1
|
Silva LLSD, Barbosa JAS, João JMLG, Fukuzaki S, Camargo LDN, Dos Santos TM, Campos ECD, Costa AS, Saraiva-Romanholo BM, Bezerra SKM, Lopes FTQDS, Bonturi CR, Oliva MLV, Leick EA, Righetti RF, Tibério IDFLC. Effects of a Peptide Derived from the Primary Sequence of a Kallikrein Inhibitor Isolated from Bauhinia bauhinioides (pep-BbKI) in an Asthma-COPD Overlap (ACO) Model. Int J Mol Sci 2023; 24:11261. [PMID: 37511021 PMCID: PMC10379932 DOI: 10.3390/ijms241411261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
(1) There are several patients with asthma-COPD overlap (ACO). A peptide derived from the primary sequence of a kallikrein inhibitor isolated from Bauhinia bauhinioides (pep-BbKI) has potent anti-inflammatory and antioxidant effects. Purpose: To investigate the effects of pep-BbKI treatment in an ACO model and compare them with those of corticosteroids. (2) BALB/c mice were divided into groups: SAL (saline), OVA (ovalbumin), ELA (elastase), ACO (ovalbumin + elastase), ACO-pep-BbKI (treated with inhibitor), ACO-DX (dexamethasone treatment), ACO-DX-pep-BbKI (both treatments), and SAL-pep-BbKI (saline group treated with inhibitor). We evaluated: hyperresponsiveness to methacholine, bronchoalveolar lavage fluid (BALF), exhaled nitric oxide (eNO), IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IFN-γ, TNF-α, MMP-9, MMP-12, TGF-β, collagen fibers, iNOS, eNO, linear mean intercept (Lm), and NF-κB in airways (AW) and alveolar septa (AS). (3) ACO-pep-BbKI reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, neutrophils, IL-5, IL-10, IL-17, IFN-γ, TNF-α, MMP-12 (AW), collagen fibers, iNOS (AW), and eNO (p > 0.05). ACO-DX reversed ACO alterations and was similar to SAL in all mechanical parameters, Lm, total cells and differentials, IL-1β(AS), IL-5 (AS), IL-6 (AS), IL-10 (AS), IL-13 (AS), IFN-γ, MMP-12 (AS), TGF-β (AS), collagen fibers (AW), iNOS, and eNO (p > 0.05). SAL was similar to SAL-pep-BbKI for all comparisons (p > 0.05). (4) Pep-BbKI was similar to dexamethasone in reducing the majority of alterations of this ACO model.
Collapse
Affiliation(s)
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | | | | | | | - Arthur Silva Costa
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Beatriz Mangueira Saraiva-Romanholo
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Department of Medicine, University City of São Paulo, São Paulo 03071-000, Brazil
| | | | | | - Camila Ramalho Bonturi
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Edna Aparecida Leick
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
- Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | | |
Collapse
|
2
|
Lazrak A, Song W, Zhou T, Aggarwal S, Jilling T, Garantziotis S, Matalon S. Hyaluronan and halogen-induced airway hyperresponsiveness and lung injury. Ann N Y Acad Sci 2020; 1479:29-43. [PMID: 32578230 PMCID: PMC7680259 DOI: 10.1111/nyas.14415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Chlorine (Cl2 ) and bromine (Br2 ) are produced in large quantities throughout the world and used in the industry and the sanitation of water. These halogens can pose a significant threat to public health when released into the atmosphere during transportation and industrial accidents, or as acts of terrorism. In this review, we discuss the evidence showing that the activity of Cl2 and Br2 , and of products formed by their interaction with biomolecules, fragment high-molecular-weight hyaluronan (HMW-HA), a key component of the interstitial space and present in epithelial cells, to form proinflammatory, low-molecular-weight hyaluronan fragments that increase intracellular calcium (Ca2+ ) and activate RAS homolog family member A (RhoA) in airway smooth muscle and epithelial and microvascular cells. These changes result in airway hyperresponsiveness (AHR) to methacholine and increase epithelial and microvascular permeability. The increase in intracellular Ca2+ is the result of the activation of the calcium-sensing receptor by Cl2 , Br2 , and their by-products. Posthalogen administration of a commercially available form of HMW-HA to mice and to airway cells in vitro reverses the increase of Ca2+ and the activation of RhoA, and restores AHR to near-normal levels of airway function. These data have established the potential of HMW-HA to be a countermeasure against Cl2 and Br2 toxicity.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Weifeng Song
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Ting Zhou
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Stavros Garantziotis
- Matrix Biology Group, Immunity, Inflammation, and Disease Laboratory, NIH/NIEHS, RTP, NC
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| |
Collapse
|
3
|
Almeida-Reis R, Theodoro-Junior OA, Oliveira BTM, Oliva LV, Toledo-Arruda AC, Bonturi CR, Brito MV, Lopes FDTQS, Prado CM, Florencio AC, Martins MA, Owen CA, Leick EA, Oliva MLV, Tibério IFLC. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8287125. [PMID: 28466019 PMCID: PMC5390602 DOI: 10.1155/2017/8287125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022]
Abstract
Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods. C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Rafael Almeida-Reis
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bruno T M Oliveira
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Leandro V Oliva
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Camila R Bonturi
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Marlon V Brito
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda D T Q S Lopes
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Carla M Prado
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ariana C Florencio
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mílton A Martins
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Edna A Leick
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Maria L V Oliva
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice. Int J Mol Sci 2017; 18:ijms18020403. [PMID: 28216579 PMCID: PMC5343937 DOI: 10.3390/ijms18020403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management.
Collapse
|
5
|
The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice. Mediators Inflamm 2016; 2016:5346574. [PMID: 27528793 PMCID: PMC4978849 DOI: 10.1155/2016/5346574] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022] Open
Abstract
Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.
Collapse
|
6
|
Hewitt MM, Adams G, Mazzone SB, Mori N, Yu L, Canning BJ. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs. J Pharmacol Exp Ther 2016; 357:620-8. [PMID: 27000801 PMCID: PMC4885511 DOI: 10.1124/jpet.115.230383] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough.
Collapse
Affiliation(s)
- Matthew M Hewitt
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Gregory Adams
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Stuart B Mazzone
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Nanako Mori
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Li Yu
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| |
Collapse
|
7
|
Oliva LV, Almeida-Reis R, Theodoro-Junior O, Oliveira BM, Leick EA, Prado CM, Brito MV, Correia MTDS, Paiva PM, Martins MA, Oliva MLV, Tibério IF. A plant proteinase inhibitor from Crataeva tapia (CrataBL) attenuates elastase-induced pulmonary inflammatory, remodeling, and mechanical alterations in mice. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Lazrak A, Creighton J, Yu Z, Komarova S, Doran SF, Aggarwal S, Emala CW, Stober VP, Trempus CS, Garantziotis S, Matalon S. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 308:L891-903. [PMID: 25747964 DOI: 10.1152/ajplung.00377.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Judy Creighton
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Svetlana Komarova
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen F Doran
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles W Emala
- Department of Anesthesiology, Columbia University, New York, New York; and
| | - Vandy P Stober
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Carol S Trempus
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Stavros Garantziotis
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Sadis Matalon
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
9
|
Marcelino MY, Fuoco NL, de Faria CA, Kozma RDLH, Marques LF, Ribeiro-Paes JT. Animal models in chronic obstructive pulmonary disease-an overview. Exp Lung Res 2014; 40:259-71. [PMID: 24785359 DOI: 10.3109/01902148.2014.908250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.
Collapse
Affiliation(s)
- Monica Yonashiro Marcelino
- 1Program of Post-Graduation in Biotechnology, Universidade de São Paulo-Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Zaias J, Fleming LE, Baden DG, Abraham WM. Repeated exposure to aerosolized brevetoxin-3 induces prolonged airway hyperresponsiveness and lung inflammation in sheep. Inhal Toxicol 2011; 23:205-11. [PMID: 21456953 DOI: 10.3109/08958378.2011.558936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT During a Florida red tide, brevetoxins (PbTxs) produced by Karenia brevis become aerosolized and can cause both immediate and prolonged airway symptoms in humans, especially in those with preexisting airway disease (e.g., asthma). Although environmental monitoring indicates that toxins remain airborne for up to 4 consecutive days, there is little information on airway responses after multiple-day exposures. OBJECTIVES To delineate putative mechanisms leading to pulmonary dysfunction after PbTx exposure, we studied airway responses before and after multiple exposures to aerosol PbTx-3, the most potent PbTx produced, in nonallergic (healthy) and in allergic sheep, which serve as a surrogate for patients with compromised airways. METHODS Both groups were exposed to 20 breaths of increasing concentrations of PbTx-3 (30-300 pg/mL) for 4 consecutive days. Airway responsiveness to carbachol (1 and 8 days after) and airway inflammation as assessed by bronchoalveolar lavage (0 and 7 days after) were measured. RESULTS Both groups developed airway hyperresponsiveness (AHR) 1 day after challenge; the severity was concentration dependent and more severe in the allergic group. AHR remained after 8 days, but the difference in the severity between the groups was lost. Both groups developed an inflammatory response after exposure to 300 pg/mL PbTx-3. Immediately after exposure, lung neutrophilia was prominent. This neutrophilia persisted for 7 days in addition to increases in total cells and macrophages. CONCLUSION Repeated exposures to PbTx-3 result in prolonged AHR and lung inflammation. These pathophysiologic responses could be underlying contributors to the prolonged respiratory symptoms in humans after red tides.
Collapse
Affiliation(s)
- Julia Zaias
- University of Miami, Miller School of Medicine, Division of Comparative Pathology, Miami, Florida, 33140 USA
| | | | | | | |
Collapse
|
11
|
Comprehensive analysis of elastase-induced pulmonary emphysema in mice: Effects of ambient existing particulate matters. Int Immunopharmacol 2010; 10:1380-9. [DOI: 10.1016/j.intimp.2010.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 12/13/2022]
|
12
|
Hewitt M, Canning BJ. Coughing precipitated by Bordetella pertussis infection. Lung 2010; 188 Suppl 1:S73-9. [PMID: 19936982 DOI: 10.1007/s00408-009-9196-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 01/26/2023]
Abstract
Infections with the gram-negative bacteria Bordetella pertussis (B. pertussis) have long been recognized as a significant threat to children and are increasingly recognized as a cause of cough in adolescents and adults. Antibiotic therapy, when administered during the virulent stages of the disease, can reduce the duration and severity of symptoms. Unfortunately, there are no effective treatments for the persistent coughing that accompanies and follows the infection. The pathogenesis of B. pertussis infection is briefly reviewed. Also discussed is the evidence supporting the hypothesis that the inflammatory peptide bradykinin may be responsible for the persistent, paroxysmal coughing associated with B. pertussis-initiated illness.
Collapse
Affiliation(s)
- Matthew Hewitt
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | |
Collapse
|
13
|
Williams AR, Karlsson LJE, Palmer DG, Vercoe PE, Williams IH, Greeff JC, Emery DL. Relationships between faecal dry matter, worm burdens and inflammatory mediators and cells in parasite-resistant Merino rams. Vet Parasitol 2010; 171:263-72. [PMID: 20430531 DOI: 10.1016/j.vetpar.2010.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/16/2010] [Accepted: 03/24/2010] [Indexed: 11/25/2022]
Abstract
Immune-mediated scouring due to ingested parasite larvae is a major concern for sheep producers in Mediterranean climates. We investigated immune-mediated scouring in parasite-resistant Merino sheep in Australia. Forty-adult, parasite-resistant Merino rams were judged to be either susceptible or non-susceptible to immune-mediated scouring on the basis of dag scores taken under field conditions. We hypothesised that the susceptible rams would have lower faecal dry matter during larval challenge than non-susceptible rams and that, at post-mortem examination, inflammatory mediators and granulocytes would be negatively correlated with both faecal dry matter and worm numbers. In pens, the rams received a dose of 500 Teladorsagia circumcincta L(3) and 500 Trichostrongylus colubriformis L(3) each day for 6 weeks before euthanasia. Ten rams acted as unchallenged controls. Challenging sheep with larvae reduced faecal dry matter at 2, 3 and 4 weeks after challenge began and the greatest reductions were with the sheep susceptible to scouring. The sheep showed good resistance to the parasite challenge as evidenced by low faecal worm egg counts and low total worm counts at post-mortem, with the numbers of T. colubriformis particularly low. Sheep with low faecal dry matter had significantly higher numbers of eosinophils in small intestine tissue. Sheep with low total worm counts had significantly higher levels of bradykinin in abomasum mucus. Sheep with more granulocytes in tissue and inflammatory mediators in mucus tended to have fewer numbers of T. circumcincta but there was little relationship with numbers of T. colubriformis. Our results show that dag scores are correlated to a reduction in faecal dry matter, which can be attributed to the challenge with infective parasite larvae. Inflammation during worm infection is associated with rejection of the worm challenge and may result in more fluid faeces and consequently diarrhoea. Therefore, sheep breeders should focus on breeding for both low worm egg counts and also low dag scores.
Collapse
Affiliation(s)
- A R Williams
- School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Inoue KI, Koike E, Yanagisawa R, Takano H. Extensive Analysis of Elastase-Induced Pulmonary Emphysema in Rats: ALP in the Lung, a New Biomarker for Disease Progression? J Clin Biochem Nutr 2010; 46:168-76. [PMID: 20216950 PMCID: PMC2831096 DOI: 10.3164/jcbn.09-87] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/17/2009] [Indexed: 02/03/2023] Open
Abstract
It is accepted that pulmonary exposure of rodents to porcine pancreatic elastase (ELT) induces lesions that morphologically resemble human emphysema. Nonetheless, extensive analysis of this model has rarely been conducted. The present study was designed to extensively examine the effects of ELT on lung inflammation, cell damage, emphysematous change, and cholinergic reactivity in rats. Intratracheal administration of two doses of ELT induced 1) a proinflammatory response in the lung that was characterized by significant infiltration of macrophages and an increased level of interleukin-1beta in lung homogenates, 2) lung cell damage as indicated by higher levels of total protein, lactate dehydrogenase, and alkaline phosphatase (ALP) in lung homogenates, 3) emphysema-related morphological changes including airspace enlargement and progressive destruction of alveolar wall structures, and 4) airway responsiveness to methacholine including an augmented Rn value. In addition, ELT at a high dose was more effective than that at a low dose. This is the novel study to extensively analyze ELT-induced lung emphysema, and the analysis might be applied to future investigations that evaluate new therapeutic agents or risk factors for pulmonary emphysema. In particular, ALP in lung homogenates might be a new biomarker for the disease progression/exacerbation.
Collapse
Affiliation(s)
- Ken-Ichiro Inoue
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | |
Collapse
|
15
|
Papakonstantinou E, Karakiulakis G. The 'sweet' and 'bitter' involvement of glycosaminoglycans in lung diseases: pharmacotherapeutic relevance. Br J Pharmacol 2009; 157:1111-27. [PMID: 19508395 DOI: 10.1111/j.1476-5381.2009.00279.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The extracellular matrix (ECM) plays a significant role in the structure and function of the lung. The ECM is a three-dimensional fibre mesh, comprised of various interconnected and intercalated macromolecules, among which are the glycosaminoglycans (GAG). GAG are long, linear and highly charged, heterogeneous polysaccharides that are composed of a variable number of repeating disaccharide units (macromolecular sugars) and most of them, as their name implies, have a sweet taste. In the lung, GAG support the structure of the interstitium, the subepithelial tissue and the bronchial walls, and are secreted in the airway secretions. Besides maintaining lung tissue structure, GAG also play an important role in lung function as they regulate hydration and water homeostasis, modulate the inflammatory response and influence lung tissue repair and remodelling. However, depending on their size and/or degree of sulphation, and their immobilization or solubilization in the ECM, specific GAG in the lung either live up to their sweet taste/name, supporting normal lung physiology, or they are associated to 'bitter' effects, related to lung pathology. The present review discusses the biological role of GAG in the lung as well as the involvement of these molecules in various respiratory diseases. Given the great structural diversity of GAG, understanding the changes in GAG expression that occur in lung diseases may lead to novel targets for pharmacological intervention in order to prevent and/or to treat a range of lung diseases.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- 2nd Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
16
|
Scuri M, Sabater JR, Abraham WM. Hyaluronan blocks porcine pancreatic elastase-induced mucociliary dysfunction in allergic sheep. J Appl Physiol (1985) 2007; 102:2324-31. [PMID: 17395761 DOI: 10.1152/japplphysiol.00568.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neutrophil elastase is a mediator common to asthma, chronic obstructive pulmonary disease, and cystic fibrosis and thought to contribute to the pathophysiology of these diseases. Previously, we found that inhaled hyaluronan blocked elastase-induced bronchoconstriction in allergic sheep through its control of tissue kallikrein. Here, we extend those studies by determining if inhaled hyaluronan can protect against the elastase-induced depression in tracheal mucus velocity, a surrogate marker of whole lung mucociliary clearance. We measured tracheal mucus velocity in allergic sheep before, and sequentially for 6 h after, aerosol challenge with porcine pancreatic elastase alone and after pretreatment with 1.5 or 6 mg aerosolized hyaluronan. Elastase (2.55 U) decreased tracheal mucus velocity. Pretreatment with 6 mg, but not 1.5 mg, hyaluronan inhibited the elastase-induced decrease in tracheal mucus velocity. Hyaluronan (6 mg) given 1 h after elastase challenge was ineffective, suggesting the involvement of secondary mediators. The elastase-induced depression in mucus transport appeared to be mediated, in part, by reactive oxygen species and bradykinin because pretreatment with either aerosolized catalase (38 mg/3 ml) or the bradykinin B2-receptor antagonist HOE140 (400 nM/kg) was also effective in blocking the response. These latter two findings are consistent with oxygen radical-induced degradation of hyaluronan with concomitant loss of its regulatory effect on tissue kallikrein, resulting in kinin generation. This hypothesis is supported by the demonstration that hyaluronan failed to block the oxygen radical-induced fall in tracheal mucus velocity resulting from xanthine-xanthine oxidase challenge and that inhaled bradykinin itself can slow mucociliary transport.
Collapse
Affiliation(s)
- Mario Scuri
- Division of Pulmonary and Critical Care Medicine, Miller School of Medicine, University of Miami at Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | | | | |
Collapse
|
17
|
Forteza R, Casalino-Matsuda SM, Monzon ME, Fries E, Rugg MS, Milner CM, Day AJ. TSG-6 potentiates the antitissue kallikrein activity of inter-alpha-inhibitor through bikunin release. Am J Respir Cell Mol Biol 2006; 36:20-31. [PMID: 16873769 PMCID: PMC1899306 DOI: 10.1165/rcmb.2006-0018oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
TSG-6 (the protein product of TNF-stimulated gene-6), an inflammation-associated protein, forms covalent complexes with heavy chains (HCs) from inter-alpha-inhibitor and pre-alpha-inhibitor and associates noncovalently with their common bikunin chain, potentiating the antiplasmin activity of this serine protease inhibitor. We show that TSG-6 and TSG-6.HC complexes are present in bronchoalveolar lavage fluid from patients with asthma and increase after allergen challenge. Immunodetection demonstrated elevated TSG-6 in the airway tissue and secretions of smokers. Experiments conducted in vitro with purified components revealed that bikunin.HC complexes (byproducts of TSG-6.HC formation) release bikunin. Immunoprecipitation revealed that bikunin accounts for a significant proportion of tissue kallikrein inhibition in bronchoalveolar lavage after allergen challenge but not in baseline conditions, confirming that bikunin in its free state, but not when associated with HCs, is a relevant protease inhibitor in airway secretions. In primary cultures of differentiated human airway epithelial and submucosal gland cells, TSG-6 is induced by TNF-alpha and IL-1beta, which suggests that these cells are responsible for TSG-6 release in vivo. Bikunin and HC3 (i.e., pre-alpha-inhibitor) were also induced by TNF-alpha in primary cultures. Our results suggest that TSG-6 may play an important protective role in bronchial epithelium by increasing the antiprotease screen on the airway lumen.
Collapse
Affiliation(s)
- Rosanna Forteza
- Division of Pulmonary and Critical Care Medicine (R-47), University of Miami School of Medicine, RMSB 7072A, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abraham WM, Scuri M, Farmer SG. Peptide and non-peptide bradykinin receptor antagonists: role in allergic airway disease. Eur J Pharmacol 2006; 533:215-21. [PMID: 16455073 DOI: 10.1016/j.ejphar.2005.12.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/22/2022]
Abstract
Kinins are proinflammatory peptides that mediate a variety of pathophysiological responses. These actions occur through stimulation of two pharmacologically distinct receptor subtypes B1 and B2. In both human and animal airways, the majority of kinin-induced effects including bronchoconstriction, increases in vascular permeability and mucus secretion and cholinergic and sensory nerve stimulation appear to be bradykinin B2-receptor mediated. Peptidic and non-peptidic receptor antagonists have been developed as potential therapeutic agents. These antagonists are effective in blocking kinin-induced effects in a variety of animal models and in some instances, have been used effectively in animal models of allergic airway disease to alleviate allergen-induced pathophysiological airway responses. This review summarizes relevant studies supporting the evidence that bradykinin B2 receptor antagonism and/or upstream inhibition of tissue kallikrein will be beneficial in the treatment of inflammatory airway diseases.
Collapse
Affiliation(s)
- William M Abraham
- Miller School of Medicine, University of Miami at Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, Florida 33140, USA.
| | | | | |
Collapse
|
19
|
Godat E, Lecaille F, Desmazes C, Duchêne S, Weidauer E, Saftig P, Brömme D, Vandier C, Lalmanach G. Cathepsin K: a cysteine protease with unique kinin-degrading properties. Biochem J 2005; 383:501-6. [PMID: 15265002 PMCID: PMC1133743 DOI: 10.1042/bj20040864] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Taking into account a previous report of an unidentified enzyme from macrophages acting as a kininase, the ability of cysteine proteases to degrade kinins has been investigated. Wild-type fibroblast lysates from mice, by contrast with cathepsin K-deficient lysates, hydrolysed BK (bradykinin), and released two metabolites, BK-(1-4) and BK-(5-9). Cathepsin K, but not cathepsins B, H, L and S, cleaved kinins at the Gly4-Phe5 bond and the bradykinin-mimicking substrate Abz (o-aminobenzoic acid)-RPPGFSPFR-3-NO2-Tyr (3-nitrotyrosine) more efficiently (pH 6.0: kcat/K(m)=12500 mM(-1) x s(-1); pH 7.4: kcat/K(m)=6930 mM(-1) x s(-1)) than angiotensin-converting enzyme hydrolysed BK. Conversely Abz-RPPGFSPFR-3-NO2-Tyr was not cleaved by the Y67L (Tyr67-->Leu)/L205A (Leu205-->Ala) cathepsin K mutant, indicating that kinin degradation mostly depends on the S2 substrate specificity. Kininase activity was further evaluated on bronchial smooth muscles. BK, but not its metabolites BK(1-4) and BK(5-9), induced a dose-dependent contraction, which was abolished by Hoe140, a B2-type receptor antagonist. Cathepsin K impaired BK-dependent contraction of normal and chronic hypoxic rats, whereas cathepsins B and L did not. Taking together vasoactive properties of kinins and the potency of cathepsin K to modulate BK-dependent contraction of smooth muscles, the present data support the notion that cathepsin K may act as a kininase, a unique property among mammalian cysteine proteases.
Collapse
Affiliation(s)
- Emmanuel Godat
- *INSERM U618, Protéases et Vectorisation Pulmonaires/IFR 135 ‘Imagerie Fonctionnelle’, Université François Rabelais, Faculté de Médecine, 2 bis, Boulevard Tonnellé, F-37032 Tours Cédex, France
| | - Fabien Lecaille
- *INSERM U618, Protéases et Vectorisation Pulmonaires/IFR 135 ‘Imagerie Fonctionnelle’, Université François Rabelais, Faculté de Médecine, 2 bis, Boulevard Tonnellé, F-37032 Tours Cédex, France
| | - Claire Desmazes
- *INSERM U618, Protéases et Vectorisation Pulmonaires/IFR 135 ‘Imagerie Fonctionnelle’, Université François Rabelais, Faculté de Médecine, 2 bis, Boulevard Tonnellé, F-37032 Tours Cédex, France
| | - Sophie Duchêne
- *INSERM U618, Protéases et Vectorisation Pulmonaires/IFR 135 ‘Imagerie Fonctionnelle’, Université François Rabelais, Faculté de Médecine, 2 bis, Boulevard Tonnellé, F-37032 Tours Cédex, France
- †Laboratoire de Physiopathologie de la Paroi Artérielle, Université François Rabelais, Faculté de Médecine, 2 bis, Boulevard Tonnellé, F-37032 Tours Cédex, France
| | - Enrico Weidauer
- ‡Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, U.S.A
| | - Paul Saftig
- §Biochemisches Institut, Christian-Albrechts-Universität, Eduard-Buchner-Haus, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Dieter Brömme
- ‡Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, U.S.A
| | - Christophe Vandier
- †Laboratoire de Physiopathologie de la Paroi Artérielle, Université François Rabelais, Faculté de Médecine, 2 bis, Boulevard Tonnellé, F-37032 Tours Cédex, France
| | - Gilles Lalmanach
- *INSERM U618, Protéases et Vectorisation Pulmonaires/IFR 135 ‘Imagerie Fonctionnelle’, Université François Rabelais, Faculté de Médecine, 2 bis, Boulevard Tonnellé, F-37032 Tours Cédex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Abraham WM, Bourdelais AJ, Ahmed A, Serebriakov I, Baden DG. Effects of inhaled brevetoxins in allergic airways: toxin-allergen interactions and pharmacologic intervention. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:632-7. [PMID: 15866776 PMCID: PMC1257560 DOI: 10.1289/ehp.7498] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During a Florida red tide, brevetoxins produced by the dinoflagellate Karenia brevis become aerosolized and cause airway symptoms in humans, especially in those with pre-existing airway disease (e.g., asthma). To understand these toxin-induced airway effects, we used sheep with airway hypersensitivity to Ascaris suum antigen as a surrogate for asthmatic patients and studied changes in pulmonary airflow resistance (R(L) after inhalation challenge with lysed cultures of K. brevis (crude brevetoxins). Studies were done without and with clinically available drugs to determine which might prevent/reverse these effects. Crude brevetoxins (20 breaths at 100 pg/mL; n = 5) increased R(L) 128 +/- 6% (mean +/- SE) over baseline. This bronchoconstriction was significantly reduced (% inhibition) after pretreatment with the glucocorticosteroid budesonide (49%), the beta(2) adrenergic agent albuterol (71%), the anticholinergic agent atropine (58%), and the histamine H1-antagonist diphenhydramine (47%). The protection afforded by atropine and diphenhydramine suggests that both cholinergic (vagal) and H1-mediated pathways contribute to the bronchoconstriction. The response to cutaneous toxin injection was also histamine mediated. Thus, the airway and skin data support the hypothesis that toxin activates mast cells in vivo. Albuterol given immediately after toxin challenge rapidly reversed the bronchoconstriction. Toxin inhalation increased airway kinins, and the response to inhaled toxin was enhanced after allergen challenge. Both factors could contribute to the increased sensitivity of asthmatic patients to toxin exposure. We conclude that K. brevis aerosols are potent airway constrictors. Clinically available drugs may be used to prevent or provide therapeutic relief for affected individuals.
Collapse
Affiliation(s)
- William M Abraham
- Division of Pulmonary and Critical Care Medicine, University of Miami at Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, FL 33140, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Hyaluronan (HA) blocks inhaled porcine pancreatic elastase-induced bronchoconstriction in sheep with airway hypersensitivity to Ascaris suum antigen. Since elastases from other species may display different catalytic properties compared to the human enzyme, we tested the efficacy of HA on human neutrophil elastase (HNE)-induced airway responses. We measured pulmonary resistance in allergic sheep before and after inhalation of HNE alone and after pretreatment with a 150 kD-HA (LKDHA; 3 and 15 mg), or a 300 kD-HA (HKDHA; 6, 7.5, and 15 mg). HKDHA (3 mg) was given either 0.5, 4, or 8 h before HNE challenge; LKDHA (15 mg) and HKDHA (6, 7.5, and 15 mg) were given 8 h before challenge. HNE caused an acute bronchoconstriction which was blocked by 3 mg LKDHA given 0.5 or 4 h before challenge. LKDHA (3 mg) given 8 h before challenge was ineffective, but protection was achieved by increasing the dose to 15 mg. When HKDHA at 6, 7.5, and 15 mg was given 8 h before challenge a dose-dependent inhibition of the HNE-induced airway response was observed. We conclude that HA inhibits HNE-induced airway responses and that within the range of 150-300 kD, dose rather than molecular weight may be the most important determinant of pretreatment time resulting in a protective effect.
Collapse
Affiliation(s)
- Mario Scuri
- Division of Pulmonary and Critical Care Medicine, University of Miami at Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, FL 33140, USA.
| | | |
Collapse
|
22
|
Lauredo IT, Forteza RM, Botvinnikova Y, Abraham WM. Leukocytic cell sources of airway tissue kallikrein. Am J Physiol Lung Cell Mol Physiol 2003; 286:L734-40. [PMID: 14660481 PMCID: PMC2650278 DOI: 10.1152/ajplung.00129.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung tissue kallikrein (TK) is a serine proteinase that putatively plays a role in the pathophysiology of asthma by generating kallidin and bradykinin, mediators that contribute to airway hyperresponsiveness. In previous studies we observed biphasic increases in TK activity in bronchoalveolar lavage fluid following airway allergen challenge in allergic sheep. Although glandular TK is likely a major source of the initial increase in TK, the sources of the late increases in TK that are associated with the development of airway hyperresponsiveness may be dependent on activated resident and recruited inflammatory cells including alveolar macrophages (AMs) and neutrophils (PMNs). These cells increase concomitantly with the late increases in TK activity. To test this hypothesis, we obtained AMs from bronchoalveolar lavage fluid and PMNs and monocytes (precursors of AMs) from sheep blood and determined whether these cells contained TK and whether these same cells could release TK upon activation. Using confocal microscopy, immunocytochemical techniques, and enzyme activity assays, we found that all three cell types contained and secreted TK. All three cell types demonstrated basal release of TK, which could be increased after stimulation with zymosan. In addition, PMNs also released TK in the presence of phorbol ester, suggesting multiple secretory pathways in these cells. Furthermore, we showed that human monocytes also contain and secrete TK. We conclude that in the airways, monocytes, PMNs, and AMs may contribute to increased TK activity. Knowing the sources of TK in the airways could be important in understanding the mechanisms of inflammation that contribute to the pathophysiology of asthma and may help in the development of new therapies to control the disease.
Collapse
Affiliation(s)
- Isabel T Lauredo
- Dept. of Research, Mount Sinai Medical Center, 4300 Alton Rd., Miami Beach, FL 33140, USA.
| | | | | | | |
Collapse
|
23
|
O'Riordan TG, Weinstein MD, Abraham WM, Forteza R. Elevated Tissue Kallikrein Activity in Airway Secretions from Patients with Tracheobronchitis Associated with Prolonged Mechanical Ventilation. Lung 2003; 181:237-44. [PMID: 14705767 DOI: 10.1007/s00408-003-1019-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The clinical course of patients undergoing prolonged mechanical ventilation is often complicated by the development of purulent tracheobronchitis. The purpose of this study was to assess whether ventilator-associated hypersecretion is associated with elevated levels of tissue kallikrein (TK) activity. TK can induce marked bronchial inflammation in animal models and TK activity is increased in the airway secretions of symptomatic asthmatics. It has not been studied in conditions with predominantly neutrophilic bronchial secretions, although animal data indicate that neutrophil elastase may stimulate TK activity. We measured TK activity in airway secretions of patients undergoing mechanical ventilation for more than 4 weeks (PMV group) and in two comparator groups: patients with cystic fibrosis, who were colonized with Pseudomonas aeruginosa (CF group) and patients undergoing mechanical ventilation for less than one week who did not have clinical evidence of purulent airway secretions (acute mechanical ventilation, AMV group). We also compared the level of neutrophil elastase (NE) activity, an index of neutrophil activation, in the three patient groups. TK and NE activity in the sol phase were measured by the degradation of chromogenic substrates (DL Val-Leu-Arg pNA and N-Methoxy Succinyl Ala-Ala-Pro-Val pNA, respectively). Intergroup differences in cell counts were not significant. However, TK activity was significantly less in the AMV group than in the PMV and cystic fibrosis patients (Kruskal-Wallis ANOVA, p < 0.05). Elastase activity was significantly greater in the CF group (p < 0.05) than in the other two groups. Compared to patients undergoing short-term mechanical ventilation (AMV group), TK activity was elevated in patients with purulent tracheobronchitis associated with prolonged mechanical ventilation (PMV group). The elevation in TK activity in these patients is comparable to levels in sputum from patients with cystic fibrosis (CF group), although the latter had a significantly higher level of NE activity. The observation of increased TK activity in patients with neutrophilic airway inflammation suggests that TK may play a role in modulating inflammation in ventilator-associated tracheobronchitis and may be worthy of further study to determine its source and significance.
Collapse
Affiliation(s)
- T G O'Riordan
- Division of Pulmonary and Critical Care Medicine, SUNY at Stony Brook, Stony Brook, New York 11794-8172, USA
| | | | | | | |
Collapse
|
24
|
Scuri M, Botvinnikova Y, Lauredo IT, Abraham WM. Recombinant alpha 1-proteinase inhibitor blocks antigen- and mediator-induced airway responses in sheep. J Appl Physiol (1985) 2002; 93:1900-6. [PMID: 12433933 DOI: 10.1152/japplphysiol.00400.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alpha(1)-proteinase inhibitor (alpha(1)-PI) is a natural serine protease inhibitor. Although mainly thought to protect the airways from neutrophil elastase, alpha(1)-PI may also regulate the development of airway hyperresponsiveness (AHR), as indicated by our previous findings of an inverse relationship between lung alpha(1)-PI activity and the severity of antigen-induced AHR. Because allergic stimulation of the airways causes release of elastase, tissue kallikrein, and reactive oxygen species (ROS), all of which can reduce alpha(1)-PI activity and contribute to AHR, we hypothesized that administration of exogenous alpha(1)-PI should protect against pathophysiological airway responses caused by these agents. In untreated allergic sheep, airway challenge with elastase, xanthine/xanthine oxidase (which generates ROS), high-molecular-weight kininogen, the substrate for tissue kallikrein, and antigen resulted in bronchoconstriction. ROS and antigen also induced AHR to inhaled carbachol. Treatment with 10 mg of recombinant alpha(1)-PI (ralpha(1)-PI) blocked the bronchoconstriction caused by elastase, high-molecular-weight kininogen, and ROS, and the AHR induced by ROS and antigen. One milligram of ralpha(1)-PI was ineffective. These are the first in vivo data demonstrating the effects of ralpha(1)-PI. Our results are consistent with and extend findings obtained with human plasma-derived alpha(1)-PI and suggest that alpha(1)-PI may be important in the regulation of airway responsiveness.
Collapse
Affiliation(s)
- Mario Scuri
- Division of Pulmonary and Critical Care Medicine, University of Miami at Mount Sinai Medical Center, Miami Beach, Florida 33140, USA.
| | | | | | | |
Collapse
|
25
|
Abraham WM. Tryptase: potential role in airway inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 2002; 282:L193-6. [PMID: 11792623 DOI: 10.1152/ajplung.00429.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
26
|
Scuri M, Abraham WM, Botvinnikova Y, Forteza R. Hyaluronic acid blocks porcine pancreatic elastase (PPE)-induced bronchoconstriction in sheep. Am J Respir Crit Care Med 2001; 164:1855-9. [PMID: 11734436 DOI: 10.1164/ajrccm.164.10.2011115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously showed that inhaled porcine pancreatic elastase (PPE) causes bronchoconstriction in sheep via a bradykinin-mediated mechanism. Hyaluronic acid (HA), in vitro, binds and inactivates airway tissue kallikrein (TK), the enzyme responsible for kinin generation. Therefore, we hypothesized that in vivo, HA should prevent PPE-induced bronchoconstriction by binding and inactivating TK. To test this, we measured pulmonary resistance (RL) in allergic sheep before and after inhalation of PPE alone (500 microg) and after pretreatment with either inhaled HA at 70 kD, designated low molecular weight (LMW)-HA or 200 kD, designated high molecular weight (HMW)-HA at different concentrations. Inhaled PPE increased RL 147 +/- 8% over baseline values and this effect was associated with a 111 +/- 28% increase in bronchoalveolar lavage fluid (BALF) TK activity. HA blocked the PPE-induced bronchoconstriction and the increase in BALF TK activity in a dose- dependent and molecular weight-dependent fashion. HA alone had no effect on RL. Instillation of PPE in the lung increased kinin concentrations in BALF, a result consistent with the PPE-induced increase in BALF TK activity. Our findings show that HA blocks PPE-induced bronchoconstriction in a dose-dependent and molecular weight-dependent fashion by a mechanism that may, in part, be related to inhibition of TK activity and the formation of kinins.
Collapse
Affiliation(s)
- M Scuri
- Division of Pulmonary Disease and Critical Care Medicine, University of Miami at Mount Sinai Medical Center, Miami Beach, Florida 33140, USA.
| | | | | | | |
Collapse
|
27
|
Forteza RM, Ahmed A, Lee T, Abraham WM. Secretory leukocyte protease inhibitor, but not alpha-1 protease inhibitor, blocks tryptase-induced bronchoconstriction. Pulm Pharmacol Ther 2001; 14:107-10. [PMID: 11273791 DOI: 10.1006/pupt.2000.0276] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha-1-protease inhibitor (alpha(1)-PI) and secretory leukocyte protease inhibitor (SLPI) are two natural airway serine protease inhibitors. While inhibition of neutrophil elastase is a function common to both alpha(1)-PI and SLPI, we showed previously that they exhibit different patterns of protection against antigen-induced changes in airway function in allergic sheep. Specifically, the protective effect seen with SLPI was similar to the profile of action of synthetic tryptase inhibitors in the model. Based on these data, and the fact that tryptase is a serine protease, we hypothesized that SLPI, but not alpha(1)-PI, would block tryptase-induced bronchoconstriction. To test this, we compared the responses to inhaled tryptase in five sheep without treatment or after treatment with either aerosol alpha(1)-PI (10 mg) or aerosol SLPI (50 mg). The doses of alpha(1)-PI and SLPI selected had been shown to be effective in previous antigen-provocation studies. Treatments were given 30 min before aerosol challenge with tryptase (500 ng). Tryptase alone increased (mean+/-SEM) pulmonary resistance (R(L)) 142 +/- 24% over baseline. Pretreatment with alpha(1)-PI had no effect on the tryptase response (R(L)increased 122 +/- 20%). Pretreatment with SLPI, however, blocked the tryptase-induced response (R(L) increased only 40 +/- 4% P<0.05 vs. tryptase). These are the first studies comparing the inhibitory activity of SLPI and alpha(1)-PI on inhaled tryptase-induced bronchoconstriction. We conclude that, in vivo, SLPI, but not alpha(1)-PI, can block tryptase-induced bronchoconstriction and that this activity may explain the differential effects of these two serine protease inhibitors on antigen-induced airway responses in allergic sheep.
Collapse
Affiliation(s)
- R M Forteza
- Division of Pulmonary Diseases, University of Miami at Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, FL 33140, USA
| | | | | | | |
Collapse
|