1
|
Poole DC, Pittman RN, Musch TI, Østergaard L. August Krogh's theory of muscle microvascular control and oxygen delivery: a paradigm shift based on new data. J Physiol 2020; 598:4473-4507. [PMID: 32918749 DOI: 10.1113/jp279223] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
August Krogh twice won the prestigious international Steegen Prize, for nitrogen metabolism (1906) and overturning the concept of active transport of gases across the pulmonary epithelium (1910). Despite this, at the beginning of 1920, the consummate experimentalist was relatively unknown worldwide and even among his own University of Copenhagen faculty. But, in early 1919, he had submitted three papers to Dr Langley, then editor of The Journal of Physiology in England. These papers coalesced anatomical observations of skeletal muscle capillary numbers with O2 diffusion theory to propose a novel active role for capillaries that explained the prodigious increase in blood-muscle O2 flux from rest to exercise. Despite his own appraisal of the first two papers as "rather dull" to his friend, the eminent Cambridge respiratory physiologist, Joseph Barcroft, Krogh believed that the third one, dealing with O2 supply and capillary regulation, was"interesting". These papers, which won Krogh an unopposed Nobel Prize for Physiology or Medicine in 1920, form the foundation for this review. They single-handedly transformed the role of capillaries from passive conduit and exchange vessels, functioning at the mercy of their upstream arterioles, into independent contractile units that were predominantly closed at rest and opened actively during muscle contractions in a process he termed 'capillary recruitment'. Herein we examine Krogh's findings and some of the experimental difficulties he faced. In particular, the boundary conditions selected for his model (e.g. heavily anaesthetized animals, negligible intramyocyte O2 partial pressure, binary open-closed capillary function) have not withstood the test of time. Subsequently, we update the reader with intervening discoveries that underpin our current understanding of muscle microcirculatory control and place a retrospectroscope on Krogh's discoveries. The perspective is presented that the imprimatur of the Nobel Prize, in this instance, may have led scientists to discount compelling evidence. Much as he and Marie Krogh demonstrated that active transport of gases across the blood-gas barrier was unnecessary in the lung, capillaries in skeletal muscle do not open and close spontaneously or actively, nor is this necessary to account for the increase in blood-muscle O2 flux during exercise. Thus, a contemporary model of capillary function features most muscle capillaries supporting blood flow at rest, and, rather than capillaries actively vasodilating from rest to exercise, increased blood-myocyte O2 flux occurs predominantly via elevating red blood cell and plasma flux in already flowing capillaries. Krogh is lauded for his brilliance as an experimentalist and for raising scientific questions that led to fertile avenues of investigation, including the study of microvascular function.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Roland N Pittman
- Department of Physiology and Biophysics, Virginia Commonwealth University Richmond, Richmond, VA, 23298-0551, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| |
Collapse
|
2
|
Okushima D, Poole DC, Barstow TJ, Kondo N, Chin LMK, Koga S. Effect of differential muscle activation patterns on muscle deoxygenation and microvascular haemoglobin regulation. Exp Physiol 2020; 105:531-541. [PMID: 31944446 PMCID: PMC10466155 DOI: 10.1113/ep088322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the presence and extent of heterogeneity in the ratio of O2 delivery to uptake across human muscles relate specifically to different muscle activation patterns? What is the main finding and its importance? During ramp incremental knee-extension and cycling exercise, the profiles of muscle deoxygenation (deoxy[haemoglobin + myoglobin]) and diffusive O2 potential (total[haemoglobin + myoglobin]) in the vastus lateralis corresponded to different muscle activation strategies. However, this was not the case for the rectus femoris, where muscle activation and deoxygenation profiles were dissociated and might therefore be determined by other structural and/or functional attributes (e.g. arteriolar vascular regulation and control of red blood cell flux). ABSTRACT Near-infrared spectroscopy has revealed considerable heterogeneity in the ratio of O2 delivery to uptake as identified by disparate deoxygenation {deoxy[haemoglobin + myoglobin] (deoxy[Hb + Mb])} values in the exercising quadriceps. However, whether this represents a recruitment phenomenon or contrasting vascular and metabolic control, as seen among fibre types, has not been established. We used knee-extension (KE) and cycling (CE) incremental exercise protocols to examine whether differential muscle activation profiles could account for the heterogeneity of deoxy[Hb + Mb] and microvascular haemoconcentration (i.e. total[Hb + Mb]). Using time-resolved near-infrared spectroscopy for the quadriceps femoris (vastus lateralis and rectus femoris) during exhaustive ramp exercise in eight participants, we tested the following hypotheses: (i) the deoxy[Hb + Mb] (i.e. fractional O2 extraction) would relate to muscle activation levels across exercise protocols; and (ii) KE would induce greater total[Hb + Mb] (i.e. diffusive O2 potential) at task failure (i.e. peak O2 uptake) than CE irrespective of muscle site. At a given level of muscle activation, as assessed by the relative integrated EMG normalized to maximal voluntary contraction (%iEMGmax ), the vastus lateralis deoxy[Hb + Mb] profile was not different between exercise protocols. However, at peak O2 uptake and until 20% iEMGmax for CE, rectus femoris exhibited a lower deoxy[Hb + Mb] (83.2 ± 15.5 versus 98.2 ± 19.4 μm) for KE than for CE (P < 0.05). The total[Hb + Mb] at peak O2 uptake was not different between exercise protocols for either muscle site. These data support the hypothesis that the contrasting patterns of convective and diffusive O2 transport correspond to different muscle activation patterns in vastus lateralis but not rectus femoris. Thus, the differential deoxygenation profiles for rectus femoris across exercise protocols might be dependent upon specific facets of muscle architecture and functional haemodynamic events.
Collapse
Affiliation(s)
- Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Hyogo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Osaka International University, Moriguchi, Japan
| | - David C. Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Thomas J. Barstow
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | | - Lisa M. K. Chin
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Hyogo, Japan
| |
Collapse
|
3
|
van der Pijl R, Strom J, Conijn S, Lindqvist J, Labeit S, Granzier H, Ottenheijm C. Titin-based mechanosensing modulates muscle hypertrophy. J Cachexia Sarcopenia Muscle 2018; 9:947-961. [PMID: 29978560 PMCID: PMC6204599 DOI: 10.1002/jcsm.12319] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Titin is an elastic sarcomeric filament that has been proposed to play a key role in mechanosensing and trophicity of muscle. However, evidence for this proposal is scarce due to the lack of appropriate experimental models to directly test the role of titin in mechanosensing. METHODS We used unilateral diaphragm denervation (UDD) in mice, an in vivo model in which the denervated hemidiaphragm is passively stretched by the contralateral, innervated hemidiaphragm and hypertrophy rapidly occurs. RESULTS In wildtype mice, the denervated hemidiaphragm mass increased 48 ± 3% after 6 days of UDD, due to the addition of both sarcomeres in series and in parallel. To test whether titin stiffness modulates the hypertrophy response, RBM20ΔRRM and TtnΔIAjxn mouse models were used, with decreased and increased titin stiffness, respectively. RBM20ΔRRM mice (reduced stiffness) showed a 20 ± 6% attenuated hypertrophy response, whereas the TtnΔIAjxn mice (increased stiffness) showed an 18 ± 8% exaggerated response after UDD. Thus, muscle hypertrophy scales with titin stiffness. Protein expression analysis revealed that titin-binding proteins implicated previously in muscle trophicity were induced during UDD, MARP1 & 2, FHL1, and MuRF1. CONCLUSIONS Titin functions as a mechanosensor that regulates muscle trophicity.
Collapse
Affiliation(s)
- Robbert van der Pijl
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | - Joshua Strom
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Stefan Conijn
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| | - Johan Lindqvist
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Siegfried Labeit
- Department of Integrative PathophysiologyMedical Faculty MannheimMannheimGermany
- Myomedix GmbHNeckargemuendGermany
| | - Henk Granzier
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Coen Ottenheijm
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
- Dept of PhysiologyVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
4
|
Colburn TD, Ferguson SK, Holdsworth CT, Craig JC, Musch TI, Poole DC. Effect of sodium nitrite on local control of contracting skeletal muscle microvascular oxygen pressure in healthy rats. J Appl Physiol (1985) 2016; 122:153-160. [PMID: 27789769 DOI: 10.1152/japplphysiol.00367.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022] Open
Abstract
Exercise intolerance characteristic of diseases such as chronic heart failure (CHF) and diabetes is associated with reduced nitric oxide (NO) bioavailability from nitric oxide synthase (NOS), resulting in an impaired microvascular O2 driving pressure (Po2mv; O2 delivery/O2 utilization) and metabolic control. Infusions of the potent NO donor sodium nitroprusside augment NO bioavailability yet decrease mean arterial pressure (MAP) thereby reducing its potential efficacy for patient populations. To eliminate or reduce hypotensive sequelae, [Formula: see text] was superfused onto the spinotrapezius muscle. It was hypothesized that local [Formula: see text] administration would elevate resting Po2mv and slow Po2mv kinetics [increased time constant (τ) and mean response time (MRT)] following the onset of muscle contractions without decreasing MAP. In 12 anesthetized male Sprague-Dawley rats, Po2mv of the circulation-intact spinotrapezius muscle was measured by phosphorescence quenching during 180 s of electrically induced twitch contractions (1 Hz) before and after superfusion of sodium nitrite (NaNO2 30 mM). [Formula: see text] superfusion elevated resting Po2mv (control: 28.4 ± 1.1 vs. [Formula: see text]: 31.6 ± 1.2 mmHg; P ≤ 0.05), τ (control: 12.3 ± 1.2 vs. [Formula: see text]: 19.7 ± 2.2 s; P ≤ 0.05), and MRT (control: 19.3 ± 1.9 vs. [Formula: see text]: 25.6 ± 3.3 s; P ≤ 0.05). Importantly, these effects occurred in the absence of any reduction in MAP (103 ± 4 vs. 105 ± 4 mmHg, pre- and postsuperfusion respectively; P > 0.05). These results indicate that [Formula: see text] supplementation delivered to the muscle directly through [Formula: see text] superfusion enhances the blood-myocyte oxygen driving pressure without compromising MAP at rest and following the onset of muscle contraction. This strategy has substantial clinical utility for a range of ischemic conditions. NEW & NOTEWORTHY Ischemic conditions as diverse as chronic heart failure (CHF) and frostbite inflict tissue damage via inadequate O2 delivery. Herein we demonstrate that direct application of sodium nitrite enhances the O2 supply-O2 demand relationship, raising microvascular O2 pressure in healthy skeletal muscle. This therapeutic action of nitrite-derived nitric oxide occurred without inducing systemic hypotension and has the potential to relieve focal ischemia and preserve tissue vitality by enhancing O2 delivery.
Collapse
Affiliation(s)
- Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - Scott K Ferguson
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Clark T Holdsworth
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and .,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
5
|
Kruse NT, Silette CR, Scheuermann BW. Influence of passive stretch on muscle blood flow, oxygenation and central cardiovascular responses in healthy young males. Am J Physiol Heart Circ Physiol 2016; 310:H1210-21. [PMID: 26945077 DOI: 10.1152/ajpheart.00732.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 03/01/2016] [Indexed: 11/22/2022]
Abstract
The aim of this study was to examine the effect of skeletal muscle stretching on peripheral, central, and autonomic cardiovascular responses in humans. Twelve healthy males completed a controlled passive stretch of the plantar flexors for 4 min at three different intensities. Doppler ultrasound velocimetry and imaging techniques assessed mean leg blood flow (MLBF), antegrade blood flow, and retrograde blood flow of the popliteal artery. Near-infrared spectroscopy assessed the concentration of deoxygenated hemoglobin + myoglobin ([HHb]) and the sum of its deoxygenated and oxygenated forms [i.e., blood volume ([Hbtot])]. Heart rate (HR) and mean arterial pressure were measured simultaneously to peripheral hemodynamic responses. During stretch there was an increase (P < 0.05) in antegrade and retrograde blood flow along with [HHb] and [Hbtot] relative to baseline, whereas MLBF was not altered. HR increased (P < 0.01) in a stretch intensity- and time-dependent manner, suggesting a threshold tension must be met that results in a mechanoreflex-mediated increase in HR. After stretch there was an increase (P < 0.05) in [Hbtot] and MLBF in each condition, suggesting that stretch creates a poststretch hyperemic response. Furthermore, retrograde blood flow was decreased (P < 0.05) after stretch in each stretch condition. Mean arterial pressure was decreased (P < 0.05) after moderate-intensity stretching. Collectively, our data provide novel mechanistic evidence on cardiovascular responses to skeletal muscle stretching in humans. Moreover, the reductions in MAP and retrograde blood flow suggest that stretch transiently reduces myogenic vascular tone in a poststretch resting period.
Collapse
Affiliation(s)
- Nicholas T Kruse
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy Rehabilitation Science, University of Iowa, Iowa City, Iowa; and
| | - Christopher R Silette
- Cardiopulmonary and Metabolism Research Laboratory, Department of Kinesiology, University of Toledo, Toledo, Ohio
| | - Barry W Scheuermann
- Cardiopulmonary and Metabolism Research Laboratory, Department of Kinesiology, University of Toledo, Toledo, Ohio
| |
Collapse
|
6
|
Lee GD, Kim HC, Yoo JW, Lee SJ, Cho YJ, Bae K, Lee JD. Computed tomography confirms a reduction in diaphragm thickness in mechanically ventilated patients. J Crit Care 2016; 33:47-50. [PMID: 26979912 DOI: 10.1016/j.jcrc.2016.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients who require mechanical ventilation (MV) may experience diaphragm atrophy, which may delay the discontinuation of MV. Here, we used computed tomographic (CT) scans to confirm this phenomenon. METHOD AND MATERIALS Patients who underwent two chest CT scans while on MV were retrospectively evaluated. Diaphragm thickness was measured using a three-dimensional CT image processing program. RESULTS Thirteen patients, including 8 men, who underwent 26 CT scans were assessed. The mean age was 67.8 ± 7.5 years. The interval between CT scans was 18.4 ± 14.9 days. The first CT scans revealed that the mean thicknesses of the left and right sides of the diaphragm were 3.8 ± 0.6 and 3.9 ± 0.8 mm, respectively (total: 7.7 ± 1.4 mm). These values were significantly reduced to 3.4 ± 0.6 and 3.5 ± 0.9 mm, respectively, (total: 6.9 ± 1.5 mm) after the second scan (P < .01). No significant change in body weight (57.3 ± 12.6 vs. 56.7 ± 11.6 kg) or body mass index (21.8 ± 5.1 vs. 21.6 ± 4.8 kg/m(2)) was observed. CONCLUSION Computed tomography confirmed that diaphragm thickness was reduced in critically ill patients who underwent MV.
Collapse
Affiliation(s)
- Gi Dong Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ho Cheol Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea..
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Jun Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yu Ji Cho
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyungsoo Bae
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.; Department of Diagnostic Radiology, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jong Deog Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.; Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Abstract
Evolutionary forces drive beneficial adaptations in response to a complex array of environmental conditions. In contrast, over several millennia, humans have been so enamored by the running/athletic prowess of horses and dogs that they have sculpted their anatomy and physiology based solely upon running speed. Thus, through hundreds of generations, those structural and functional traits crucial for running fast have been optimized. Central among these traits is the capacity to uptake, transport and utilize oxygen at spectacular rates. Moreover, the coupling of the key systems--pulmonary-cardiovascular-muscular is so exquisitely tuned in horses and dogs that oxygen uptake response kinetics evidence little inertia as the animal transitions from rest to exercise. These fast oxygen uptake kinetics minimize Intramyocyte perturbations that can limit exercise tolerance. For the physiologist, study of horses and dogs allows investigation not only of a broader range of oxidative function than available in humans, but explores the very limits of mammalian biological adaptability. Specifically, the unparalleled equine cardiovascular and muscular systems can transport and utilize more oxygen than the lungs can supply. Two consequences of this situation, particularly in the horse, are profound exercise-induced arterial hypoxemia and hypercapnia as well as structural failure of the delicate blood-gas barrier causing pulmonary hemorrhage and, in the extreme, overt epistaxis. This chapter compares and contrasts horses and dogs with humans with respect to the structural and functional features that enable these extraordinary mammals to support their prodigious oxidative and therefore athletic capabilities.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, USA.
| | | |
Collapse
|
8
|
Abstract
OBJECTIVE Regional blood flow to the diaphragm muscle varies with the workload of inspiration. To provide anatomical insight into coupling between muscle fiber recruitment and oxygen supply, we tested whether arterioles are physically associated with motor nerve branches of the diaphragm. METHODS Following vascular casting, intact diaphragm muscles of C57BL/6 and CD-1 mice were stained for motor innervation. Arteriolar networks and nerve networks were mapped (~2 μm resolution) to evaluate their physical proximity. RESULTS Neurovascular proximity was similar between muscle regions and mouse strains. Of total mapped nerve lengths (C57BL/6, 70 ± 15 mm; CD-1, 87 ± 13 mm), 80 ± 14% and 67 ± 10% were ≤250 μm from the nearest arteriole and associated predominantly with arterioles ≤45 μm in diameter. Distances to the nearest arteriole encompassing 50% of total nerve length (D(50)) were consistently within 200 μm. With nerve networks repositioned randomly within muscle borders, D(50) values nearly doubled (p < 0.05). Reference lines within anatomical boundaries reduced proximity to arterioles (p < 0.05) as they deviated from the original location of motor nerves. CONCLUSION Across two strains of mice, motor nerves and arterioles of the diaphragm muscle are more closely associated than can be explained by chance. We hypothesize that neurovascular proximity facilitates local perfusion upon muscle fiber recruitment.
Collapse
Affiliation(s)
- Diego Correa
- The John B. Pierce Laboratory, New Haven, Connecticut, USA.
| | | |
Collapse
|
9
|
McDaniel J, Ives SJ, Richardson RS. Human muscle length-dependent changes in blood flow. J Appl Physiol (1985) 2011; 112:560-5. [PMID: 22134694 DOI: 10.1152/japplphysiol.01223.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although a multitude of factors that influence skeletal muscle blood flow have been extensively investigated, the influence of muscle length on limb blood flow has received little attention. Thus the purpose of this investigation was to determine if cyclic changes in muscle length influence resting blood flow. Nine healthy men (28 ± 4 yr of age) underwent a passive knee extension protocol during which the subjects' knee joint was passively extended and flexed through 100-180° knee joint angle at a rate of 1 cycle per 30 s. Femoral blood flow, cardiac output (CO), heart rate (HR), stroke volume (SV), and mean arterial pressure (MAP) were continuously recorded during the entire protocol. These measurements revealed that slow passive changes in knee joint angle did not have a significant influence on HR, SV, MAP, or CO; however, net femoral blood flow demonstrated a curvilinear increase with knee joint angle (r(2) = 0.98) such that blood flow increased by ∼90% (125 ml/min) across the 80° range of motion. This net change in blood flow was due to a constant antegrade blood flow across knee joint angle and negative relationship between retrograde blood flow and knee joint angle (r(2) = 0.98). Thus, despite the absence of central hemodynamic changes and local metabolic factors, blood flow to the leg was altered by changes in muscle length. Therefore, when designing research protocols, researchers need to be cognizant of the fact that joint angle, and ultimately muscle length, influence limb blood flow.
Collapse
Affiliation(s)
- John McDaniel
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| | | | | |
Collapse
|
10
|
Poole DC, Copp SW, Hirai DM, Musch TI. Dynamics of muscle microcirculatory and blood-myocyte O(2) flux during contractions. Acta Physiol (Oxf) 2011; 202:293-310. [PMID: 21199399 DOI: 10.1111/j.1748-1716.2010.02246.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The O(2) requirements of contracting skeletal muscle may increase 100-fold above rest. In 1919, August Krogh's brilliant insights recognized the capillary as the principal site for this increased blood-myocyte O(2) flux. Based on the premise that most capillaries did not sustain RBC flux at rest, Krogh proposed that capillary recruitment [i.e. initiation of red blood cell (RBC) flux in previously non-flowing capillaries] increased the capillary surface area available for O(2) flux and reduced mean capillary-to-mitochondrial diffusion distances. More modern experimental approaches reveal that most muscle capillaries may support RBC flux at rest. Thus, rather than contraction-induced capillary recruitment per se, increased RBC flux and haematocrit within already-flowing capillaries probably elevate perfusive and diffusive O(2) conductances and hence blood-myocyte O(2) flux. Additional surface area for O(2) exchange is recruited but, crucially, this may occur along the length of already-flowing capillaries (i.e. longitudinal recruitment). Today, the capillary is still considered the principal site for O(2) and substrate delivery to contracting skeletal muscle. Indeed, the presence of very low intramyocyte O(2) partial pressures (PO(2)s) and the absence of intramyocyte PO(2) gradients, whilst refuting the relevance of diffusion distances, place an even greater importance on capillary hemodynamics. This emergent picture calls for a paradigm-shift in our understanding of the function of capillaries by de-emphasizing de novo'capillary recruitment'. Diseases such as heart failure impair blood-myocyte O(2) flux, in part, by decreasing the proportion of RBC-flowing capillaries. Knowledge of capillary function in healthy muscle is requisite for identification of pathology and efficient design of therapeutic treatments.
Collapse
Affiliation(s)
- D C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
AbstractThis brief review examines the athletic potential of mammals in general and the horse in particular as it relates to oxygen (O2) transport and utilization. The horse has been bred selectively for over six millennia based upon its ability to run fast. Whereas this has optimized cardiovascular and muscle function and the capacity to deliver and utilize O2, it has resulted in lung failure during intense exercise. Horses in their athletic prime are considered and attention is focused on their maximal capacities as related to O2transport, irrespective of ageper se. Following a few comments on the history of O2, this review moves from established principles of O2transport at the integrative organ level to the microcirculation and the processes and principles that govern O2offloading, where much remains to be discovered. Four principal questions are addressed: (1) as an athlete, what are the most outstanding physiological characteristics of the horse? (2) what anatomical and physiological capacities facilitate this superlative performance and such prodigious O2fluxes (i.e. maximal VO2)? (3) do cardiovascular dynamics or intramuscular energetic processes limit VO2kinetics (i.e. the speed at which VO2increases at the onset of exercise)? VO2kinetics determine the size of the O2deficit and as such represent an important determinant of muscle metabolism and fatigue; and (4) what determines the efficacy of muscle microcirculatory O2exchange?
Collapse
|
12
|
Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, Musch TI, Poole DC. Effects of Type II diabetes on capillary hemodynamics in skeletal muscle. Am J Physiol Heart Circ Physiol 2006; 291:H2439-44. [PMID: 16844923 DOI: 10.1152/ajpheart.00290.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microcirculatory red blood cell (RBC) hemodynamics are impaired within skeletal muscle of Type I diabetic rats (Kindig CA, Sexton WL, Fedde MR, and Poole DC. Respir Physiol 111: 163–175, 1998). Whether muscle microcirculatory dysfunction occurs in Type II diabetes, the more prevalent form of the disease, is unknown. We hypothesized that Type II diabetes would reduce the proportion of capillaries supporting continuous RBC flow and RBC hemodynamics within the spinotrapezius muscle of the Goto-Kakizaki Type II diabetic rat (GK). With the use of intravital microscopy, muscle capillary diameter ( dc), capillary lineal density, capillary tube hematocrit (Hctcap), RBC flux ( FRBC), and velocity ( VRBC) were measured in healthy male Wistar (control: n = 5, blood glucose, 105 ± 5 mg/dl) and male GK ( n = 7, blood glucose, 263 ± 34 mg/dl) rats under resting conditions. Mean arterial pressure did not differ between groups ( P > 0.05). Sarcomere length was set to a physiological length (∼2.7 μm) to ensure that muscle stretching did not alter capillary hemodynamics; dc was not different between control and GK rats ( P > 0.05), but the percentage of RBC-perfused capillaries (control: 93 ± 3; GK: 66 ± 5 %), Hctcap, VRBC, FRBC, and O2 delivery per unit of muscle were all decreased in GK rats ( P < 0.05). This study indicates that Type II diabetes reduces both convective O2 delivery and diffusive O2 transport properties within muscle microcirculation. If these microcirculatory deficits are present during exercise, it may provide a basis for the reduced O2 exchange characteristic of Type II diabetic patients.
Collapse
Affiliation(s)
- Danielle J Padilla
- Dept. of Anatomy/Physiology, College of Veterinary Medicine, 228 Coles Hall, 1600 Denison Ave., Manhattan, KS 66506-5802, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE Beyond the initial cardiodynamic "Phase I," pulmonary oxygen uptake (VO(2)) kinetics are dictated largely by, and resemble closely, the VO(2) of the exercising muscles (VO(2)m). Within those muscles, the microcirculation is responsible for affecting almost all blood-myocyte O(2) transfer, and thus, observations at this site may provide key insights into muscle oxidative function in health and dysfunction in disease. METHODS Recently, a novel combination of microscopy and phosphorescence quenching techniques has been utilized to understand the dynamics of microvascular O(2) delivery (VO(2)m) and muscle O(2) utilization (VO(2)m) at the onset of muscle contractions. RESULTS These experiments have addressed longstanding questions regarding the site of control of VO(2)m kinetics and provide a first look at capillary hemodynamics at exercise onset in healthy muscle and their derangements resulting from chronic diseases such as heart failure and diabetes. CONCLUSION This paper will review these novel findings within our current understanding of microcirculatory control and blood-myocyte O(2) transfer.
Collapse
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, USA.
| | | | | |
Collapse
|
14
|
Bigbee AJ, Grindeland RE, Roy RR, Zhong H, Gosselink KL, Arnaud S, Edgerton VR. Basal and evoked levels of bioassayable growth hormone are altered by hindlimb unloading. J Appl Physiol (1985) 2005; 100:1037-42. [PMID: 16339349 DOI: 10.1152/japplphysiol.00615.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bioassayable growth hormone (BGH) in rats is released in large quantities from the pituitary in response to the activation of large, proprioceptive afferent fibers from fast and mixed fiber-type hindlimb musculature. We hypothesized that hindlimb unloading (HU) of adult male rats would 1) reduce the basal levels of plasma BGH, and 2) abolish stimulus-induced BGH release. Rats were exposed to HU for 1, 4, or 8 wk. Plasma and pituitaries were collected under isoflurane anesthesia for hormone analyses. Additionally, at 4 and 8 wk, a subset of rats underwent an in situ electrical stimulation (Stim) of tibial nerve proprioceptive afferents. Basal plasma BGH levels were significantly reduced (-51 and -23%) after 1 and 8 wk of HU compared with ambulatory controls (Amb). Although Amb-Stim rats exhibited increased plasma BGH levels (88 and 143%) and decreased pituitary BGH levels (-27 and -22%) at 4 and 8 wk, respectively, stimulation in HU rats had the opposite effect, reducing plasma BGH (-25 and -33%) and increasing pituitary BGH levels (47 and 10%) relative to HU alone at 4 and 8 wk. The 22-kDa form of GH measured by immunoassay and the plasma corticosterone, T3, T4, and testosterone levels were unchanged by HU or Stim at all time points. These data suggest that BGH synthesis and release from the pituitary are sensitive both to chronically reduced neuromuscular loading and to acute changes in neuromuscular activation, independent of changes in other circulating hormones. Thus BGH may play a role in muscle, bone, and metabolic adaptations that occur in response to chronically unloaded states.
Collapse
Affiliation(s)
- A J Bigbee
- Department of Neurobiology, Univ. of California, Los Angeles, 1804 Life Science Bldg., 621 Charles E Young Dr., Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Brotto MA, Biesiadecki BJ, Brotto LS, Nosek TM, Jin JP. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility. Am J Physiol Cell Physiol 2005; 290:C567-76. [PMID: 16192301 PMCID: PMC1409758 DOI: 10.1152/ajpcell.00422.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
Collapse
Affiliation(s)
- Marco A Brotto
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
16
|
Kano Y, Sampei K, Matsudo H. Time course of capillary structure changes in rat skeletal muscle following strenuous eccentric exercise. ACTA ACUST UNITED AC 2004; 180:291-9. [PMID: 14962011 DOI: 10.1111/j.0001-6772.2003.01250.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AIM We examined the time course of capillary structure changes in rat skeletal muscle at 1, 3 and 7 days after strenuous eccentric exercise. METHODS The right gastrocnemius muscles of anaesthetized male Wistar rats were subjected to 300 controlled eccentric contractions using electrical stimulation. The contralateral gastrocnemius muscle was used as control. All morphometric parameters were determined in in situ perfused gastrocnemius muscles in red (Gr, predominantly slow-twitch fibre) and white (Gw, predominantly fast-twitch fibre) portions. RESULTS Muscle fibre damage was evident on days 1, 3 and 7 in Gr (29.3-53.9% damaged fibres) and Gw (58.9-86.8% damaged fibres) of exercised legs. Electron micrographs of transverse sections did not display collapsed or obstructed capillaries in exercised legs, and capillary endothelial cells retained their normal structures. However, capillary luminal shapes and area were altered in exercised legs on days 1 and 3. The ratio between minimal and maximal capillary diameter in a transverse section (i.e. luminal ellipticity) significantly differed when comparing control (Gr, 0.75 +/- 0.02; Gw, 0.79 +/- 0.03) and exercised legs (Gr, 0.65 +/- 0.03; Gw, 0.66 +/- 0.04) at 1 day after exercise. The mean capillary luminal area was significantly increased in exercised legs after 1 day (Gw, +24.3%) and 3 days (Gr, +31.9%; Gw, +62.2%) compared with control. CONCLUSION We conclude that (1) capillary endothelial cell structure was maintained in damaged muscles, (2) changes in capillary lumen shapes and distensibility occur in the degenerated muscle up to 3 days after the eccentric contraction period.
Collapse
Affiliation(s)
- Y Kano
- Department of Applied Physics and Chemistry, University of Electro-Communications, Chofugaoka, Chofu, Tokyo, Japan
| | | | | |
Collapse
|
17
|
Gosselink KL, Roy RR, Zhong H, Grindeland RE, Bigbee AJ, Edgerton VR. Vibration-induced activation of muscle afferents modulates bioassayable growth hormone release. J Appl Physiol (1985) 2004; 96:2097-102. [PMID: 14766785 DOI: 10.1152/japplphysiol.00855.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of tendon vibration on bioassayable growth hormone (BGH) secretion from the pituitary gland were investigated in anesthetized adult male rats. The tendons from predominantly fast-twitch ankle extensor muscles (gastrocnemius and plantaris) or a predominantly slow-twitch ankle extensor (soleus) were vibrated by using a paradigm that selectively activates group Ia afferent fibers from muscle spindles. The lower hindlimb was secured with the muscles near physiological length, and the tendons were vibrated for 15 min at 150 Hz and a displacement of 1 mm. Control rats were prepared similarly, but the tendons were not vibrated. Compared with control, vibration of the tendons of the fast ankle extensors markedly increased (160%), whereas vibration of the slow soleus decreased (68%), BGH secretion. Complete denervation of the hindlimb had no independent effects on the normal resting levels of BGH, but it prevented the effects of tendon vibration on BGH secretion. The results are consistent with previous findings showing modulation of BGH release in response to in vivo activation or in situ electrical stimulation of muscle afferents (Bigbee AJ, Gosselink KL, Grindeland RE, Roy RR, Zhong H, and Edgerton VR. J Appl Physiol 89: 2174–2178, 2000; Gosselink KL, Grindeland RE, Roy RR, Zhong H, Bigbee AJ, and Edgerton VR. J Appl Physiol 88: 142–148, 2000; Gosselink KL, Grindeland RE, Roy RR, Zhong H, Bigbee AJ, Grossman EJ, and Edgerton VR. J Appl Physiol 84: 1425–1430, 1998). These data provide evidence that this previously described muscle afferent-pituitary axis is neurally mediated via group Ia afferents from peripheral skeletal muscle. Furthermore, these data show that activation of this group Ia afferent pathway from fast muscles enhances, whereas the same sensory afferent input from a slow muscle depresses, BGH release.
Collapse
Affiliation(s)
- K L Gosselink
- Department of Physiological Science, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
18
|
Geer CM, Behnke BJ, McDonough P, Poole DC. Dynamics of microvascular oxygen pressure in the rat diaphragm. J Appl Physiol (1985) 2002; 93:227-32. [PMID: 12070209 DOI: 10.1152/japplphysiol.00735.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relative amplitudes and rates of increase of muscle blood flow (and O(2) delivery) and O(2) uptake responses determine the O(2) pressure within the muscle microvasculature (Pm(O(2))) across the rest-to-contraction transition. Skeletal muscle function is a primary determinant of pulmonary O(2) uptake kinetics; however, it has never been determined whether the dynamics of muscle Pm(O(2)) are faster in a highly oxidative muscle [e.g., diaphragm (Dia), citrate synthase activity of 39 micromol. min(-1). g(-1)] compared with less oxidative muscles [e.g., spinotrapezius (Spino), citrate synthase activity of 14 micromol. min(-1). g(-1), male Sprague-Dawley rats; Delp MD and Duan C, J Appl Physiol 80: 261-270, 1996]. Phosphorescence quenching techniques (porphyrin dendrimer, R2) were used to determine Pm(O(2)) across the transition to electrically stimulated contractions (1 Hz) within the rat Dia. After a delay of 10.4 +/- 1.3 (SE) s at the beginning of Dia contractions, Pm(O(2)) decreased close to monoexponentially from 42 +/- 2 to 27 +/- 3 Torr (P < 0.05) with an extremely fast time constant of 7.1 +/- 1.1 s. Thus Dia Pm(O(2)) decreased with significantly (P < 0.05) faster kinetics than reported previously for the Spino muscle (delay, 19.2 +/- 2.8 s; time constant Pm(O(2)), 21.7 +/- 2.1 s; Behnke BJ, Kindig CA, Musch TI, Koga S, and Poole DC, Respir Physiol 126: 53-63, 2001). With the use of two specialized muscles with similar fiber-type composition but widely disparate oxidative capacities (Delp MD and Duan C, J Appl Physiol 80: 261-270, 1996), these data demonstrate that Pm(O(2)) kinetics are significantly faster in the highly oxidative Dia compared with the low-oxidative Spino muscle and that this effect is not dependent on muscle fiber-type composition.
Collapse
Affiliation(s)
- Crystal M Geer
- Department of Kinesiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506-5802, USA
| | | | | | | |
Collapse
|
19
|
Mathieu-Costello O, Morales S, Savolainen J, Vornanen M. Fiber capillarization relative to mitochondrial volume in diaphragm of shrew. J Appl Physiol (1985) 2002; 93:346-53. [PMID: 12070224 DOI: 10.1152/japplphysiol.00940.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective was to examine fiber capillarization in relation to fiber mitochondrial volume in the highly aerobic diaphragm of the shrew, the smallest mammal. The diaphragms of four common shrews [Sorex araneus; body mass, 8.2 +/- 1.3 (SE) g] and four lesser shrews (Sorex minutus, 2.6 +/- 0.1 g) were perfusion fixed in situ, processed for electron microscopy, and analyzed by morphometry. Capillary length per fiber volume was extremely high, at values of 8,008 +/- 1,054 and 12,332 +/- 625 mm(-2) in S. araneus and S. minutus, respectively (P = 0.012), with no difference in capillary geometry between the two species. Fiber mitochondrial volume density was 28.5 +/- 2.3% (S. araneus) and 36.5 +/- 1.4% (S. minutus; P = 0.025), yielding capillary length per milliliter mitochondria values (S. araneus, 27.8 +/- 1.5 km; S. minutus, 33.9 +/- 2.2 km; P = 0.06) as high as in the flight muscle of the hummingbird and small bats. The size of the capillary-fiber interface (i.e., capillary surface per fiber surface ratio) per fiber mitochondrial volume in shrew diaphragm was also as high as in bird and bat flight muscles, and it was about two times greater than in rat hindlimb muscle. Thus, whereas fiber capillary and mitochondrial volume densities decreased with increased body mass in S. araneus compared with S. minutus Soricinae shrews, fiber capillarization per milliliter mitochondria in both species was much higher than previously reported for shrew diaphragm, and it matched that of the intensely aerobic flight muscles of birds and mammals.
Collapse
Affiliation(s)
- O Mathieu-Costello
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623, USA.
| | | | | | | |
Collapse
|
20
|
Poole DC, Kindig CA, Behnke BJ. Effects of emphysema on diaphragm microvascular oxygen pressure. Am J Respir Crit Care Med 2001; 163:1081-6. [PMID: 11316639 DOI: 10.1164/ajrccm.163.5.2008065] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pulmonary emphysema impairs lung and respiratory muscle function leading to restricted physical capacity and accelerated morbidity and mortality consequent to respiratory muscle failure. In the absence of direct evidence, an O2 supply-demand imbalance within the diaphragm and other respiratory muscles in emphysema has been considered the most likely explanation for this failure. To test this hypothesis, we utilized phosphorescence quenching techniques to measure mean microvascular PO2 (PO2m) within the medial costal diaphragm of control (C, n = 10) and emphysematous (E, elastase instilled, n = 7) hamsters. PO2m and mean arterial pressure (MAP) were measured in the spontaneously breathing anesthetized hamster at inspired O2 percentages of 10, 21, and 100, and across a range of mean MAPs from 40 to 115 mm Hg. At each inspired O2, diaphragm PO2m was significantly (p < 0.05) lower in E animals (10%: C, 19 +/- 3; E, 9 +/- 2; 21%: C, 32 +/- 2; E, 21 +/- 2; 100%: C, 60 +/- 8; E, 36 +/- 9 mm Hg). At 21% inspired O2, the PO2m decrease was correlated with reduced MAP in both C (r = 0.968) and E (r = 0.976) animals. We conclude that diaphragmatic PO2m (and therefore microvascular O2 content) is decreased in emphysematous hamsters reflecting a greater diaphragmatic O2 utilization at rest and a lower O2 extraction reserve. According to Fick's law, this lower PO2m will mandate an exaggerated fall in intramyocyte PO2, which is expected to accelerate muscle glycogen depletion and consequently fatigue. This provides empirical evidence in support of one possible mechanism for respiratory muscle failure in emphysema.
Collapse
Affiliation(s)
- D C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5602, USA.
| | | | | |
Collapse
|
21
|
Kindig CA, Poole DC. Sarcomere length-induced alterations of capillary hemodynamics in rat spinotrapezius muscle: vasoactive vs passive control. Microvasc Res 2001; 61:64-74. [PMID: 11162197 DOI: 10.1006/mvre.2000.2284] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle blood flow is reduced as fibers are stretched longitudinally. Neither the underlying cause(s) of this decrement in blood flow nor the consequences in terms of capillary red blood cell (rbc) hemodynamics has been established clearly within the physiological range of muscle sarcomere length. Using intravital microscopy, this investigation determined arteriolar diameter and capillary rbc velocity (Vrbc), flux (Frbc), and hematocrit (Hct(t)) in the rat spinotrapezius muscle at shortened/resting (2.6 microm) and physiological extended (3.2 microm) sarcomere lengths under control (c) and local maximally vasodilated (v, phentolamine, 1 micromol/L; prazosin, 0.1 micromol/L; nitroprusside, 10 micromol/L) conditions. The hypothesis tested was that muscle stretch would reduce Vrbc and Frbc proportionally such that Hct(t) would remain unchanged and that these reductions in Vrbc and Frbc would be attenuated following maximal vasodilation. Vrbc and Frbc were increased significantly following maximal vasodilation at 2.6-microm (59 and 84%) and 3.2-microm (64 and 104%) sarcomere lengths, respectively. Irrespective of sarcomere length, Hct(t) was elevated significantly following vasodilation (c, 0.20 +/- 0.01; v, 0.27 +/- 0.01). At 3.2 microm compared with the 2.6-microm sarcomere length, Vrbc and Frbc were both reduced significantly under control and vasodilated conditions as expected. However, the percent reduction in either Vrbc (c, 27%, and v, 29%) or Frbc (c, 26%, and v, 33%) was not significantly different between the 2.6- and 3.2-microm sarcomere lengths. In addition, arteriolar diameter was not altered discernably as sarcomere length was increased from 2.7 microm (c, 29.0 +/- 4.5; v, 37.9 +/- 6.7 microm) to 3.2 microm (c, 29.4 +/- 4.5; v, 37.3 +/- 6.2 microm). These data suggest that increasing sarcomere length from resting to the upper extreme of the physiological range in the rat spinotrapezius muscle reduces Vrbc and Frbc (at constant hematocrit) by a mechanism that is independent of stretch-activated arteriolar vasoconstriction.
Collapse
Affiliation(s)
- C A Kindig
- Department of Anatomy, Kansas State University, Manhattan, Kansas 66506-5602, USA
| | | |
Collapse
|
22
|
Boriek AM, Rodarte JR, Reid MB. Shape and tension distribution of the passive rat diaphragm. Am J Physiol Regul Integr Comp Physiol 2001; 280:R33-41. [PMID: 11124131 DOI: 10.1152/ajpregu.2001.280.1.r33] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed an in vitro preparation to investigate shape and stress distribution in the intact rat diaphragm. Our hypothesis was that the diaphragm is anisotropic with smaller compliance in transverse fiber direction than along fibers, and therefore shape change may be small. After the animals were killed (8 rats), the entire diaphragm was excised and fixed into a mold at the insertions. Oxygenated Krebs-Ringer solution was circulated under the diaphragm and perfused over its surface. A total of 20-23 small markers were sutured on the diaphragm surface. At transdiaphragmatic pressure (P(di)) of 3-15 cmH(2)O, curvature was smaller in transverse direction than along fibers. Using finite element analysis we computed membrane tension. At P(di) of 15 cmH(2)O, tension in central tendon was larger than muscle. In costal region maximum principal tension (sigma(1)) is essentially along the fibers and ranged from 6-10 g/cm. Minimum principal tension (sigma(2)) was 0. 3-4 g/cm. In central tendon, sigma(1) was 10-15 g/cm, compared with 4-10 g/cm for sigma(2). The diaphragm was considerably stiffer in transverse fiber direction than along the fibers.
Collapse
Affiliation(s)
- A M Boriek
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
23
|
Kindig CA, Poole DC. Effects of skeletal muscle sarcomere length on in vivo capillary distensibility. Microvasc Res 1999; 57:144-52. [PMID: 10049662 DOI: 10.1006/mvre.1998.2123] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural integrity of the capillary wall is such that capillary luminal distensibility is largely determined by support provided by the tissue in which it is located. Given that O2 flux density is greatest across the skeletal muscle capillary endothelium, any changes in capillary diameter (dc) would be expected to affect O2 diffusing capacity as well as hemodynamic resistance. We used intravital microscopy techniques to study the maximally vasodilated rat (n = 5) spinotrapezius muscle microcirculation in vivo within the physiological sarcomere length range, at high and low mean arterial pressures (MAP) systematically altered by blood withdrawal and infusion. We tested the hypothesis that in vivo capillary diameter alterations in response to changes of MAP would be reduced at extended sarcomere lengths. At 2.4-microm sarcomere length, mean dc (dc) within the spinotrapezius increased from 5.6 +/- 0.1 to 5.9 +/- 0.1 microm (P < 0.01) as MAP increased from 33 to 94 mm Hg. However, there was absolutely no change (i.e., 5.2 +/- 0.1 vs 5.2 +/- 0.1 microm) in dc in response to changes in MAP at 3.2-microm sarcomere length. Furthermore, at sarcomere lengths <2.8 microm there was a significant increase (P < 0.01) in dc (n = 40) as MAP increased, whereas dc (n = 49) remained unchanged with alterations of MAP when sarcomere length was >/=2.8 microm (P > 0.05). These data suggest that pressure-induced alterations in capillary luminal diameter and thus "in vivo capillary distensibility" are dependent upon the presiding sarcomere length. Furthermore, we conclude that the MAP-induced increases in capillary luminal diameter at the shorter sarcomere lengths are modest ( approximately 5%) and unlikely to affect O2 diffusing capacity and vascular resistance appreciably.
Collapse
Affiliation(s)
- C A Kindig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, 66506-5602, USA
| | | |
Collapse
|
24
|
Kindig CA, Poole DC. A comparison of the microcirculation in the rat spinotrapezius and diaphragm muscles. Microvasc Res 1998; 55:249-59. [PMID: 9657925 DOI: 10.1006/mvre.1998.2075] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Of all skeletal muscles examined in the rat, the spinotrapezius (S) and diaphragm (D) have the closest fiber-type composition. However, their oxidative capacities differ by two- to threefold. We have developed an intravital microscopy preparation to study diaphragm microcirculation in vivo. Using this preparation and the standard spinotrapezius model first described by S. D. Gray (1973, Microvasc. Res. 5, 395-400), we tested the hypothesis that pronounced microcirculatory differences would exist between these two muscles as a function of their disparate oxidative capacities. The lineal density of all capillaries in the spinotrapezius was 33.6 +/- 1.5 compared to 65.1 +/- 3.3 capillaries/mm in the diaphragm (P < 0.001). In the diaphragm compared with the spinotrapezius muscle, a significantly (P < 0.05) greater proportion of capillary countercurrent flow (D, 29 +/- 6% vs 8 +/- 6%) existed. Within both muscles, there was a similar proportion of capillaries supporting red blood cell (RBC) flow (S, 89 +/- 7% vs D, 92 +/- 2%). However, the diaphragm supported significantly (P < 0.001) greater intracapillary RBC velocities (D, 302 +/- 11 vs S, 226 +/- 9 micron/s) and fluxes (D, 33.4 +/- 1.1 vs S, 19.2 +/- 2.1 cells/s) compared with the spinotrapezius. Capillary "tube" hematocrit was greater (P = 0.01) in the diaphragm (0.32 +/- 0.02) than in the spinotrapezius (0.22 +/- 0.03) muscle. These data demonstrate that microcirculatory flow characteristics in resting muscle can be regulated independent of muscle fiber-type composition and may be related to muscle oxidative capacity.
Collapse
Affiliation(s)
- C A Kindig
- Department of Kinesiology and Department of Anatomy/Physiology, Kansas State University, Manhattan, Kansas, 66506-5602, USA
| | | |
Collapse
|
25
|
Kindig CA, Sexton WL, Fedde MR, Poole DC. Skeletal muscle microcirculatory structure and hemodynamics in diabetes. RESPIRATION PHYSIOLOGY 1998; 111:163-75. [PMID: 9574868 DOI: 10.1016/s0034-5687(97)00122-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Within skeletal muscle, insulin-dependent (Type 1) diabetes produces straighter, narrower capillaries. To test the hypothesis that these microvascular alterations would be associated with impaired capillary hemodynamics, intravital microscopy techniques were used to study the in vivo spinotrapezius muscle microcirculation of age-matched control (C) and streptozotocin (STZ) induced diabetic (D) rats. D rats exhibited a marked reduction in body weight (C, 266 +/- 5 g; D, 150 +/- 6 g; P < 0.001). At resting sarcomere lengths (i.e. approximately 2.7 microm), the additional capillary length arising from tortuosity and branching was less in D muscle (C, 10.5 +/- 0.8%; D, 5.3 +/- 1.0%, P < 0.01). Capillary diameter was reduced in D muscle (C, 5.4 +/- 0.1 microm; D, 4.6 +/- 0.1 microm; P < 0.001), and was positively correlated (r = 0.71) with the decreased proportion of capillaries sustaining flow (C, 85 +/- 5%; D, 53 +/- 3%; P < 0.001). Within those 'flowing' capillaries, red blood cell (RBC) velocity and flux were reduced 29 and 43%, respectively in D muscle (both P < 0.05). This reduced calculated O2 delivery by 57% per unit tissue width and 41% per unit muscle mass. Capillary 'tube' hematocrit was unchanged from control values (C, 0.22 +/- 0.02; D, 0.22 +/- 0.02). We conclude that, in the diabetic state, microvascular remodeling is associated with a reduced proportion of 'flowing' capillaries and a reduction in RBC velocity and flux in these vessels such that skeletal muscle O2 delivery is markedly reduced.
Collapse
Affiliation(s)
- C A Kindig
- Department of Kinesiology, Kansas State University, Manhattan 66506-0302, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The purpose of this study was to determine the relationship between intrathoracic pressure (delta ITP) and diaphragm shortening (DS) during the development of diaphragm fatigue. Fatigue of the diaphragm was produced by having rats breath 15% CO2 in O2. Diaphragm shortening increased significantly to 178% of control during the first 5 min of hypercapnia and then decreased to 86% of control at approximately 80 min. Twenty minutes after terminating hypercapnia, DS increased to 115% of the prehypercapnic value. delta ITP increased to 199% of control following 5 min of hypercapnia and continued to increase, reaching 267% of control at the end of the hypercapnic period. Twenty minutes later, delta ITP was 147% of control. These results illustrate that during increased respiratory work, DS can decrease while intrathoracic pressure remains increased. These findings suggest that intrathoracic pressure may not always reflect the contractile status of the diaphragm. These findings are consistent with other studies indicating that as the diaphragm fatigues, accessory respiratory muscle activity increases to maintain delta ITP.
Collapse
Affiliation(s)
- J D Pierce
- School of Nursing, University of Kansas Medical Center, Kansas City 66160-7502, USA
| | | | | | | |
Collapse
|
27
|
Poole DC, Sexton WL, Farkas GA, Powers SK, Reid MB. Diaphragm structure and function in health and disease. Med Sci Sports Exerc 1997; 29:738-54. [PMID: 9219201 DOI: 10.1097/00005768-199706000-00003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The diaphragm is the primary muscle of inspiration, and as such uncompromised function is essential to support the ventilatory and gas exchange demands associated with physical activity. The normal healthy diaphragm may fatigue during intense exercise, and diaphragm function is compromised with aging and obesity. However, more insidiously, respiratory diseases such as emphysema mechanically disadvantage the diaphragm, sometimes leading to muscle failure and death. Based on metabolic considerations, recent evidence suggests that specific regions of the diaphragm may be or may become more susceptible to failure than others. This paper reviews the regional differences in mechanical and metabolic activity within the diaphragm and how such heterogeneities might influence diaphragm function in health and disease. Our objective is to address five principal areas: 1) Regional diaphragm structure and mechanics (GAF). 2) Regional differences in blood flow within the diaphragm (WLS). 3) Structural and functional interrelationships within the diaphragm microcirculation (DCP). 4) Nitric oxide and its vasoactive and contractile influences within the diaphragm (MBR). 5) Metabolic and contractile protein plasticity in the diaphragm (SKP). These topics have been incorporated into three discrete sections: Functional Anatomy and Morphology, Physiology, and Plasticity in Health and Disease. Where pertinent, limitations in our understanding of diaphragm function are addressed along with potential avenues for future research.
Collapse
Affiliation(s)
- D C Poole
- Department of Kinesiology, Kansas State University Manhattan 66506, USA
| | | | | | | | | |
Collapse
|
28
|
Poole DC, Mathieu-Costello O. Effect of pulmonary emphysema on diaphragm capillary geometry. J Appl Physiol (1985) 1997; 82:599-606. [PMID: 9049743 DOI: 10.1152/jappl.1997.82.2.599] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In emphysema, the diaphragm shortens by losing sarcomeres. We hypothesized that unless capillaries undergo a similar shortening, capillary geometry must be altered. Without quantifying this geometry, capillary length and surface area per fiber volume, which are critical measurements of the structural potential for blood-tissue exchange, cannot be resolved. Five months after intratracheal elastase (E) or saline (control; C) instillation, diaphragms from male Syrian golden hamsters were glutaraldehyde perfusion fixed in situ at reference lung positions (residual volume, functional residual capacity, total lung capacity) to provide diaphragms fixed over a range of sarcomere lengths. Subsequently, diaphragms were processed for electron microscopy and analyzed morphometrically. Emphysema increased lung volume changes from -20 to 25 cmH2O airway pressure (i.e., passive vital capacity) and excised lung volume (both P < 0.001). In each region of the costal diaphragm (i.e., ventral, medial, dorsal), sarcomere number was reduced (all P < 0.05). Capillary-to-fiber ratio increased (C = 2.2 +/- 0.1, E = 2.8 +/- 0.1; P < 0.01) and fibers hypertrophied (C = 815 +/- 35, E = 987 +/- 67 microns2; P < 0.05; both values at 2.5 microns sarcomere length). Capillary geometry was markedly altered by the loss of sarcomeres in series. Specifically, the additional capillary length derived from capillary tortuosity and branching was increased by 183% at 2.5 microns sarcomere length compared with C values (C, 359 +/- 43; E, 1,020 +/- 158 mm-2, P < 0.01). This significantly increased total capillary length (C, 3,115 +/- 173; E, 3,851 +/- 219mm-2 at 2.5 microns, P < 0.05) and surface area (C, 456 +/- 13; E, 519 +/- 24 cm-1, P < 0.05) per fiber volume. Thus emphysema substantially alters diaphragm capillary geometry and augments the capillary length and surface area available for blood-tissue exchange.
Collapse
Affiliation(s)
- D C Poole
- Department of Kinesiology, Kansas State University, Manhattan 66506-5602, USA
| | | |
Collapse
|