesiol 2021; 38:32-40. [PMID: 32657806 DOI: 10.1097/eja.0000000000001261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Variable assisted mechanical ventilation has been shown to improve lung function and reduce lung injury. However, differences between extrinsic and intrinsic variability are unknown. OBJECTIVE To investigate the effects of neurally adjusted ventilatory assist (NAVA, intrinsic variability), variable pressure support ventilation (Noisy PSV, extrinsic variability) and conventional pressure-controlled ventilation (PCV) on lung and diaphragmatic function and damage in experimental acute respiratory distress syndrome (ARDS). DESIGN Randomised controlled animal study. SETTING University Hospital Research Facility. SUBJECTS A total of 24 juvenile female pigs. INTERVENTIONS ARDS was induced by repetitive lung lavage and injurious ventilation. Animals were randomly assigned to 24 h of either: 1) NAVA, 2) Noisy PSV or 3) PCV (n=8 per group). Mechanical ventilation settings followed the ARDS Network recommendations. MEASUREMENTS The primary outcome was histological lung damage. Secondary outcomes were respiratory variables and patterns, subject-ventilator asynchrony (SVA), pulmonary and diaphragmatic biomarkers, as well as diaphragmatic muscle atrophy and myosin isotypes. RESULTS Global alveolar damage did not differ between groups, but NAVA resulted in less interstitial oedema in dorsal lung regions than Noisy PSV. Gas exchange and SVA incidence did not differ between groups. Compared with Noisy PSV, NAVA generated higher coefficients of variation of tidal volume and respiratory rate. During NAVA, only 40.4% of breaths were triggered by the electrical diaphragm signal. The IL-8 concentration in lung tissue was lower after NAVA compared with PCV and Noisy PSV, whereas Noisy PSV yielded lower type III procollagen mRNA expression than NAVA and PCV. Diaphragmatic muscle fibre diameters were smaller after PCV compared with assisted modes, whereas expression of myosin isotypes did not differ between groups. CONCLUSION Noisy PSV and NAVA did not reduce global lung injury compared with PCV but affected different biomarkers and attenuated diaphragmatic atrophy. NAVA increased the respiratory variability; however, NAVA yielded a similar SVA incidence as Noisy PSV. TRIAL REGISTRATION This trial was registered and approved by the Landesdirektion Dresden, Germany (AZ 24-9168.11-1/2012-2).
Collapse
|
3
|
Menk M, Graw JA, von Haefen C, Steinkraus H, Lachmann B, Spies CD, Schwaiberger D. Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury. J Inflamm Res 2018; 11:169-178. [PMID: 29750051 PMCID: PMC5935084 DOI: 10.2147/jir.s160573] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Although the role of the angiotensin II type 2 (AT2) receptor in acute lung injury is not yet completely understood, a protective role of this receptor subtype has been suggested. We hypothesized that, in a rodent model of acute lung injury, stimulation of the AT2 receptor with the direct agonist Compound 21 (C21) might have a beneficial effect on pulmonary inflammation and might improve pulmonary gas exchange. Materials and methods Male adult rats were divided into a treatment group that received pulmonary lavage followed by mechanical ventilation (LAV, n=9), a group receiving pulmonary lavage, mechanical ventilation, and direct stimulation of the AT2 receptor with C21 (LAV+C21, n=9), and a control group that received mechanical ventilation only (control, n=9). Arterial blood gas analysis was performed every 30 min throughout the 240-min observation period. Lung tissue and plasma samples were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid were assessed and the wet/dry-weight ratio of lungs was determined. Transcriptional and translational regulation of pro- and antiinflammatory cytokines IL-1β, tumor necrosis factor-alpha, IL-6, IL-10, and IL-4 was determined in lungs and in plasma. Results Pulmonary lavage led to a significant impairment of gas exchange, the formation of lung edema, and the induction of pulmonary inflammation. Protein content of lavage fluid was increased and contained washed-out surfactant. Direct AT2 receptor stimulation with C21 led to a significant inhibition of tumor necrosis factor-alpha and IL-6 expressions in the lungs, whereas the expressions of IL-1, IL-10, and IL-4 remained unchanged. During the 240-min observation period, AT2 receptor stimulation did not improve pulmonary gas exchange or lung edema. Conclusion In this rodent model of acute lung injury after repeated pulmonary lavage, AT2 receptor stimulation attenuates pulmonary inflammation but does not improve gas exchange.
Collapse
Affiliation(s)
- Mario Menk
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany
| | - Jan Adriaan Graw
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany
| | - Hendrik Steinkraus
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany
| | - Burkhard Lachmann
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany
| | - David Schwaiberger
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
4
|
dos Reis FF, Reboredo MDM, Lucinda LMF, Bianchi AMA, Rabelo MAE, da Fonseca LMC, de Oliveira JCA, Pinheiro BV. Pre-treatment with dexamethasone attenuates experimental ventilator-induced lung injury. J Bras Pneumol 2016; 42:166-73. [PMID: 27383928 PMCID: PMC5569612 DOI: 10.1590/s1806-37562015000000350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/09/2016] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate the effects that administering dexamethasone before the induction of ventilator-induced lung injury (VILI) has on the temporal evolution of that injury. METHODS Wistar rats were allocated to one of three groups: pre-VILI administration of dexamethasone (dexamethasone group); pre-VILI administration of saline (control group); or ventilation only (sham group). The VILI was induced by ventilation at a high tidal volume. Animals in the dexamethasone and control groups were euthanized at 0, 4, 24, and 168 h after VILI induction. We analyzed arterial blood gases, lung edema, cell counts (total and differential) in the BAL fluid, and lung histology. RESULTS At 0, 4, and 24 h after VILI induction, acute lung injury (ALI) scores were higher in the control group than in the sham group (p < 0.05). Administration of dexamethasone prior to VILI induction decreased the severity of the lung injury. At 4 h and 24 h after induction, the ALI score in the dexamethasone group was not significantly different from that observed for the sham group and was lower than that observed for the control group (p < 0.05). Neutrophil counts in BAL fluid were increased in the control and dexamethasone groups, peaking at 4 h after VILI induction (p < 0.05). However, the neutrophil counts were lower in the dexamethasone group than in the control group at 4 h and 24 h after induction (p < 0.05). Pre-treatment with dexamethasone also prevented the post-induction oxygenation impairment seen in the control group. CONCLUSIONS Administration of dexamethasone prior to VILI induction attenuates the effects of the injury in Wistar rats. The molecular mechanisms of such injury and the possible clinical role of corticosteroids in VILI have yet to be elucidated. OBJETIVO Avaliar os efeitos da administração de dexametasona antes da indução de lesão pulmonar induzida por ventilação mecânica (LPIVM) na evolução temporal dessa lesão. MÉTODOS Ratos Wistar foram alocados em um dos três grupos: administração de dexametasona pré-LPIVM (grupo dexametasona); administração de salina pré-LPIVM (grupo controle); e somente ventilação (grupo sham). A LPIVM foi realizada por ventilação com volume corrente alto. Os animais dos grupos dexametasona e controle foram sacrificados em 0, 4, 24 e 168 h após LPIVM. Analisamos gasometria arterial, edema pulmonar, contagens de células (totais e diferenciais) no lavado broncoalveolar e histologia de tecido pulmonar. RESULTADOS Em 0, 4 e 24 h após LPIVM, os escores de lesão pulmonar aguda (LPA) foram maiores no grupo controle que no grupo sham (p < 0,05). A administração de dexametasona antes da LPIVM reduziu a gravidade da lesão pulmonar. Em 4 e 24 h após a indução, o escore de LPA no grupo dexametasona não foi significativamente diferente daquele observado no grupo sham e foi menor que o observado no grupo controle (p < 0,05). As contagens de neutrófilos no lavado broncoalveolar estavam aumentadas nos grupos controle e dexametasona, com pico em 4 h após LPIVM (p < 0,05). Entretanto, as contagens de neutrófilos foram menores no grupo dexametasona que no grupo controle em 4 e 24 h após LPIVM (p < 0,05). O pré-tratamento com dexametasona também impediu o comprometimento da oxigenação após a indução visto no grupo controle. CONCLUSÕES A administração de dexametasona antes de LPIVM atenua os efeitos da lesão em ratos Wistar. Os mecanismos moleculares dessa lesão e o possível papel clínico dos corticosteroides na LPIVM ainda precisam ser elucidados.
Collapse
Affiliation(s)
- Fernando Fonseca dos Reis
- . Laboratório de Pesquisa em Pneumologia, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
- . Centro de Biologia da Reprodução, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
| | - Maycon de Moura Reboredo
- . Laboratório de Pesquisa em Pneumologia, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
- . Centro de Biologia da Reprodução, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
| | - Leda Marília Fonseca Lucinda
- . Laboratório de Pesquisa em Pneumologia, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
- . Centro de Biologia da Reprodução, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
| | - Aydra Mendes Almeida Bianchi
- . Laboratório de Pesquisa em Pneumologia, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
- . Centro de Biologia da Reprodução, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
| | | | - Lídia Maria Carneiro da Fonseca
- . Laboratório de Pesquisa em Pneumologia, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
- . Centro de Biologia da Reprodução, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
| | | | - Bruno Valle Pinheiro
- . Laboratório de Pesquisa em Pneumologia, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
- . Centro de Biologia da Reprodução, Universidade Federal de Juiz de Fora, Juiz de Fora (MG) Brasil
| |
Collapse
|
5
|
The Effects of Prone Position Ventilation on Experimental Mild Acute Lung Injury Induced by Intraperitoneal Lipopolysaccharide Injection in Rats. Lung 2016; 194:193-9. [PMID: 26912235 DOI: 10.1007/s00408-016-9853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The benefits of prone position ventilation are well demonstrated in the severe forms of acute respiratory distress syndrome, but not in the milder forms. We investigated the effects of prone position on arterial blood gases, lung inflammation, and histology in an experimental mild acute lung injury (ALI) model. METHODS ALI was induced in Wistar rats by intraperitoneal Escherichia coli lipopolysaccharide (LPS, 5 mg/kg). After 24 h, the animals with PaO2/FIO2 between 200 and 300 mmHg were randomized into 2 groups: prone position (n = 6) and supine position (n = 6). Both groups were compared with a control group (n = 5) that was ventilated in the supine position. All of the groups were ventilated for 1 h with volume-controlled ventilation mode (tidal volume = 6 ml/kg, respiratory rate = 80 breaths/min, positive end-expiratory pressure = 5 cmH2O, inspired oxygen fraction = 1) RESULTS: Significantly higher lung injury scores were observed in the LPS-supine group compared to the LPS-prone and control groups (0.32 ± 0.03; 0.17 ± 0.03 and 0.13 ± 0.04, respectively) (p < 0.001), mainly due to a higher neutrophil infiltration level in the interstitial space and more proteinaceous debris that filled the airspaces. Similar differences were observed when the gravity-dependent lung regions and non-dependent lung regions were analyzed separately (p < 0.05). The BAL neutrophil content was also higher in the LPS-supine group compared to the LPS-prone and control groups (p < 0.05). There were no significant differences in the wet/dry ratio and gas exchange levels. CONCLUSIONS In this experimental extrapulmonary mild ALI model, prone position ventilation for 1 h, when compared with supine position ventilation, was associated with lower lung inflammation and injury.
Collapse
|
6
|
Uhlig C, Silva PL, Ornellas D, Santos RS, Miranda PJ, Spieth PM, Kiss T, Kasper M, Wiedemann B, Koch T, Morales MM, Pelosi P, de Abreu MG, Rocco PR. The effects of salbutamol on epithelial ion channels depend on the etiology of acute respiratory distress syndrome but not the route of administration. Respir Res 2014; 15:56. [PMID: 24886221 PMCID: PMC4026154 DOI: 10.1186/1465-9921-15-56] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/24/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction We investigated the effects of intravenous and intratracheal administration of salbutamol on lung morphology and function, expression of ion channels, aquaporin, and markers of inflammation, apoptosis, and alveolar epithelial/endothelial cell damage in experimental pulmonary (p) and extrapulmonary (exp) mild acute respiratory distress syndrome (ARDS). Methods In this prospective randomized controlled experimental study, 56 male Wistar rats were randomly assigned to mild ARDS induced by either intratracheal (n = 28, ARDSp) or intraperitoneal (n = 28, ARDSexp) administration of E. coli lipopolysaccharide. Four animals with no lung injury served as controls (NI). After 24 hours, animals were anesthetized, mechanically ventilated in pressure-controlled mode with low tidal volume (6 mL/kg), and randomly assigned to receive salbutamol (SALB) or saline 0.9% (CTRL), intravenously (i.v., 10 μg/kg/h) or intratracheally (bolus, 25 μg). Salbutamol doses were targeted at an increase of ≈ 20% in heart rate. Hemodynamics, lung mechanics, and arterial blood gases were measured before and after (at 30 and 60 min) salbutamol administration. At the end of the experiment, lungs were extracted for analysis of lung histology and molecular biology analysis. Values are expressed as mean ± standard deviation, and fold changes relative to NI, CTRL vs. SALB. Results The gene expression of ion channels and aquaporin was increased in mild ARDSp, but not ARDSexp. In ARDSp, intravenous salbutamol resulted in higher gene expression of alveolar epithelial sodium channel (0.20 ± 0.07 vs. 0.68 ± 0.24, p < 0.001), aquaporin-1 (0.44 ± 0.09 vs. 0.96 ± 0.12, p < 0.001) aquaporin-3 (0.31 ± 0.12 vs. 0.93 ± 0.20, p < 0.001), and Na-K-ATPase-α (0.39 ± 0.08 vs. 0.92 ± 0.12, p < 0.001), whereas intratracheal salbutamol increased the gene expression of aquaporin-1 (0.46 ± 0.11 vs. 0.92 ± 0.06, p < 0.001) and Na-K-ATPase-α (0.32 ± 0.07 vs. 0.58 ± 0.15, p < 0.001). In ARDSexp, the gene expression of ion channels and aquaporin was not influenced by salbutamol. Morphological and functional variables and edema formation were not affected by salbutamol in any of the ARDS groups, regardless of the route of administration. Conclusion Salbutamol administration increased the expression of alveolar epithelial ion channels and aquaporin in mild ARDSp, but not ARDSexp, with no effects on lung morphology and function or edema formation. These results may contribute to explain the negative effects of β2-agonists on clinical outcome in ARDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Marcelo Gama de Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Av, Carlos Chagas Filho s/n, Bloco G-014, Rio de Janeiro, RJ 21941-902, Brazil.
| | | |
Collapse
|
7
|
Yin J, Wang L, Yin N, Tabuchi A, Kuppe H, Wolff G, Kuebler WM. Vasodilatory effect of the stable vasoactive intestinal peptide analog RO 25-1553 in murine and rat lungs. PLoS One 2013; 8:e75861. [PMID: 24069452 PMCID: PMC3777882 DOI: 10.1371/journal.pone.0075861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Rationale Stable analogs of vasoactive intestinal peptide (VIP) have been proposed as novel line of therapy in chronic obstructive pulmonary disease (COPD) based on their bronchodilatory and anti-inflammatory effects. We speculated that VIP analogs may provide additional benefits in that they exert vasodilatory properties in the lung, and tested this hypothesis in both ex vivo and in vivo models. Methods In isolated perfused mouse lungs and in an in vivo rat model, pulmonary blood vessels were preconstricted by hypoxia and hemodynamic changes in response to systemic (ex vivo) or inhaled (in vivo) administration of the cyclic VIP analog RO 25-1553 were determined. Results In mouse lungs, RO 25-1553 reduced intrinsic vascular resistance at normoxia, and attenuated the increase in pulmonary artery pressure in response to acute hypoxia. Consistently, inhalation of RO 25-1553 (1 mg·mL−1 for 3 min) caused an extensive and sustained (> 60 min) inhibition of the pulmonary arterial pressure increase in response to hypoxia in vivo that was comparable to the effects of inhaled sildenafil. This effect was not attributable to systemic cardiovascular effects of RO 25-1553, but to a lung specific reduction in pulmonary vascular resistance, while cardiac output and systemic arterial hemodynamics remained unaffected. No adverse effects of RO 25-1553 inhalation on pulmonary gas exchange, ventilation-perfusion matching, or lung fluid content were detected. Conclusion Our findings demonstrate that inhaled delivery of the stable VIP analog RO 25-1553 induces a potent and sustained vasodilatory effect in the pulmonary circulation with no detectable adverse effects. Therapeutic inhalation of RO 25-1553 may provide vascular benefits in addition to its reported anti-inflammatory and bronchodilatory effects in COPD, yet caution is warranted given the overall poor results of vasodilator therapies for pulmonary hypertension secondary to COPD in a series of recent clinical trials.
Collapse
Affiliation(s)
- Jun Yin
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute for Anesthesiology, German Heart Institute, Berlin, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Liming Wang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute for Anesthesiology, German Heart Institute, Berlin, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ning Yin
- Institute for Anesthesiology, German Heart Institute, Berlin, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arata Tabuchi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Hermann Kuppe
- Institute for Anesthesiology, German Heart Institute, Berlin, Berlin, Germany
| | - Gerhard Wolff
- Department of Translational Medicine, Hoffmann-La Roche Ltd., Nutley, New York, United States of America
| | - Wolfgang M. Kuebler
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute for Anesthesiology, German Heart Institute, Berlin, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Li T, Zhang J, Feng J, Li Q, Wu L, Ye Q, Sun J, Lin Y, Zhang M, Huang R, Cheng J, Cao Y, Xiang G, Zhang J, Wu Q. Resveratrol reduces acute lung injury in a LPS‑induced sepsis mouse model via activation of Sirt1. Mol Med Rep 2013; 7:1889-95. [PMID: 23625030 DOI: 10.3892/mmr.2013.1444] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/16/2013] [Indexed: 11/06/2022] Open
Abstract
The development of acute lung injury (ALI) during sepsis almost doubles the mortality rate of patients. The efficacy of current treatment strategies is low as treatment is usually initiated following the onset of symptoms. Inflammation is one of the main mechanisms of autoimmune disorders and is a common feature of sepsis. The suppression of inflammation is therefore an important mechanism for the treatment of sepsis. Sirtuin 1 (Sirt1) has been demonstrated to play a role in the regulation of inflammation. Resveratrol, a potent Sirt1 activator, exhibits anti‑inflammatory properties. However, the role of resveratrol for the treatment of ALI during sepsis is not fully understood. In the present study, the anti‑inflammatory role of Sirt1 in the lipopolysaccharide (LPS)‑induced TC‑1 cell line and its therapeutic role in ALI was investigated in a mouse model of sepsis. The upregulation of matrix metalloproteinase-9, interleukin (IL)‑1β, IL‑6 and inducible nitric oxide synthase was induced by LPS in the mouse model of sepsis and the TC‑1 cell line, and resveratrol suppressed the overexpression of these proinflammatory molecules in a dose‑dependent manner. Resveratrol decreased pulmonary edema in the mouse model of sepsis induced by LPS. In addition, resveratrol improved lung function and reduced pathological alterations in the mouse model of sepsis. Knockdown of Sirt1 by RNA interference resulted in an increased susceptibility of TC‑1 cells to LPS stimulation and diminished the anti‑inflammatory effect of resveratrol. These results demonstrated that resveratrol inhibits LPS‑induced ALI and inflammation via Sirt1, and indicated that Sirt1 is an efficient target for the regulation of LPS‑induced ALI and inflammation. The present study provides insights into the treatment of ALI during sepsis.
Collapse
Affiliation(s)
- Tongxun Li
- Stroke Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Effects of Intravascular Volume Replacement on Lung and Kidney Function and Damage in Nonseptic Experimental Lung Injury. Anesthesiology 2013; 118:395-408. [DOI: 10.1097/aln.0b013e31827e554c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background:
Intravascular volume replacement is often required in the presence of increased pulmonary capillary leakage, for example in patients with volutrauma with major hemorrhage. In the present study, the effects of Ringer’s acetate (RA), gelatin-polysuccinate (GEL), and a modern hydroxyethyl starch (HES, 6% 130/0.42) on lung and kidney function and damage were compared in a two-hit model of acute lung injury. The authors hypothesized that GEL and HES, compared to RA: (1) reduced lung histological damage, (2) impaired kidney morphology and function.
Methods:
Acute lung injury was induced in 30 anesthetized pigs by tidal volumes approximately 40 ml/kg, after saline lung lavage. Protective ventilation was initiated and approximately≈25% of estimated blood volume was drawn. Animals were randomly assigned to receive RA, GEL, or HES (n = 10/group) aimed at approximately 90% of intrathoracic blood volume before blood drainage.
Results:
Fluid volumes were higher with RA (2,250 ± 764 ml) than GEL (704 ± 159 ml) and HES (837 ± 82 ml) (P < 0.05). Compared to RA, HES reduced diffuse alveolar damage overall, and GEL in nondependent zones only. GEL and HES yielded lower wet-to-dry ratios compared to RA (6.5 ± 0.5 and 6.5 ± 0.6 vs. 7.9 ± 0.9, respectively, P < 0.05). HES and RA resulted in less kidney damage than GEL, but kidney function did not differ significantly among groups. Compared to GEL, HES yielded lower lung elastance (55 ± 12 vs. 45 ± 13 cm H2O/l, P < 0.05) and intra-abdominal pressure (15 ± 5 vs. 11 ± 4 cm 14;H2O, P < 0.05).
Conclusions:
In this model of acute lung injury, intravascular volume expansion after major hemorrhage with HES yielded less lung damage than RA and less kidney damage than GEL.
Collapse
|
10
|
Kuzkov VV, Suborov EV, Kirov MY, Waerhaug K, Mortensen R, Kuklin VN, Nordhus KC, Bjertnaes LJ. Radiographic lung density assessed by computed tomography is associated with extravascular lung water content. Acta Anaesthesiol Scand 2010; 54:1018-26. [PMID: 20645924 DOI: 10.1111/j.1399-6576.2010.02272.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We hypothesized that in acute lung injury (ALI), the volume of pulmonary tissue with aqueous density, as determined by spiral computed tomography (CT), is associated with extravascular lung water content. Our aim was to compare tissue volume index, as assessed by CT, before and after oleic acid-induced ALI, with extravascular lung water indexes (EVLWI), determined with single transpulmonary thermodilution (EVLWI(STD)), thermal-dye dilution (EVLWI(TDD)), and postmortem gravimetry (EVLWI(G)). METHODS Seven instrumented sheep received an intravenous infusion of oleic acid 0.08 ml/kg (OA group) and four animals had vehicle only (Control group). The day before, and immediately after the experiment, sheep were anesthetized to undergo quantitative CT examinations during a short breath hold. Hemodynamics, oxygenation, EVLWI(STD), and EVLW(TDD) were registered. Linear regression analysis was used to assess the relationships between EVLWI(STD), EVLW(TDD), EVLWI(G), and lung tissue volume index (TVI(CT)) determined with CT. RESULTS In the OA group, total lung volume increased compared with Controls. Poorly and non-aerated lung volumes increased a 3.6- and 4.9-fold, respectively, and TVI(CT) almost doubled. EVLWI(STD), EVLWI(TDD), and TVI(CT) were associated significantly with EVLWI(G) (r=0.85, 0.90, and 0.88, respectively; P<0.001). TVI(CT) deviated from the reference EVLWI(G) values to the greatest extent with a mean bias +/- 2SD of 4.0 +/- 6.0 ml/kg. CONCLUSIONS In ovine oleic acid-induced ALI, lung tissue volume, as assessed by quantitative CT, is in close agreement with EVLWI, as determined by indicator dilution methods and postmortem gravimetry, but overestimates lung fluid content.
Collapse
Affiliation(s)
- V V Kuzkov
- Department of Anaesthesiology, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shen L, Li L, She H, Yue S, Li C, Luo Z. Inhibition of Pulmonary Surfactants Synthesis during N-Methyl-d-Aspartate-Induced Lung Injury. Basic Clin Pharmacol Toxicol 2010; 107:751-7. [DOI: 10.1111/j.1742-7843.2010.00572.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Silva PL, Cruz FF, Fujisaki LC, Oliveira GP, Samary CS, Ornellas DS, Maron-Gutierrez T, Rocha NN, Goldenberg R, Garcia CSNB, Morales MM, Capelozzi VL, Gama de Abreu M, Pelosi P, Rocco PRM. Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R114. [PMID: 20546573 PMCID: PMC2911760 DOI: 10.1186/cc9063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/21/2010] [Accepted: 06/14/2010] [Indexed: 01/02/2023]
Abstract
Introduction Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)≈70 mmHg; 2) normovolemia (MAP≈100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP≈130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H2O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est,L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1β, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est,L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo- and normovolemia.
Collapse
Affiliation(s)
- Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av Carlos Chagas Filho, Rio de Janeiro 21949-902, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Inhaled nitric oxide versus aerosolized iloprost for the treatment of pulmonary hypertension with left heart disease*. Crit Care Med 2009; 37:980-6. [DOI: 10.1097/ccm.0b013e3181962ce6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Kaestle SM, Reich CA, Yin N, Habazettl H, Weimann J, Kuebler WM. Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema. Am J Physiol Lung Cell Mol Physiol 2007; 293:L859-69. [PMID: 17616651 DOI: 10.1152/ajplung.00008.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formation of cardiogenic pulmonary edema in acute left heart failure is traditionally attributed to increased fluid filtration from pulmonary capillaries and subsequent alveolar flooding. Here, we demonstrate that hydrostatic edema formation at moderately elevated vascular pressures is predominantly caused by an inhibition of alveolar fluid reabsorption, which is mediated by endothelial-derived nitric oxide (NO). In isolated rat lungs, we quantified fluid fluxes into and out of the alveolar space and endothelial NO production by a two-compartmental double-indicator dilution technique and in situ fluorescence imaging, respectively. Elevation of hydrostatic pressure induced Ca(2+)-dependent endothelial NO production and caused a net fluid shift into the alveolar space, which was predominantly attributable to impaired fluid reabsorption. Inhibition of NO production or soluble guanylate cyclase reconstituted alveolar fluid reabsorption, whereas fluid clearance was blocked by exogenous NO donors or cGMP analogs. In isolated mouse lungs, hydrostatic edema formation was attenuated by NO synthase inhibition. Similarly, edema formation was decreased in isolated mouse lungs of endothelial NO synthase-deficient mice. Chronic heart failure results in endothelial dysfunction and preservation of alveolar fluid reabsorption. These findings identify impaired alveolar fluid clearance as an important mechanism in the pathogenesis of hydrostatic lung edema. This effect is mediated by endothelial-derived NO acting as an intercompartmental signaling molecule at the alveolo-capillary barrier.
Collapse
Affiliation(s)
- Stephanie M Kaestle
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin Arnimallee 22, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Kuzkov VV, Suborov EV, Kirov MY, Kuklin VN, Sobhkhez M, Johnsen S, Waerhaug K, Bjertnaes LJ. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med 2007; 35:1550-9. [PMID: 17440418 DOI: 10.1097/01.ccm.0000265739.51887.2b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To compare the single thermodilution and the thermal-dye dilution techniques with postmortem gravimetry for assessment of changes in extravascular lung water after pneumonectomy and to explore the evolution of edema after injurious ventilation of the left lung. DESIGN Experimental study. SETTING University laboratory. SUBJECTS A total of 30 sheep weighing 35.6 +/- 4.6 kg. The study included two parts: a pneumonectomy study (n = 18) and an injurious ventilation study (n = 12). METHODS Sheep were anesthetized and mechanically ventilated with an FiO2 of 0.5, tidal volume of 6 mL/kg, and positive end-expiratory pressure of 2 cm H2O. In the pneumonectomy study, sheep were assigned to right-sided pneumonectomy (n = 7), left-sided pneumonectomy (n = 7), or lateral thoracotomy only (sham operation, n = 4). In the injurious ventilation study, right-sided pneumonectomy was followed by ventilation with a tidal volume of 12 mL/kg and positive end-expiratory pressure of 0 cm H2O (n = 6) or by ventilation with a tidal volume of 6 mL/kg and positive end-expiratory pressure of 2 cm H2O for 4 hrs (n = 6). Volumetric variables, including extravascular lung water index (EVLWI), were measured with single thermodilution (STD; EVLWI(STD)) and thermal-dye dilution (TDD; EVLWI(TDD)) techniques. We monitored pulmonary hemodynamics and respiratory variables. After the sheep were killed, EVLWI was determined for each lung by gravimetry (EVLWI(G)). RESULTS In total, the study yielded strong correlations of EVLWI(STD) and EVLWI(TDD) with EVLWI(G) (n = 30; r = .83 and .94, respectively; p < .0001). After pneumonectomy, both the left- and the right-sided pneumonectomy groups displayed significant decreases in EVLWI(STD) and EVLWI(TDD). The injuriously ventilated sheep demonstrated significant increases in EVLWI that were detected by both techniques. The mean biases (+/-2 SD) compared with EVLWI(G) were 3.0 +/- 2.6 mL/kg for EVLWI(STD) and 0.4 +/- 1.6 mL/kg for EVLWI(TDD). CONCLUSIONS After pneumonectomy and injurious ventilation of the left lung, TDD and STD displayed changes in extravascular lung water with acceptable accuracy when compared with postmortem gravimetry. Ventilator-induced lung injury seems to be a crucial mechanism of pulmonary edema after pneumonectomy.
Collapse
Affiliation(s)
- Vsevolod V Kuzkov
- Department of Anesthesiology, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Eyal FG, Hamm CR, Parker JC. Reduction in alveolar macrophages attenuates acute ventilator induced lung injury in rats. Intensive Care Med 2007; 33:1212-1218. [PMID: 17468847 DOI: 10.1007/s00134-007-0651-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Alveolar macrophages are the sentinel cell for activation of the inflammatory cascade when the lung is exposed to noxious stimuli. We investigated the role of macrophages in mechanical lung injury by comparing the effect of high-volume mechanical ventilation with or without prior depletion of macrophages. DESIGN AND SETTING Randomized sham-controlled animal study in anesthetized rats. METHODS Lung injury was induced by 15 min of mechanical ventilation (intermittent positive pressure ventilation) using high peak pressures and zero end-expiratory pressure. The mean tidal volume was 40+/-0.7 ml/kg. One group of animals was killed immediately after this period of volutrauma (HV), while in a second group normoventilation was continued for 2 h at a tidal volume less than 10 ml/kg (HV-LV). One-half of the animals were depleted of alveolar macrophages by pretreatment with intratracheal liposomal clodronate (CL2MDP). MEASUREMENTS Arterial blood gas, blood pressure. After kill: lung static pressure volume curves, bronchoalveolar fluid concentration for protein, macrophage inflammatory protein 2, tumor necrosis factor alpha, and wet/dry lung weight ratio (W/D). RESULTS During HV and HV+LV oxygenation, lung compliance, and alveolar stability were better preserved in animals pretreated with CL2MDP. In both groups W/D ratio was significantly greater in ventilated than in nonventilated animals (4.5+/-0.6), but the increase in W/D was significantly less in CL2MDP treated HV and HV-LV groups (6.1+/-0.4, 6.6+/-0.6) than in the similarly ventilated nontreated groups (8.7+/-0.2 and 9.2+/-0.5). CONCLUSIONS Alveolar macrophages participate in the early phase of ventilator-induced lung injury.
Collapse
Affiliation(s)
- Fabien G Eyal
- Department of Pediatrics, Children's and Women's Hospital, University of South Alabama, 1700 Center Street, 36604, Mobile, AL, USA.
- Department of Pediatrics, University of South Alabama, Mobile, AL, USA.
| | - Charles R Hamm
- Department of Pediatrics, University of South Alabama, Mobile, AL, USA
| | - James C Parker
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
17
|
Shen L, Han JZ, Li C, Yue SJ, Liu Y, Qin XQ, Liu HJ, Luo ZQ. Protective effect of ginsenoside Rg1 on glutamate-induced lung injury. Acta Pharmacol Sin 2007; 28:392-7. [PMID: 17303002 DOI: 10.1111/j.1745-7254.2007.00511.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To examine the possible protective effect of ginsenoside Rg1, an active component of ginseng, on lung injury caused by glutamate in vivo. METHODS The lungs of mice receiving glutamate (0.5 g/kg) and/or ginsenoside Rg1 (0.03 g/kg) via intraperitoneal administration were collected. The indexes of lung wet weight/ body weight ratios (LW/BW), lung wet/dry weight ratios (W/D), heart rate (HR), and breathing rate (BR) were determined. The activity of nitric oxide synthase (NOS), xanthine oxidase (XOD), superoxide dismutase (SOD), catalase (CAT), the content of NO, and malondialdehyde in the lung homogenate were measured. RESULTS Treatment with glutamate for 2 h increased LW/BW, W/D, HR, and BR. These changes were nearly abolished by pretreatment with ginsenoside Rg1 for 30 min before glutamate injection. An analysis of the lung homogenate demonstrated the protective effect as evidenced by the inhibition of NOS (12%) and XOD (50%) inactivity, the enhanced activity of SOD (20%) and CAT (25%). CONCLUSION Ginsenoside Rg1 has a potential protective role in lung diseases associated with glutamate toxicity.
Collapse
Affiliation(s)
- Li Shen
- Departments of Physiology, Xiangya medical school, Central South University, Changsha 410078, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2004; 8:R451-8. [PMID: 15566591 PMCID: PMC1065070 DOI: 10.1186/cc2974] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 09/16/2004] [Indexed: 12/02/2022]
Abstract
Introduction Acute lung injury is associated with accumulation of extravascular lung water (EVLW). The aim of the present study was to compare two methods for quantification of EVLW: transpulmonary single thermodilution (EVLWST) and postmortem gravimetric (EVLWG). Methods Eighteen instrumented and awake sheep were randomly assigned to one of three groups. All groups received Ringer's lactate (5 ml/kg per hour intravenously). To induce lung injury of different severities, sheep received Escherichia coli lipopolysaccharide 15 ng/kg per min intravenously for 6 hours (n = 7) or oleic acid 0.06 ml/kg intravenously over 30 min (n = 7). A third group (n = 4) was subjected to sham operation. Haemodynamic variables, including EVLWST, were measured using a PiCCOplus monitor (Pulsion Medical Systems, Munich, Germany), and the last measurement of EVLWST was compared with EVLWG. Results At the end of experiment, values for EVLWST (mean ± standard error) were 8.9 ± 0.6, 11.8 ± 1.0 and 18.2 ± 0.9 ml/kg in the sham-operated, lipopolysaccharide and oleic acid groups, respectively (P < 0.05). The corresponding values for EVLWIG were 6.2 ± 0.3, 7.1 ± 0.6 and 11.8 ± 0.7 ml/kg (P < 0.05). Ranges of EVLWIST and EVLWIG values were 7.5–21.0 and 4.9–14.5 ml/kg. Regression analysis between in vivo EVLWST and postmortem EVLWG yielded the following relation: EVLWST = 1.30 × EVLWG + 2.32 (n = 18, r = 0.85, P < 0.0001). The mean bias ± 2 standard deviations between EVLWST and EVLWG was 4.9 ± 5.1 ml/kg (P < 0.001). Conclusion In sheep, EVLW determined using transpulmonary single thermodilution correlates closely with gravimetric measurements over a wide range of changes. However, transpulmonary single thermodilution overestimates EVLW as compared with postmortem gravimetry.
Collapse
|
19
|
Klaesner JW, Pou NA, Parker RE, Finney C, Roselli RJ. Optical measurement of isolated canine lung filtration coefficients after alloxan infusion. J Appl Physiol (1985) 1998; 84:1381-7. [PMID: 9516207 DOI: 10.1152/jappl.1998.84.4.1381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, lung filtration coefficient (Kfc) was measured in eight isolated canine lung preparations by using three methods: standard gravimetric (Std), blood-corrected gravimetric (BC), and optical. The lungs were held in zone III conditions and were subjected to an average venous pressure increase of 8.79 +/- 0.93 (mean +/- SD) cmH2O. The permeability of the lungs was increased with an infusion of alloxan (75 mg/kg). The resulting Kfc values (in milliliters . min-1 . cmH2O-1 . 100 g dry lung weight-1) measured by using Std and BC gravimetric techniques before vs. after alloxan infusion were statistically different: Std, 0.527 +/- 0.290 vs. 1. 966 +/- 0.283; BC, 0.313 +/- 0.290 vs. 1.384 +/- 0.290. However, the optical technique did not show any statistical difference between pre- and postinjury with alloxan, 0.280 +/- 0.305 vs. 0.483 +/- 0. 297, respectively. The alloxan injury, quantified by using multiple-indicator techniques, showed an increase in permeability and a corresponding decrease in reflection coefficient for albumin (sigmaf). Because the optical method measures the product of Kfc and sigmaf, this study shows that albumin should not be used as an intravascular optical filtration marker when permeability is elevated. However, the optical technique, along with another means of measuring Kfc (such as BC), can be used to calculate the sigmaf of a tracer (in this study, sigmaf of 0.894 at baseline and 0.348 after injury). Another important finding of this study was that the ratio of baseline-to-injury Kfc values was not statistically different for Std and BC techniques, indicating that the percent contribution of slow blood-volume increases does not change because of injury.
Collapse
Affiliation(s)
- J W Klaesner
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
20
|
Klaesner JW, Pou NA, Parker RE, Finney C, Roselli RJ. Optical measurement of isolated canine lung filtration coefficients at normal hematocrits. J Appl Physiol (1985) 1997; 83:1976-85. [PMID: 9390971 DOI: 10.1152/jappl.1997.83.6.1976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, lung filtration coefficient (Kfc) values were measured in eight isolated canine lung preparations at normal hematocrit values using three methods: gravimetric, blood-corrected gravimetric, and optical. The lungs were kept in zone 3 conditions and subjected to an average venous pressure increase of 10.24 +/- 0.27 (SE) cmH2O. The resulting Kfc (ml . min-1 . cmH2O-1 . 100 g dry lung wt-1) measured with the gravimetric technique was 0.420 +/- 0.017, which was statistically different from the Kfc measured by the blood-corrected gravimetric method (0.273 +/- 0.018) or the product of the reflection coefficient (sigmaf) and Kfc measured optically (0. 272 +/- 0.018). The optical method involved the use of a Cellco filter cartridge to separate red blood cells from plasma, which allowed measurement of the concentration of the tracer in plasma at normal hematocrits (34 +/- 1.5). The permeability-surface area product was measured using radioactive multiple indicator-dilution methods before, during, and after venous pressure elevations. Results showed that the surface area of the lung did not change significantly during the measurement of Kfc. These studies suggest that sigmafKfc can be measured optically at normal hematocrits, that this measurement is not influenced by blood volume changes that occur during the measurement, and that the optical sigmafKfc agrees with the Kfc obtained via the blood-corrected gravimetric method.
Collapse
Affiliation(s)
- J W Klaesner
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
21
|
Brown BH, Flewelling R, Griffiths H, Harris ND, Leathard AD, Lu L, Morice AH, Neufeld GR, Nopp P, Wang W. EITS changes following oleic acid induced lung water. Physiol Meas 1996; 17 Suppl 4A:A117-30. [PMID: 9001610 DOI: 10.1088/0967-3334/17/4a/016] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present the results of using electrical impedance tomographic spectroscopy (EITS) to follow the changes in lung water induced by oleic acid. Measurements were made on three goats before and after the injection of oleic acid. In addition to the EITs measurements, lung water was also measured using a double-indicator technique. Large falls in lung electrical impedance were seen as a result of the increase in lung water but the size of the fall was a function of the frequency at which the measurements were made. These changes have been modelled using the Cole equation. Four-electrode measurements were also made on two extracted porcine lungs and Cole equation modelling carried out following the introduction of saline into the lungs. Results were similar in the two sets of animal experiments.
Collapse
Affiliation(s)
- B H Brown
- Department of Medical Physics, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peralta J, Reides C, García S, Llesuy S, Pargament G, Carreras MC, Catz S, Poderoso JJ. Oxidative stress in rodent closed duodenal loop pancreatitis. INTERNATIONAL JOURNAL OF PANCREATOLOGY : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION OF PANCREATOLOGY 1996; 19:61-9. [PMID: 8656029 DOI: 10.1007/bf02788377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONCLUSION Production of excited oxygen species is earlier in the liver than in the pancreas and could contribute to damage in a reflux model. Treatment with SOD could attenuate 59% light emission in pancreas, but did not modify serum enzyme levels or pancreatic edema, resulting as an insufficient isolated therapy. Unexpectedly, it was found an increased plasma antioxidant capacity that was related to total bilirubin levels, and declined at late stages probably denoting other circulating antioxidant consumption. BACKGROUND Oxidative stress has been shown to play a role in different models of acute pancreatitis, although it has not been studied in the severe necrohemorrhagic model produced by closed duodenal loop pancreatitis. METHODS We studied Sprague Dawley female rats in two groups: a closed duodenal loop pancreatitis group and a control, sham-operated group. In order to evidence the oxygen excited species production, in situ spontaneous chemiluminescence from living and naturally perfused pancreas and liver was measured at 0, 0.5, 1.5, 3, 6, 12, and 24 h after the duodenal ligature. Blood pancreatic amylase and aminotransferases levels were determined as expression of tissue damage in pancreas and liver. At the same time, plasma antioxidant capacity was measured by the peroxyl radical trapping capability of plasma samples compared to that of Trolox (synthetic analog of vitamin E), and results are expressed as Trolox equivalence. Bovine superoxide dismutase (SOD) was administered to attenuate oxygen free radicals activity at the beginning of the peroxidation chain and also as a therapeutic tool. RESULTS The experimental procedure induced a severe pancreatitis, as evidenced by pancreatic enzymes that rose markedly in the early hours of disease and remained heightened throughout the experiment. The results show early light emission from the liver at 3 h and peak levels at 12 h, whereas in the pancreas, luminescence increased at 6 h and doubled later at 12 h, both returning to control levels at 24 h.
Collapse
Affiliation(s)
- J Peralta
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Conary JT, Parker RE, Christman BW, Faulks RD, King GA, Meyrick BO, Brigham KL. Protection of rabbit lungs from endotoxin injury by in vivo hyperexpression of the prostaglandin G/H synthase gene. J Clin Invest 1994; 93:1834-40. [PMID: 8163682 PMCID: PMC294257 DOI: 10.1172/jci117169] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A recombinant prostaglandin G/H (PGH) synthase gene has been expressed in vitro in bovine pulmonary artery endothelial cells and in vivo in rabbits by transfection with a plasmid using cationic liposomes. Transfection of bovine pulmonary artery endothelial cells with the PGH synthase cDNA resulted in increased intracellular PGH synthase protein (determined by Western blot analysis) and increased release of prostacyclin. Rabbits intravenously transfected with the PGH synthase gene had increased plasma levels of prostacyclin and PGE2, and their lungs produced increased amounts of the same eicosanoids. In an in situ, perfused preparation of PGH synthase transfected rabbit lungs, the pressor response to endotoxin was markedly attenuated. In addition, pulmonary edema and release of thromboxane B2 into the perfusate after endotoxin infusion were markedly decreased in transfected lungs compared to controls (animals transfected with a pCMV4 construct that did not contain a cDNA insert). The data suggest that augmented endogenous production of prostacyclin and PGE2, achieved by liposome-mediated gene transfer, protects the lungs from endotoxin. This may be caused in part by suppression of endotoxin-stimulated thromboxane B2 production. Modification of lipid mediator responses by in vivo transfection is a potential approach to the therapy of acute lung injury.
Collapse
Affiliation(s)
- J T Conary
- Center for Lung Research, Vanderbilt University, Nashville, Tennessee 37232-2650
| | | | | | | | | | | | | |
Collapse
|
24
|
Connelly JC, Peterson BT. Clearance of 99mTc-labeled albumin from lungs in anesthetized guinea pigs. Exp Lung Res 1993; 19:237-55. [PMID: 8467764 DOI: 10.3109/01902149309031722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Gamma imaging was used to measure the rate of clearance of aerosolized 99mTc-human serum albumin (HSA) from the lungs of control guinea pigs and guinea pigs that received increased lung inflation or lung injury. Anesthetized guinea pigs were ventilated for 6 min with an aerosol of HSA and the radioactivity in the chest was monitored for 2 h with a gamma camera to determine whether the clearance rate would be a reliable assessment of lung epithelial permeability. Increased lung volumes were effected by application of 5 or 7 cm H2O positive end-expired pressure (5-PEEP and 7-PEEP, respectively). Lung injury was induced either by intravenous oleic acid (OA, 27-73 microliters/kg) or inhalation of nitrogen dioxide (NO2, 80-100 ppm) for 2 h. Postmortem extravascular lung water volume (EVLW) provided an assessment of the degree of lung injury. Tracer clearance rates in animals receiving 5 or 7 cm H2O PEEP were not significantly different from controls (K = 0.15 +/- 0.05 and 0.24 +/- 0.10 vs 0.12 +/- 0.03%/min, respectively, p > .05). Animals exposed to NO2 had faster tracer clearance rates (K = 0.33 +/- 0.21%/min, p < .05) and higher EVLW (5.8 +/- 3.0 vs 3.7 +/- 0.2 mL/g dry lung, p < .05) than controls. Clearance rates of HSA from the lungs of NO2-exposed guinea pigs correlated well with injury as assessed by EVLW (r = .93, p < .01). Clearance rates of HSA and EVLW in animals receiving oleic acid were significantly higher than controls and the group receiving 5 cm H2O PEEP (K = 0.58 +/- 0.41%/min, EVLW = 8.1 +/- 0.8 mL/g dry lung tissue, p < .05), but there was no correlation between these parameters in this injury model. It is concluded that imaging of the disappearance of radiolabeled HSA in the guinea pig can be a useful index of lung epithelial permeability, but this technique is limited to certain models of lung injury.
Collapse
Affiliation(s)
- J C Connelly
- Department of Physiology, University of Texas Health Center, Tyler 75710
| | | |
Collapse
|
25
|
Oliven A, Kelsen SG. Inspiratory muscle activity during pulmonary edema in anesthetized dogs. RESPIRATION PHYSIOLOGY 1992; 89:287-98. [PMID: 1410842 DOI: 10.1016/0034-5687(92)90087-d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pulmonary edema is known to induce a rapid and shallow breathing pattern. However, its effects on the level and pattern of distribution of motor activity to the respiratory muscles is unclear. In the present study we evaluated the effect of oleic acid induced pulmonary edema on the electrical activity of the inspiratory muscles (costal and crural diaphragm and parasternal and external intercostal muscles) in the dog, and related it to the transdiaphragmatic pressure and ventilatory parameters over the course of CO2 rebreathing. Pulmonary edema, reflected by a 7.1 +/- 0.6 wet to dry ratio, decreased lung compliance by 57%, increased pulmonary shunt to 35%, and was associated with a rapid and shallow breathing pattern. When compared at equal levels of PCO2 during CO2 rebreathing before and during edema, ventilation and mean inspiratory flow were increased only at lower levels of hypercapnia and their responses to increasing levels of PCO2 were significantly diminished during edema. Transdiaphragmatic pressures were elevated during edema as compared to control values. The rate of rise of the electrical activity of all inspiratory muscles increased significantly during edema at all levels of PCO2. Peak activity, however, remained unchanged, due to shortening of the inspiratory duration. The EMG responses to progressive hypercapnia were not affected by edema. Pulmonary edema did not change the pattern of breathing and neural output to the inspiratory muscles in vagotomized dogs. We conclude that stimulation of pulmonary proprioreceptors during edema increases neural output to all inspiratory muscles. The neural response to hypercapnia is not altered by edema, and is additive to the vagal input. The ventilatory response to CO2 is blunted during severe edema, due to alterations in lung mechanics.
Collapse
Affiliation(s)
- A Oliven
- Department of Medicine B, Bnai-Zion Medical Center, Haifa, Israel
| | | |
Collapse
|
26
|
Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991; 83:2038-47. [PMID: 2040056 DOI: 10.1161/01.cir.83.6.2038] [Citation(s) in RCA: 680] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background. The gas nitric oxide (NO) is an important endothelium-derived relaxing factor, inactivated by rapid combination with heme in hemoglobin. Methods and Results. Awake spontaneously breathing lambs inhaled 5-80 ppm NO with an acutely constricted pulmonary circulation due to either infusion of the stable thromboxane endoperoxide analogue U46619 or breathing a hypoxic gas mixture. Within 3 minutes after adding 40 ppm NO or more to inspired gas, pulmonary hypertension was reversed. Systemic vasodilation did not occur. Pulmonary hypertension resumed within 3-6 minutes of ceasing NO inhalation. During U46619 infusion pulmonary vasodilation was maintained up to 1 hour without tolerance. In the normal lamb, NO inhalation produced no hemodynamic changes. Breathing 80 ppm NO for 3 hours did not increase either methemoglobin or extravascular lung water levels nor modify lung histology compared with control lambs. Conclusions. Low dose inhaled NO (5-80 ppm) is a selective pulmonary vasodilator reversing both hypoxia- and thromboxane-induced pulmonary hypertension in the awake lamb [corrected].
Collapse
Affiliation(s)
- C Frostell
- Department of Anesthesia, Harvard Medical School, Massachusetts General Hospital, Boston
| | | | | | | | | |
Collapse
|
27
|
Leksell LG, Schreiner MS, Sylvestro A, Neufeld GR. Commercial double-indicator-dilution densitometer using heavy water: evaluation in oleic-acid pulmonary edema. J Clin Monit Comput 1990; 6:99-106. [PMID: 2191088 DOI: 10.1007/bf02828285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We evaluated a commercially available, double-indicator-dilution densitometric system for the estimation of pulmonary extravascular water volume in oleic acid-induced pulmonary edema. Indocyanine green and heavy water were used as the nondiffusible and diffusible tracers, respectively. Pulmonary extravascular water volume, measured with this system, was 67% of the gravimetric value (r = 0.91), which was consistent with values obtained from the radioisotope methods. The measured volume was not influenced by changes in cardiac index over a range of 1 to 4 L.min.m2. This system is less invasive than the thermal-dye technique and has potential for repeated clinical measurements of pulmonary extravascular lung water and cardiac output.
Collapse
Affiliation(s)
- L G Leksell
- Department of Anesthesia, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | |
Collapse
|
28
|
Azghani AO, Connelly JC, Peterson BT, Gray LD, Collins ML, Johnson AR. Effects of Pseudomonas aeruginosa elastase on alveolar epithelial permeability in guinea pigs. Infect Immun 1990; 58:433-8. [PMID: 2105275 PMCID: PMC258475 DOI: 10.1128/iai.58.2.433-438.1990] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elastase-deficient mutants of Pseudomonas aeruginosa are less virulent than the wild type and are easily cleared from the lungs of guinea pigs. The effect of P. aeruginosa elastase on lung epithelium, however, is not yet understood. We addressed the hypothesis that breach of the epithelial barrier by elastase from P. aeruginosa allows invading organisms and toxic substances to penetrate the interstitium. We measured the clearance of aerosolized technetium-labeled albumin (molecular weight, 69,000) from the lungs of anesthetized guinea pigs with the aid of a gamma camera and a dedicated computer. Aerosols of the elastase (0.1 to 5 micrograms) increased the rate of clearance of labeled albumin from the lungs in proportion to the elastase dose. Electron microscopic studies using horseradish peroxidase as a tracer revealed that elastase interrupts intercellular tight junctions of the epithelial lining, thereby increasing the permeability to macromolecules. The amounts of elastase used in this report did not cause interstitial or alveolar edema, as determined by both postmortem extravascular lung water volume measurement and morphological examination. The data indicate that the elastase is a potentially important virulence factor in acute lung infection.
Collapse
Affiliation(s)
- A O Azghani
- Department of Biochemistry, University of Texas Health Center at Tyler 75710
| | | | | | | | | | | |
Collapse
|
29
|
Kreil EA, Greene E, Fitzgibbon C, Robinson DR, Zapol WM. Effects of recombinant human tumor necrosis factor alpha, lymphotoxin, and Escherichia coli lipopolysaccharide on hemodynamics, lung microvascular permeability, and eicosanoid synthesis in anesthetized sheep. Circ Res 1989; 65:502-14. [PMID: 2665972 DOI: 10.1161/01.res.65.2.502] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We infused recombinant human tumor necrosis factor alpha (rhTNF alpha), lymphotoxin (rhLT), and Escherichia coli 0111:B4 lipopolysaccharide (LPS) into anesthetized sheep with a lung lymph fistula to compare their effects on systemic and pulmonary hemodynamics, lung lymph dynamics, and eicosanoid release. rhTNF alpha (25-150 micrograms/kg, n = 6 sheep), but not rhLT (25 micrograms/kg, n = 3), rapidly increased lung lymph and plasma levels of 6-keto-prostaglandin F1 alpha (6-k-PGF1 alpha) and caused profound systemic vasodilation and hypotension. Meclofenamate pretreatment (10 mg/kg) of three other sheep given 25 micrograms/kg rhTNF alpha prevented the increase of lymph and plasma 6-k-PGF1 alpha levels, systemic vasodilation, and the early (less than 2 hrs) but not the late (4-6 hours) hypotension caused by rhTNF alpha. LPS (1 micrograms/kg, n = 11) induced a briefer increase of lymph 6-k-PGF1 alpha levels than did rhTNF alpha while plasma 6-k-PGF1 alpha levels did not increase. LPS induced more gradual hypotension than did rhTNF alpha but did not cause systemic vasodilation. LPS and rhTNF alpha, but not rhLT, increased lymph thromboxane B2 (TXB2) levels during the first hour of study, whereas only LPS acutely increased plasma TXB2 levels. LPS caused acute pulmonary vasoconstriction and greater acute pulmonary artery hypertension than did either rhTNF alpha or rhLT. Whereas LPS-treated sheep required less fluid transfusion than rhTNF alpha-treated sheep to maintain mean systemic arterial pressure greater than 50 mm Hg, LPS infusion caused a greater increase of lung lymph protein clearance. rhTNF alpha caused minimal alterations of lung microvascular permeability. We conclude that eicosanoid mediators contribute importantly to differences of systemic and pulmonary hemodynamics caused by these agents in sheep. rhTNF alpha cannot account for all of the LPS-induced hemodynamic, lung lymph, and eicosanoid responses in sheep.
Collapse
Affiliation(s)
- E A Kreil
- Department of Anesthesia, Massachusettes General Hospital, Boston 02114
| | | | | | | | | |
Collapse
|
30
|
Demling RH, Jin LJ, Lalonde C. Attenuation of endotoxin lung injury and prostanoid release by repeated endotoxin infusions in the adult sheep. J Crit Care 1986. [DOI: 10.1016/s0883-9441(86)80004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
|
32
|
Lindgren L, Marshall C, Marshall BE. Hypoxic pulmonary vasoconstriction in isolated rat lungs perfused with perfluorocarbon emulsion. ACTA PHYSIOLOGICA SCANDINAVICA 1985; 123:335-8. [PMID: 4061115 DOI: 10.1111/j.1748-1716.1985.tb07597.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eight rat lungs were perfused in an in vitro circuit with a blood-PS solution and then with a perfluorocarbon emulsion (perfluorotributylamine, FC-43). With perfusion flow constant, the hypoxic pulmonary vasoconstrictor (HPV) response was measured as changes in pulmonary artery pressure when F1,O2 was changed to 0.1, 0.06, 0.04, 0.03, 0.02 and zero with FI,CO2 of 0.05. The hypoxic response to an FI,O2 of 0.03, with the blood-PSS perfusate, was an increase from baseline pressure of 93.5 +/- 18% and, with the perfluorocarbon perfusate was 67.5 +/- 18%; these values were not significantly different (P greater than 0.2). A stimulus-response relationship was obtained with the FC-43 perfusate by plotting the response as a percentage of the maximum response (R%max) against the logarithm of the alveolar oxygen tension. The equation for the linear portion of the response was R%max = 257.9-140.2 X log (10) PA,O2 and r = 0.78. The PA,O2 corresponding to half of the maximum response (ED50) was 30.4 mmHg. The present study demonstrated that HPV is maintained in isolated rat lungs perfused with an FC-43 emulsion. The stimulus-response relationship as well as the ED50 with the FC-43 is similar to earlier results with blood perfusate. Lung oedema was not found after perfusion with the FC-43 emulsion.
Collapse
|