1
|
Kido K, Eskesen NO, Henriksen NS, Onslev J, Kristensen JM, Larsen MR, Hingst JR, Knudsen JR, Birk JB, Andersen NR, Jensen TE, Pehmøller C, Wojtaszewski JF, Kjøbsted R. AMPKγ3 Controls Muscle Glucose Uptake in Recovery From Exercise to Recapture Energy Stores. Diabetes 2023; 72:1397-1408. [PMID: 37506328 PMCID: PMC10545559 DOI: 10.2337/db23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Exercise increases muscle glucose uptake independently of insulin signaling and represents a cornerstone for the prevention of metabolic disorders. Pharmacological activation of the exercise-responsive AMPK in skeletal muscle has been proven successful as a therapeutic approach to treat metabolic disorders by improving glucose homeostasis through the regulation of muscle glucose uptake. However, conflicting observations cloud the proposed role of AMPK as a necessary regulator of muscle glucose uptake during exercise. We show that glucose uptake increases in human skeletal muscle in the absence of AMPK activation during exercise and that exercise-stimulated AMPKγ3 activity strongly correlates to muscle glucose uptake in the postexercise period. In AMPKγ3-deficient mice, muscle glucose uptake is normally regulated during exercise and contractions but impaired in the recovery period from these stimuli. Impaired glucose uptake in recovery from exercise and contractions is associated with a lower glucose extraction, which can be explained by a diminished permeability to glucose and abundance of GLUT4 at the muscle plasma membrane. As a result, AMPKγ3 deficiency impairs muscle glycogen resynthesis following exercise. These results identify a physiological function of the AMPKγ3 complex in human and rodent skeletal muscle that regulates glucose uptake in recovery from exercise to recapture muscle energy stores. ARTICLE HIGHLIGHTS Exercise-induced activation of AMPK in skeletal muscle has been proposed to regulate muscle glucose uptake in recovery from exercise. This study investigated whether the muscle-specific AMPKγ3-associated heterotrimeric complex was involved in regulating muscle glucose metabolism in recovery from exercise. The findings support that exercise-induced activation of the AMPKγ3 complex in human and mouse skeletal muscle enhances glucose uptake in recovery from exercise via increased translocation of GLUT4 to the plasma membrane. This work uncovers the physiological role of the AMPKγ3 complex in regulating muscle glucose uptake that favors replenishment of the muscle cellular energy stores.
Collapse
Affiliation(s)
- Kohei Kido
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Nicolas O. Eskesen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai S. Henriksen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan Onslev
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas M. Kristensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Magnus R. Larsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R. Hingst
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R. Knudsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B. Birk
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline R. Andersen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E. Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, MA
| | - Jørgen F.P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhang L, Thyagarajan D. Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency. Brain Sci 2022; 12:brainsci12121605. [PMID: 36552065 PMCID: PMC9775375 DOI: 10.3390/brainsci12121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Riboflavin transporter deficiency (RTD), formerly known as Brown−Vialetto−Van Laere syndrome, is a rare condition that causes a progressive neurological syndrome in early life with features of auditory and optic neuropathy, weakness of bulbar muscles and the diaphragm and sensorimotor neuropathy. Pathologic mutations in the genes that code for riboflavin transporters have been identified as the genetic basis of RTD, and the majority of the genetically confirmed cases are caused by mutations of SLC52A3, a riboflavin transporter 2 coding gene or compound mutations in SLC52A2, encoding riboflavin transporter 3. Fatality in childhood is common if the condition is left untreated, but survival into adulthood has been reported in cases treated with high-dose oral riboflavin. (2) Case summary: We report two long-term survivors of RTD type 2 due to compound heterozygous 185T> G and 1258G>A mutations in gene SLC2A2. They are two brothers in a family in which two female siblings died in childhood from a similar neurological disorder. Brother one, the older RTD survivor, is aged 71, and brother two is aged 58. Both have significant visual impairment from optic nerve atrophy and sensory ataxia. Their muscle biopsies showed decreased muscle adenosine monophosphate (AMP) deaminase activity. No AMPD1 mutation was detected through whole-genome sequencing. (3) Conclusion: Co-existing riboflavin transporter deficiency (RTD) type 2 and muscle AMP deaminase deficiency has not been previously reported. Apart from the possibility that there is a milder phenotype associated with these mutations in SLC2A2, AMP deaminase deficiency might have contributed to a survival benefit by preserving muscle function through accumulating intracellular AMP.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neuroscience, Eastern Health, VIC 3128, Australia
- Correspondence:
| | - Dominic Thyagarajan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neuroscience, The Alfred Health, Melbourne, VIC 3004, Australia
| |
Collapse
|
3
|
The role of AMPK in regulation of Na +,K +-ATPase in skeletal muscle: does the gauge always plug the sink? J Muscle Res Cell Motil 2021; 42:77-97. [PMID: 33398789 DOI: 10.1007/s10974-020-09594-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.
Collapse
|
4
|
Bellar A, Welch N, Dasarathy S. Exercise and physical activity in cirrhosis: opportunities or perils. J Appl Physiol (1985) 2020; 128:1547-1567. [PMID: 32240017 DOI: 10.1152/japplphysiol.00798.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reduced exercise capacity and impaired physical performance are observed in nearly all patients with liver cirrhosis. Physical activity and exercise are physiological anabolic stimuli that can reverse dysregulated protein homeostasis or proteostasis and potentially increase muscle mass and contractile function in healthy subjects. Cirrhosis is a state of anabolic resistance, and unlike the beneficial responses to exercise reported in physiological states, there are few systematic studies evaluating the response to exercise in cirrhosis. Hyperammonemia is a mediator of the liver-muscle axis with net skeletal muscle ammonia uptake in cirrhosis causing signaling perturbations, mitochondrial dysfunction with decreased ATP content, modifications of contractile proteins, and impaired ribosomal function, all of which contribute to anabolic resistance in cirrhosis and have the potential to impair the beneficial responses to exercise. English language-publications in peer-reviewed journals that specifically evaluated the impact of exercise in cirrhosis were reviewed. Most studies evaluated responses to endurance exercise, and readouts included peak or maximum oxygen utilization, grip strength, and functional capacity. Endurance exercise for up to 12 wk is clinically tolerated in well-compensated cirrhosis. Data on the safety of resistance exercise are conflicting. Nutritional supplements enhance the benefits of exercise in healthy subjects but have not been evaluated in cirrhosis. Whether the beneficial physiological responses with endurance exercise and increase in muscle mass with resistance exercise that occur in healthy subjects also occur in cirrhotics is not known. Specific organ-system responses, changes in body composition, or improved long-term clinical outcomes with exercise in cirrhosis need evaluation.
Collapse
Affiliation(s)
- Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Nicole Welch
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Gastroenterology, Hepatology Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Gastroenterology, Hepatology Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
5
|
Kistner S, Rist MJ, Krüger R, Döring M, Schlechtweg S, Bub A. High-Intensity Interval Training Decreases Resting Urinary Hypoxanthine Concentration in Young Active Men-A Metabolomic Approach. Metabolites 2019; 9:metabo9070137. [PMID: 31295919 PMCID: PMC6680906 DOI: 10.3390/metabo9070137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
High-intensity interval training (HIIT) is known to improve performance and skeletal muscle energy metabolism. However, whether the body’s adaptation to an exhausting short-term HIIT is reflected in the resting human metabolome has not been examined so far. Therefore, a randomized controlled intervention study was performed to investigate the effect of a ten-day HIIT on the resting urinary metabolome of young active men. Fasting spot urine was collected before (−1 day) and after (+1 day; +4 days) the training intervention and 65 urinary metabolites were identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Metabolite concentrations were normalized to urinary creatinine and subjected to univariate statistical analysis. One day after HIIT, no overall change in resting urinary metabolome, except a significant difference with decreasing means in urinary hypoxanthine concentration, was documented in the experimental group. As hypoxanthine is related to purine degradation, lower resting urinary hypoxanthine levels may indicate a training-induced adaptation in purine nucleotide metabolism.
Collapse
Affiliation(s)
- Sina Kistner
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| | - Manuela J Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Maik Döring
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Sascha Schlechtweg
- Department of Sport and Exercise Science, University of Stuttgart, 70174 Stuttgart, Germany
| | - Achim Bub
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Ipata PL, Pesi R. Metabolic interaction between purine nucleotide cycle and oxypurine cycle during skeletal muscle contraction of different intensities: a biochemical reappraisal. Metabolomics 2018; 14:42. [PMID: 30830332 DOI: 10.1007/s11306-018-1341-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/16/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND A substrate cycle is a metabolic transformation in which a substrate A is phosphorylated to A-P at the expense of ATP (or another "high energy" compound), and A-P is converted back to A by a nucleotidase or a phosphatase. Many biochemists resisted the idea of such an ATP waste. Why a non-phosphorylated metabolite should be converted into a phosphorylated form, and converted back to its non-phosphorylated form through a "futile cycle"? AIM OF REVIEW In this Review we aim at presenting our present knowledge on the biochemical features underlying the interrelation between the muscle purine nucleotide cycle and the oxypurine cycle, and on the metabolic responses of the two cycles to increasing intensities of muscle contraction. KEY SCIENTIFIC CONCEPTS OF REVIEW Nowadays it is widely accepted that the substrate cycles regulate many vital functions depending on the expense of large amounts of ATP, including skeletal muscle contraction, so that the expense of some extra ATP and "high energy" compounds, such as GTP and PRPP via substrate cycles, is not surprising. The Review emphasizes the strict metabolic interrelationship between the purine nucleotide cycle and the oxipurine cycle.
Collapse
Affiliation(s)
- Piero L Ipata
- Department of Biology, Unit of Biochemistry, University of Pisa, Via San Zeno 51, 56127, Pisa, Italy.
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Via San Zeno 51, 56127, Pisa, Italy
| |
Collapse
|
7
|
Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects. J Physiol Sci 2017; 68:293-305. [PMID: 28432611 PMCID: PMC5887001 DOI: 10.1007/s12576-017-0536-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/25/2017] [Indexed: 11/07/2022]
Abstract
This study aimed at evaluating the concentration of erythrocyte purine nucleotides (ATP, ADP, AMP, IMP) in trained and sedentary subjects before and after maximal physical exercise together with measuring the activity of purine metabolism enzymes as well as the concentration of purine (hypoxanthine, xanthine, uric acid) and pyrimidine (uridine) degradation products in blood. The study included 15 male elite rowers [mean age 24.3 ± 2.56 years; maximal oxygen uptake (VO2max) 52.8 ± 4.54 mL/kg/min; endurance and strength training 8.2 ± 0.33 h per week for 6.4 ± 2.52 years] and 15 sedentary control subjects (mean age 23.1 ± 3.41 years; VO2max 43.2 ± 5.20 mL/kg/min). Progressive incremental exercise testing until refusal to continue exercising was conducted on a bicycle ergometer. The concentrations of ATP, ADP, AMP, IMP and the activities of adenine phosphoribosyltransferase (APRT), hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and phosphoribosyl pyrophosphate synthetase (PRPP-S) were determined in erythrocytes. The concentrations of hypoxanthine, xanthine, uric acid and uridine were determined in the whole blood before exercise, after exercise, and 30 min after exercise testing. The study demonstrated a significantly higher concentration of ATP in the erythrocytes of trained subjects which, in part, may be explained by higher metabolic activity on the purine re-synthesis pathway (significantly higher PRPP-S, APRT and HGPRT activities). The ATP concentration, just as the ATP/ADP ratio, as well as an exercise-induced increase in this ratio, correlates with the VO2max level in these subjects which allows them to be considered as the important factors characterising physical capacity and exercise tolerance. Maximal physical exercise in the group of trained subjects results not only in a lower post-exercise increase in the concentration of hypoxanthine, xanthine and uric acid but also in that of uridine. This indicates the possibility of performing high-intensity work with a lower loss of not only purine but also pyrimidine.
Collapse
|
8
|
Lengert N, Drossel B. In silico analysis of exercise intolerance in myalgic encephalomyelitis/chronic fatigue syndrome. Biophys Chem 2015; 202:21-31. [PMID: 25899994 DOI: 10.1016/j.bpc.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 11/16/2022]
Abstract
Post-exertional malaise is commonly observed in patients with myalgic encephalomyelitis/chronic fatigue syndrome, but its mechanism is not yet well understood. A reduced capacity for mitochondrial ATP synthesis is associated with the pathogenesis of CFS and is suspected to be a major contribution to exercise intolerance in CFS patients. To demonstrate the connection between a reduced mitochondrial capacity and exercise intolerance, we present a model which simulates metabolite dynamics in skeletal muscles during exercise and recovery. CFS simulations exhibit critically low levels of ATP, where an increased rate of cell death would be expected. To stabilize the energy supply at low ATP concentrations the total adenine nucleotide pool is reduced substantially causing a prolonged recovery time even without consideration of other factors, such as immunological dysregulations and oxidative stress. Repeated exercises worsen this situation considerably. Furthermore, CFS simulations exhibited an increased acidosis and lactate accumulation consistent with experimental observations.
Collapse
Affiliation(s)
- Nicor Lengert
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany.
| | - Barbara Drossel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
9
|
The kinetic properties of a human PPIP5K reveal that its kinase activities are protected against the consequences of a deteriorating cellular bioenergetic environment. Biosci Rep 2013; 33:e00022. [PMID: 23240582 PMCID: PMC3564036 DOI: 10.1042/bsr20120115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We obtained detailed kinetic characteristics--stoichiometry, reaction rates, substrate affinities and equilibrium conditions--of human PPIP5K2 (diphosphoinositol pentakisphosphate kinase 2). This enzyme synthesizes 'high-energy' PP-InsPs (diphosphoinositol polyphosphates) by metabolizing InsP₆ (inositol hexakisphosphate) and 5-InsP₇ (5-diphosphoinositol 1,2,3,4,6-pentakisphosphate) to 1-InsP₇ (1-diphosphoinositol 2,3,4,5,6-pentakisphosphate) and InsP₈ (1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate), respectively. These data increase our insight into the PPIP5K2 reaction mechanism and clarify the interface between PPIP5K catalytic activities and cellular bioenergetic status. For example, stochiometric analysis uncovered non-productive, substrate-stimulated ATPase activity (thus, approximately 2 and 1.2 ATP molecules are utilized to synthesize each molecule of 1-InsP₇ and InsP₈, respectively). Impaired ATPase activity of a PPIP5K2-K248A mutant increased atomic-level insight into the enzyme's reaction mechanism. We found PPIP5K2 to be fully reversible as an ATP-synthase in vitro, but our new data contradict previous perceptions that significant 'reversibility' occurs in vivo. PPIP5K2 was insensitive to physiological changes in either [AMP] or [ATP]/[ADP] ratios. Those data, together with adenine nucleotide kinetics (ATP Km=20-40 μM), reveal how insulated PPIP5K2 is from cellular bioenergetic challenges. Finally, the specificity constants for PPIP5K2 revise upwards by one-to-two orders of magnitude the inherent catalytic activities of this enzyme, and we show its equilibrium point favours 80-90% depletion of InsP₆/₅-InsP₇.
Collapse
|
10
|
Prado S, Villamarín A, Ibarguren I. SIMULTANEOUS DETERMINATION OF ADENOSINE AND RELATED PURINES IN TISSUES AND HEMOLYMPH OF MUSSEL BY HPLC. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.660723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sonia Prado
- a Department of Biochemistry and Molecular Biology, Faculty of Veterinary Science , University of Santiago de Compostela , Lugo , Spain
| | - Antonio Villamarín
- a Department of Biochemistry and Molecular Biology, Faculty of Veterinary Science , University of Santiago de Compostela , Lugo , Spain
| | - Izaskun Ibarguren
- a Department of Biochemistry and Molecular Biology, Faculty of Veterinary Science , University of Santiago de Compostela , Lugo , Spain
| |
Collapse
|
11
|
Zielinski J, Kusy K. Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes. J Appl Physiol (1985) 2011; 112:542-51. [PMID: 22162524 DOI: 10.1152/japplphysiol.01292.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to assess the effect of training loads on metabolic response of purine derivatives in highly trained sprinters (10 men, age range 20-29 yr) in a 1-yr cycle, compared with endurance-training mode in triathletes (10 men, age range 21-28 yr). A four-time measurement of respiratory parameters, plasma hypoxanthine (Hx) concentration, and erythrocyte hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity was administered in four characteristic training phases (general, specific, competition, and transition). A considerably lower postexercise plasma concentration of Hx in sprinters (8.1-18.0 μmol/l) than in triathletes (14.1-24.9 μmol/l) was demonstrated in all training phases. In both groups, a significant decrease in plasma Hx concentration in the competition phase and a considerable increase in the transition phase were observed. It was found that the resting erythrocyte HGPRT activity increased in the competition period and declined in the transition phase. Sprinters showed higher HGPRT activity (58.5-71.8 nmol IMP·mg Hb(-1)·h(-1)) than triathletes (55.8-66.6 nmol IMP·mg Hb(-1)·h(-1)) in all examinations. The results suggest a more effective use of anaerobic metabolic energy sources induced by sprint training characterized by higher amount of exercise in the anaerobic lactacid and the nonlactacid zone. The changes in plasma Hx concentration and erythrocyte HGPRT activity might serve as sensitive metabolic indicators in the training control, especially in sprint-trained athletes. These parameters may provide information about the energetic status of the muscles in highly trained athletes in which no significant adaptation changes are detected by means of commonly acknowledged biochemical and physiological parameters.
Collapse
Affiliation(s)
- Jacek Zielinski
- Department of Athletics, University School of Physical Education, Poznań, Poland.
| | | |
Collapse
|
12
|
Wiacek M, Andrzejewski M, Chmura J, Zubrzycki IZ. The changes of the specific physiological parameters in response to 12-week individualized training of young soccer players. J Strength Cond Res 2011; 25:1514-21. [PMID: 21386728 DOI: 10.1519/jsc.0b013e3181ddf860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to analyze the influence of individualized training (IT) as a function of motor type and effort status on changes of in specific physiological parameters among young soccer competitors. Blood pH and lactate concentrations, and lactate dehydrogenase (LDH), and creatine kinase (CK) activities were measured at the beginning of a preparation period, a match season, and a recuperation period of a 6-month macrocycle. The differences among specific physiological parameters as a function of the preparation phase for a defined motor type were analyzed by means of a 1-way generalized linear model (GLM) for repeated measurements. The differences in physiological parameters among defined motor types for a defined preparation phase were analyzed by means of the GLM for independent data. The differences in specific parameters before and after short time effort were analyzed by means of a t-test for matched pairs. Applied experimental and analytical approaches have revealed that IT administered to specific motor types differentiates players with respect to the pH, lactate concentration, and LDH activity. Obtained results indicate also that the dynamics of these parameters reflects the player's fitness level. Analysis of CK activity as a function of a preparation phase may serve as a prognostic tool for both overtraining and physical exhaustion.
Collapse
|
13
|
Ipata PL. Mechanism of ATP loss in nonoxidative contracting muscle. ADVANCES IN PHYSIOLOGY EDUCATION 2011; 35:92-94. [PMID: 21386007 DOI: 10.1152/advan.00102.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Piero L Ipata
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy.
| |
Collapse
|
14
|
Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects. Eur J Appl Physiol 2010; 110:1155-62. [PMID: 20714766 PMCID: PMC2988208 DOI: 10.1007/s00421-010-1611-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2010] [Indexed: 11/21/2022]
Abstract
Maximal physical exertion is accompanied by increased degradation of purine nucleotides in muscles with the products of purine catabolism accumulating in the plasma. Thanks to membrane transporters, these products remain in an equilibrium between the plasma and red blood cells where they may serve as substrates in salvage reactions, contributing to an increase in the concentrations of purine nucleotides. In this study, we measured the concentrations of adenine nucleotides (ATP, ADP, AMP), inosine nucleotides (IMP), guanine nucleotides (GTP, GDP, GMP), and also pyridine nucleotides (NAD, NADP) in red blood cells immediately after standardized physical effort with increasing intensity, and at the 30th min of rest. We also examined the effect of muscular exercise on adenylate (guanylate) energy charge—AEC (GEC), and on the concentration of nucleosides (guanosine, inosine, adenosine) and hypoxanthine. We have shown in this study that a standardized physical exercise with increasing intensity leads to an increase in IMP concentration in red blood cells immediately after the exercise, which with a significant increase in Hyp concentration in the blood suggests that Hyp was included in the IMP pool. Restitution is accompanied by an increase in the ATP/ADP and ADP/AMP ratios, which indicates an increase in the phosphorylation of AMP and ADP to ATP. Physical effort applied in this study did not lead to changes in the concentrations of guanine and pyridine nucleotides in red blood cells.
Collapse
|
15
|
Blood uridine concentration may be an indicator of the degradation of pyrimidine nucleotides during physical exercise with increasing intensity. J Physiol Biochem 2010; 66:189-96. [PMID: 20533099 DOI: 10.1007/s13105-010-0023-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
During prolonged maximal exercise, oxygen deficits occur in working muscles. Progressive hypoxia results in the impairment of the oxidative resynthesis of ATP and increased degradation of purine nucleotides. Moreover, ATP consumption decreases the conversion of UDP to UTP, to use ATP as a phosphate donor, resulting in an increased concentration of UDP, which enhances pyrimidine degradation. Because the metabolism of pyrimidine nucleotides is related to the metabolism of purines, in particular with the cellular concentration of ATP, we decided to investigate the impact of a standardized exercise with increasing intensity on the concentration of uridine, inosine, hypoxanthine, and uric acid. Twenty-two healthy male subjects volunteered to participate in this study. Blood concentrations of metabolites were determined at rest, immediately after exercise, and after 30 min of recovery using high-performance liquid chromatography. We also studied the relationship between the levels of uridine and indicators of myogenic purine degradation. The results showed that exercise with increasing intensity leads to increased concentrations of inosine, hypoxanthine, uric acid, and uridine. We found positive correlations between blood uridine levels and indicators of myogenic purine degradation (hypoxanthine), suggesting that the blood uridine level is related to purine metabolism in skeletal muscles.
Collapse
|
16
|
Enea C, Seguin F, Petitpas-Mulliez J, Boildieu N, Boisseau N, Delpech N, Diaz V, Eugène M, Dugué B. 1H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal Bioanal Chem 2009; 396:1167-76. [DOI: 10.1007/s00216-009-3289-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/29/2022]
|
17
|
Ghanbari-Niaki A, Nabatchian S, Hedayati M. Plasma agouti-related protein (AGRP), growth hormone, insulin responses to a single circuit-resistance exercise in male college students. Peptides 2007; 28:1035-9. [PMID: 17368650 DOI: 10.1016/j.peptides.2007.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/01/2007] [Accepted: 02/06/2007] [Indexed: 11/26/2022]
Abstract
The ability of acute exercise to stimulate appetite and food intake depends on intensity, duration, and agouti-related protein (AGRP) levels. Fasting, as well as any negative energy balance, has been reported to increase AGRP expression in the arcuate nucleus (ARC) of the hypothalamus and other extra-hypothalamic tissues in human and rats. The purpose of the present study was to investigate the response of plasma AGRP, GH and insulin to a single circuit-resistance exercise. Twenty volunteer male college students completed a single bout of circuit-resistance training (10 exercises at 35% of 1RM). Blood samples were collected before, immediately and 30 min following the exercise protocol. Plasma AGRP and GH levels showed a significant increase immediately after exercise and returned to pre exercise values during the recovery period. The data indicate that exercise protocol was able to increase plasma AGRP and GH levels. A higher plasma AGRP level might result in an acute exercise-induced hyperphagia and help to fuel post-exercise restoration processes.
Collapse
Affiliation(s)
- Abbass Ghanbari-Niaki
- Department of Physical Education and Sports Sciences, Faculty of Humanity Sciences, Tarbiat Modares University, PO Box 14115-39, Tehran, Iran.
| | | | | |
Collapse
|
18
|
Ellingson WJ, Chesser DG, Winder WW. Effects of 3-phosphoglycerate and other metabolites on the activation of AMP-activated protein kinase by LKB1-STRAD-MO25. Am J Physiol Endocrinol Metab 2007; 292:E400-7. [PMID: 16985256 DOI: 10.1152/ajpendo.00322.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle contraction results in the phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an upstream kinase (AMPKK). The LKB1-STE-related adaptor (STRAD)-mouse protein 25 (MO25) complex is the major AMPKK in skeletal muscle; however, LKB1-STRAD-MO25 activity is not increased by muscle contraction. This relationship suggests that phosphorylation of AMPK by LKB1-STRAD-MO25 during skeletal muscle contraction may be regulated by allosteric mechanisms. In this study, we tested an array of metabolites including, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, 3-phosphoglycerate (3-PG), glucose 1-phosphate, glucose 1,6-bisphosphate, ADP, carnitine, acetylcarnitine, IMP, inosine, and ammonia for allosteric regulation. ADP inhibited both AMPK and LKB1-STRAD-MO25 actions, but probably is not important physiologically because of the low free ADP inside the muscle fiber. We found that 3-PG stimulated LKB1-STRAD-MO25 activity and allowed for increased AMPK phosphorylation. 3-PG did not stimulate LKB1-STRAD-MO25 activity toward the peptide substrate LKB1tide. These results have identified 3-PG as an AMPK-specific regulator of AMPK phosphorylation and activation by LKB1-STRAD-MO25.
Collapse
Affiliation(s)
- W J Ellingson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA
| | | | | |
Collapse
|
19
|
Robergs RA, Ghiasvand F, Parker D. Reply: The Wandering Argument Favoring a Lactic Acidosis. Am J Physiol Regul Integr Comp Physiol 2006. [DOI: 10.1152/ajpregu.00081.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Korzeniewski B. AMP deamination delays muscle acidification during heavy exercise and hypoxia. J Biol Chem 2005; 281:3057-66. [PMID: 16314416 DOI: 10.1074/jbc.m510418200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In silico studies carried out by using a computer model of oxidative phosphorylation and anaerobic glycolysis in skeletal muscle demonstrated that deamination of AMP to IMP during heavy short term exercise and/or hypoxia lessens the acidification of myocytes. The concerted action of adenylate kinase and AMP deaminase, leading to a decrease in the total adenine nucleotide pool, constitutes an additional process consuming ADP and producing ATP. It diminishes the amount of ADP that must be converted to ATP by other processes in order to meet the rate of ADP production by ATPases (because the adenylate kinase + AMP deaminase system produces only 1 ATP per 2 ADPs used, ATP consumption is not matched by ATP production, and the reduction of the total adenine nucleotide pool occurs mostly at the cost of [ATP]). As a result, the rate of ADP consumption by other processes may be lowered. This effect concerns mostly ADP consumption by anaerobic glycolysis that is inhibited by AMP deamination-induced decrease in [ADP] and [AMP], and not oxidative phosphorylation, because during heavy exercise and/or hypoxia [ADP] is significantly greater than the Km value of this process for ADP. The resultant reduction of proton production by anaerobic glycolysis enables us to delay the termination of exercise because of fatigue and/or to diminish cell damage.
Collapse
|
21
|
Abstract
Arterial spin labeling (ASL) in combination with NMR imaging is an in vivo technique that quantifies tissue perfusion in absolute values (ml blood x min(-1) x g tissue(-1)) with high temporal (1-10 s) and spatial (0.1-3 mm) resolution. It uses the arterial water spins as endogenous freely diffusible markers of perfusion and, hence, is a totally noninvasive method. The technique has been successfully applied to quantify baseline perfusion in many organs, including the heart, in humans and animals, and results were validated by comparison with gold standards, PET and microspheres, respectively. Because of the high sampling rate of perfusion with ASL and the possibility that measurements could be obtained without harm over indefinite periods of time, the technique has the potential for use in functional investigations of microcirculation regulation and resistance artery control in vivo. We describe examples of the use of ASL to this end. With use of specific technological developments, ASL determination of perfusion can be coupled with simultaneous acquisitions of (1)H and (31)P NMR spectroscopy data. These protocols offer new possibilities whereby the microcirculatory control of cell oxygenation and high-energy phosphate metabolism can be explored.
Collapse
|
22
|
Mesa JLM, Ruiz JR, González-Gross MM, Gutiérrez Sáinz A, Castillo Garzón MJ. Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med 2003; 32:903-44. [PMID: 12427051 DOI: 10.2165/00007256-200232140-00003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Creatine is the object of growing interest in the scientific literature. This is because of the widespread use of creatine by athletes, on the one hand, and to some promising results regarding its therapeutic potential in neuromuscular disease on the other. In fact, since the late 1900s, many studies have examined the effects of creatine supplementation on exercise performance. This article reviews the literature on creatine supplementation as an ergogenic aid, including some basic aspects relating to its metabolism, pharmacokinetics and side effects. The use of creatine supplements to increase muscle creatine content above approximately 20 mmol/kg dry muscle mass leads to improvements in high-intensity, intermittent high-intensity and even endurance exercise (mainly in nonweightbearing endurance activities). An effective supplementation scheme is a dosage of 20 g/day for 4-6 days, and 5 g/day thereafter. Based on recent pharmacokinetic data, new regimens of creatine supplementation could be used. Although there are opinion statements suggesting that creatine supplementation may be implicated in carcinogenesis, data to prove this effect are lacking, and indeed, several studies showing anticarcinogenic effects of creatine and its analogues have been published. There is a shortage of scientific evidence concerning the adverse effects following creatine supplementation in healthy individuals even with long-term dosage. Therefore, creatine may be considered as a widespread, effective and safe ergogenic aid.
Collapse
Affiliation(s)
- José L M Mesa
- Department of Physiology, School of Medicine, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
23
|
Eijnde BO, Van Leemputte M, Brouns F, Van Der Vusse GJ, Labarque V, Ramaekers M, Van Schuylenberg R, Verbessem P, Wijnen H, Hespel P. No effects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis. J Appl Physiol (1985) 2001; 91:2275-81. [PMID: 11641371 DOI: 10.1152/jappl.2001.91.5.2275] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A double-blind randomized study was performed to evaluate the effect of oral ribose supplementation on repeated maximal exercise and ATP recovery after intermittent maximal muscle contractions. Muscle power output was measured during dynamic knee extensions with the right leg on an isokinetic dynamometer before (pretest) and after (posttest) a 6-day training period in conjunction with ribose (R, 4 doses/day at 4 g/dose, n = 10) or placebo (P, n = 9) intake. The exercise protocol consisted of two bouts (A and B) of maximal contractions, separated by 15 s of rest. Bouts A and B consisted of 15 series of 12 contractions each, separated by a 60-min rest period. During the training period, the subjects performed the same exercise protocol twice per day, with 3-5 h of rest between exercise sessions. Blood samples were collected before and after bouts A and B and 24 h after bout B. Knee-extension power outputs were approximately 10% higher in the posttest than in the pretest but were similar between P and R for all contraction series. The exercise increased blood lactate and plasma ammonia concentrations (P < 0.05), with no significant differences between P and R at any time. After a 6-wk washout period, in a subgroup of subjects (n = 8), needle-biopsy samples were taken from the vastus lateralis before, immediately after, and 24 h after an exercise bout similar to the pretest. ATP and total adenine nucleotide content were decreased by approximately 25 and 20% immediately after and 24 h after exercise in P and R. Oral ribose supplementation with 4-g doses four times a day does not beneficially impact on postexercise muscle ATP recovery and maximal intermittent exercise performance.
Collapse
Affiliation(s)
- B O Eijnde
- Exercise Physiology and Biomechanics Laboratory, Department of Kinesiology, Faculty of Physical Education and Physiotherapy, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|