1
|
Golub AS, Song BK, Nugent WH, Pittman RN. Dynamics of PO 2 and VO 2 in resting and contracting rat spinotrapezius muscle. Front Physiol 2023; 14:1172834. [PMID: 37538372 PMCID: PMC10396398 DOI: 10.3389/fphys.2023.1172834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
This study examined changes in interstitial PO2, which allowed calculation of VO2 during periods of rest, muscle contraction and recovery using an in situ rat spinotrapezius muscle preparation. The PO2 was measured using phosphorescence quenching microscopy and the muscle VO2 was calculated as the rate of O2 disappearance during brief periods of muscle compression to stop blood flow with a supra-systolic pressure. The PO2 and VO2 measurements were made during "5 s compression and 15 s recovery" (CR) cycles. With all three stimulation frequencies, 1, 2 and 4 Hz, the fall in interstitial PO2 and rise in VO2 from resting values occurred within the first 20 s of contraction. The PO2 during contraction became lower as stimulation frequency increased from 1 to 4 Hz. VO2 was higher at 2 Hz than at 1 Hz contraction. With cessation of stimulation, PO2 began increasing exponentially towards baseline values. After 1 and 2 Hz contraction, the fall in muscle VO2 was delayed by one CR cycle and then exponentially decreased towards resting values. After 4 Hz stimulation, VO2 increased for 2 cycles and then decreased. The post-contraction transients of PO2 and VO2 were not synchronous and had different time constants. With further analysis two distinct functional responses were identified across all stimulation frequencies having PO2 during contraction above or below 30 mmHg. The corresponding VO2 responses were different - for "high" PO2, muscle VO2 reached high levels, while for the "low" PO2 data set muscle VO2 remained low. Recovery patterns were similar to those described above. In summary, local microscopic PO2 and VO2 were measured in resting and contracting muscle in situ and the post-contraction transients of PO2 and VO2 were all much slower than the onset transients.
Collapse
Affiliation(s)
- Aleksander S. Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
- Song Biotechnologies LLC, Cockeysville, MD, United States
| | - Bjorn K. Song
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
- Song Biotechnologies LLC, Cockeysville, MD, United States
| | - William H. Nugent
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
- Song Biotechnologies LLC, Cockeysville, MD, United States
| | - Roland N. Pittman
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
2
|
Goulding RP, Burnley M, Wüst RCI. How Priming Exercise Affects Oxygen Uptake Kinetics: From Underpinning Mechanisms to Endurance Performance. Sports Med 2023; 53:959-976. [PMID: 37010782 PMCID: PMC10115720 DOI: 10.1007/s40279-023-01832-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
The observation that prior heavy or severe-intensity exercise speeds overall oxygen uptake ([Formula: see text]O2) kinetics, termed the "priming effect", has garnered significant research attention and its underpinning mechanisms have been hotly debated. In the first part of this review, the evidence for and against (1) lactic acidosis, (2) increased muscle temperature, (3) O2 delivery, (4) altered motor unit recruitment patterns and (5) enhanced intracellular O2 utilisation in underpinning the priming effect is discussed. Lactic acidosis and increased muscle temperature are most likely not key determinants of the priming effect. Whilst priming increases muscle O2 delivery, many studies have demonstrated that an increased muscle O2 delivery is not a prerequisite for the priming effect. Motor unit recruitment patterns are altered by prior exercise, and these alterations are consistent with some of the observed changes in [Formula: see text]O2 kinetics in humans. Enhancements in intracellular O2 utilisation likely play a central role in mediating the priming effect, probably related to elevated mitochondrial calcium levels and parallel activation of mitochondrial enzymes at the onset of the second bout. In the latter portion of the review, the implications of priming on the parameters of the power-duration relationship are discussed. The effect of priming on subsequent endurance performance depends critically upon which phases of the [Formula: see text]O2 response are altered. A reduced [Formula: see text]O2 slow component or increased fundamental phase amplitude tend to increase the work performable above critical power (i.e. W´), whereas a reduction in the fundamental phase time constant following priming results in an increased critical power.
Collapse
Affiliation(s)
- Richie P Goulding
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Goulding RP, Marwood S, Okushima D, Poole DC, Barstow TJ, Lei TH, Kondo N, Koga S. Effect of priming exercise and body position on pulmonary oxygen uptake and muscle deoxygenation kinetics during cycle exercise. J Appl Physiol (1985) 2020; 129:810-822. [PMID: 32758041 DOI: 10.1152/japplphysiol.00478.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We hypothesized that the performance of prior heavy exercise would speed pulmonary oxygen uptake (V̇o2) kinetics (i.e., as described by the time constant, [Formula: see text]) and reduce the amplitude of muscle deoxygenation (deoxy[heme]) kinetics in the supine (S) but not upright (U) body position. Seventeen healthy men completed heavy-intensity constant-work rate exercise tests in S and U consisting of two bouts of 6-min cycling separated by 6-min cycling at 20 W. Pulmonary V̇o2 was measured breath by breath; total and deoxy[heme] were determined via time-resolved near-infrared spectroscopy (NIRS) at three muscle sites. Priming exercise reduced [Formula: see text] in S (bout 1: 36 ± 10 vs. bout 2: 28 ± 10 s, P < 0.05) but not U (bout 1: 27 ± 8 s vs. bout 2: 25 ± 7 s, P > 0.05). Deoxy[heme] amplitude was increased after priming in S (bout 1: 25-28 μM vs. bout 2: 30-35 μM, P < 0.05) and U (bout 1: 13-18 μM vs. bout 2: 17-25 μM, P > 0.05), whereas baseline total[heme] was enhanced in S (bout 1: 110-179 μM vs. bout 2: 121-193 μM, P < 0.05) and U (bout 1: 123-186 μM vs. bout 2: 137-197 μM, P < 0.05). Priming exercise increased total[heme] in both S and U, likely indicating enhanced diffusive O2 delivery. However, the observation that after priming the amplitude of the deoxy[heme] response was increased in S suggests that the reduction in [Formula: see text] subsequent to priming was related to a combination of both enhanced intracellular O2 utilization and increased O2 delivery.NEW & NOTEWORTHY Here we show that oxygen uptake (V̇o2) kinetics are slower in the supine compared with upright body position, an effect that is associated with an increased amplitude of skeletal muscle deoxygenation in the supine position. After priming in the supine position, the amplitude of muscle deoxygenation remained markedly elevated above that observed during upright exercise. Hence, the priming effect cannot be solely attributed to enhanced O2 delivery, and enhancements to intracellular O2 utilization must also be contributory.
Collapse
Affiliation(s)
- Richie P Goulding
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan.,Japan Society for Promotion of Science, Tokyo, Japan
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Dai Okushima
- Osaka International University, Moriguchi, Japan
| | - David C Poole
- Department of Anatomy and Physiology and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Department of Anatomy and Physiology and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Tze-Huan Lei
- Japan Society for Promotion of Science, Tokyo, Japan.,Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
4
|
Goulding RP, Roche DM, Scott SN, Koga S, Weston PJ, Marwood S. Limitations to exercise tolerance in type 1 diabetes: the role of pulmonary oxygen uptake kinetics and priming exercise. J Appl Physiol (1985) 2020; 128:1299-1309. [PMID: 32213117 DOI: 10.1152/japplphysiol.00892.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We compared the time constant (τV̇O2) of the fundamental phase of pulmonary oxygen uptake (V̇o2) kinetics between young adult men with type 1 diabetes and healthy control subjects. We also assessed the impact of priming exercise on τV̇O2, critical power, and muscle deoxygenation in a subset of participants with type 1 diabetes. Seventeen men with type 1 diabetes and 17 healthy male control subjects performed moderate-intensity exercise to determine τV̇O2. A subset of seven participants with type 1 diabetes performed an additional eight visits, in which critical power, τV̇O2, and muscle deoxyhemoglobin + myoglobin ([HHb+Mb], via near-infrared spectroscopy) kinetics (described by a time constant, τ[HHb+Mb]) were determined with (PRI) and without (CON) a prior 6-min bout of heavy exercise. τV̇O2 was greater in participants with type 1 diabetes compared with control subjects (type 1 diabetes 50 ± 13 vs. control 32 ± 12 s; P < 0.001). Critical power was greater in PRI compared with CON (PRI 161 ± 25 vs. CON 149 ± 22 W; P < 0.001), whereas τV̇O2 (PRI 36 ± 15 vs. CON 50 ± 21 s; P = 0.006) and τ[HHb+Mb] (PRI 10 ± 5 vs. CON 17 ± 11 s; P = 0.037) were reduced in PRI compared with CON. Type 1 diabetes patients showed slower pulmonary V̇o2 kinetics compared with control subjects; priming exercise speeded V̇o2 and [HHb + Mb] kinetics and increased critical power in a subgroup with type 1 diabetes. These data therefore represent the first characterization of the power-duration relationship in type 1 diabetes and the first experimental evidence that τV̇O2 is an independent determinant of critical power in this population.NEW & NOTEWORTHY Patients with type 1 diabetes demonstrated slower oxygen uptake (V̇o2) kinetics compared with healthy control subjects. Furthermore, a prior bout of high-intensity exercise speeded V̇o2 kinetics and increased critical power in people with type 1 diabetes. Prior exercise speeded muscle deoxygenation kinetics, indicating that V̇o2 kinetics in type 1 diabetes are limited primarily by oxygen extraction and/or intracellular factors. These findings highlight the potential for interventions that decrease metabolic inertia for enhancing exercise tolerance in this condition.
Collapse
Affiliation(s)
- Richie P Goulding
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom.,Japan Society for Promotion of Science, Tokyo, Japan.,Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Denise M Roche
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Sam N Scott
- University Department of Diabetes, Endocrinology, Nutritional Medicine, and Metabolism, University Hospital and University of Bern, Bern, Switzerland.,Team Novo Nordisk Professional Cycling Team, Atlanta, Georgia
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Philip J Weston
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| |
Collapse
|
5
|
Hirai DM, Colburn TD, Craig JC, Hotta K, Kano Y, Musch TI, Poole DC. Skeletal muscle interstitial O 2 pressures: bridging the gap between the capillary and myocyte. Microcirculation 2018; 26:e12497. [PMID: 30120845 DOI: 10.1111/micc.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/18/2023]
Abstract
The oxygen transport pathway from air to mitochondria involves a series of transfer steps within closely integrated systems (pulmonary, cardiovascular, and tissue metabolic). Small and finite O2 stores in most mammalian species require exquisitely controlled changes in O2 flux rates to support elevated ATP turnover. This is especially true for the contracting skeletal muscle where O2 requirements may increase two orders of magnitude above rest. This brief review focuses on the mechanistic bases for increased microvascular blood-myocyte O2 flux (V̇O2 ) from rest to contractions. Fick's law dictates that V̇O2 elevations driven by muscle contractions are produced by commensurate changes in driving force (ie, O2 pressure gradients; ΔPO2 ) and/or effective diffusing capacity (DO2 ). While previous evidence indicates that increased DO2 helps modulate contracting muscle O2 flux, up until recently the role of the dynamic ΔPO2 across the capillary wall was unknown. Recent phosphorescence quenching investigations of both microvascular and novel interstitial PO2 kinetics in health have resolved an important step in the O2 cascade between the capillary and myocyte. Specifically, the significant transmural ΔPO2 at rest was sustained (but not increased) during submaximal contractions. This supports the contention that the blood-myocyte interface provides a substantial effective resistance to O2 diffusion and underscores that modulations in erythrocyte hemodynamics and distribution (DO2 ) are crucial to preserve the driving force for O2 flux across the capillary wall (ΔPO2 ) during contractions. Investigation of the O2 transport pathway close to muscle mitochondria is key to identifying disease mechanisms and develop therapeutic approaches to ameliorate dysfunction and exercise intolerance.
Collapse
Affiliation(s)
- Daniel M Hirai
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - Kazuki Hotta
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Timothy I Musch
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
6
|
Korzeniewski B, Rossiter HB, Zoladz JA. Mechanisms underlying extremely fast muscle V˙O 2 on-kinetics in humans. Physiol Rep 2018; 6:e13808. [PMID: 30156055 PMCID: PMC6113137 DOI: 10.14814/phy2.13808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 01/31/2023] Open
Abstract
The time constant of the primary phase of pulmonary V˙O2 on-kinetics (τp ), which reflects muscle V˙O2 kinetics during moderate-intensity exercise, is about 30 s in young healthy untrained individuals, while it can be as low as 8 s in endurance-trained athletes. We aimed to determine the intramuscular factors that enable very low values of t0.63 to be achieved (analogous to τp , t0.63 is the time to reach 63% of the V˙O2 amplitude). A computer model of oxidative phosphorylation (OXPHOS) in skeletal muscle was used. Muscle t0.63 was near-linearly proportional to the difference in phosphocreatine (PCr) concentration between rest and work (ΔPCr). Of the two main factors that determine t0.63 , a huge increase in either OXPHOS activity (six- to eightfold) or each-step activation (ESA) of OXPHOS intensity (>3-fold) was needed to reduce muscle t0.63 from the reference value of 29 s (selected to represent young untrained subjects) to below 10 s (observed in athletes) when altered separately. On the other hand, the effect of a simultaneous increase of both OXPHOS activity and ESA intensity required only a twofold elevation of each to decrease t0.63 below 10 s. Of note, the dependence of t0.63 on OXPHOS activity and ESA intensity is hyperbolic, meaning that in trained individuals a large increase in OXPHOS activity and ESA intensity are required to elicit a small reduction in τp . In summary, we postulate that the synergistic action of elevated OXPHOS activity and ESA intensity is responsible for extremely low τp (t0.63 ) observed in highly endurance-trained athletes.
Collapse
Affiliation(s)
| | - Harry B. Rossiter
- Rehabilitation Clinical Trials CenterDivision of Pulmonary Critical Care Physiology and MedicineLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCalifornia
- Faculty of Biological SciencesUniversity of LeedsLeedsUnited Kingdom
| | - Jerzy A. Zoladz
- Department of Muscle PhysiologyChair of Physiology and BiochemistryFaculty of RehabilitationUniversity School of Physical EducationKrakówPoland
| |
Collapse
|
7
|
Hirai DM, Craig JC, Colburn TD, Eshima H, Kano Y, Sexton WL, Musch TI, Poole DC. Skeletal muscle microvascular and interstitial PO2 from rest to contractions. J Physiol 2018; 596:869-883. [PMID: 29288568 DOI: 10.1113/jp275170] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/01/2017] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS Oxygen pressure gradients across the microvascular walls are essential for oxygen diffusion from blood to tissue cells. At any given flux, the magnitude of these transmural gradients is proportional to the local resistance. The greatest resistance to oxygen transport into skeletal muscle is considered to reside in the short distance between red blood cells and myocytes. Although crucial to oxygen transport, little is known about transmural pressure gradients within skeletal muscle during contractions. We evaluated oxygen pressures within both the skeletal muscle microvascular and interstitial spaces to determine transmural gradients during the rest-contraction transient in anaesthetized rats. The significant transmural gradient observed at rest was sustained during submaximal muscle contractions. Our findings support that the blood-myocyte interface provides substantial resistance to oxygen diffusion at rest and during contractions and suggest that modulations in microvascular haemodynamics and red blood cell distribution constitute primary mechanisms driving increased transmural oxygen flux with contractions. ABSTRACT Oxygen pressure (PO2) gradients across the blood-myocyte interface are required for diffusive O2 transport, thereby supporting oxidative metabolism. The greatest resistance to O2 flux into skeletal muscle is considered to reside between the erythrocyte surface and adjacent sarcolemma, although this has not been measured during contractions. We tested the hypothesis that O2 gradients between skeletal muscle microvascular (PO2 mv ) and interstitial (PO2 is ) spaces would be present at rest and maintained or increased during contractions. PO2 mv and PO2 is were determined via phosphorescence quenching (Oxyphor probes G2 and G4, respectively) in the exposed rat spinotrapezius during the rest-contraction transient (1 Hz, 6 V; n = 8). PO2 mv was higher than PO2 is in all instances from rest (34.9 ± 6.0 versus 15.7 ± 6.4) to contractions (28.4 ± 5.3 versus 10.6 ± 5.2 mmHg, respectively) such that the mean PO2 gradient throughout the transient was 16.9 ± 6.6 mmHg (P < 0.05 for all). No differences in the amplitude of PO2 fall with contractions were observed between the microvasculature and interstitium (10.9 ± 2.3 versus 9.0 ± 3.5 mmHg, respectively; P > 0.05). However, the speed of the PO2 is fall during contractions was slower than that of PO2 mv (time constant: 12.8 ± 4.7 versus 9.0 ± 5.1 s, respectively; P < 0.05). Consistent with our hypothesis, a significant transmural gradient was sustained (but not increased) from rest to contractions. This supports that the blood-myocyte interface is the site of a substantial PO2 gradient driving O2 diffusion during metabolic transients. Based on Fick's law, elevated O2 flux with contractions must thus rely primarily on modulations in effective diffusing capacity (mainly erythrocyte haemodynamics and distribution) as the PO2 gradient is not increased.
Collapse
Affiliation(s)
- Daniel M Hirai
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Jesse C Craig
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Hiroaki Eshima
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | - William L Sexton
- Department of Physiology, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Timothy I Musch
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| | - David C Poole
- Departments of Anatomy & Physiology, Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
8
|
Wüst RCI, Stienen GJM. Successive contractile periods activate mitochondria at the onset of contractions in intact rat cardiac trabeculae. J Appl Physiol (1985) 2018; 124:1003-1011. [PMID: 29357483 DOI: 10.1152/japplphysiol.01010.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rate of oxidative phosphorylation depends on the contractile activity of the heart. Cardiac mitochondrial oxidative phosphorylation is determined by free ADP concentration, mitochondrial Ca2+ accumulation, mitochondrial enzyme activities, and Krebs cycle intermediates. The purpose of the present study was to examine the factors that limit oxidative phosphorylation upon rapid changes in contractile activity in cardiac muscle. We tested the hypotheses that prior contractile performance enhances the changes in NAD(P)H and FAD concentration upon an increase in contractile activity and that this mitochondrial "priming" depends on pyruvate dehydrogenase activity. Intact rat cardiac trabeculae were electrically stimulated at 0.5 Hz for at least 30 min. Thereafter, two equal bouts at elevated stimulation frequency of 1, 2, or 3 Hz were applied for 3 min with 3 min of 0.5-Hz stimulation in between. No discernible time delay was observed in the changes in NAD(P)H and FAD fluorescence upon rapid changes in contractile activity. The amplitudes of the rapid changes in fluorescence upon an increase in stimulation frequency (the on-transients) were smaller than upon a decrease in stimulation frequency (the off-transients). A first bout in glucose-containing superfusion solution resulted, during the second bout, in an increase in the amplitudes of the on-transients, but the off-transients remained the same. No such priming effect was observed after addition of 10 mM pyruvate. These results indicate that mitochondrial priming can be observed in cardiac muscle in situ and that pyruvate dehydrogenase activity is critically involved in the mitochondrial adaptation to increases in contractile performance. NEW & NOTEWORTHY Mitochondrial respiration increases with increased cardiac contractile activity. Similar to mitochondrial "priming" in skeletal muscle, we hypothesized that cardiac mitochondrial activity is altered upon successive bouts of contractions and depends on pyruvate dehydrogenase activity. We found altered bioenergetics upon repeated contractile periods, indicative of mitochondrial priming in rat myocardium. No effect was seen when pyruvate was added to the perfusate. As such, pyruvate dehydrogenase activity is involved in the mitochondrial adaptation to increased contractile performance.
Collapse
Affiliation(s)
- Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center , Amsterdam , The Netherlands.,Laboratory Genetic Metabolic Diseases, Academic Medical Center , Amsterdam , The Netherlands
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center , Amsterdam , The Netherlands.,Faculty of Science, Department of Physics and Astronomy, VU University , Amsterdam , The Netherlands
| |
Collapse
|
9
|
Niemeijer VM, Spee RF, Schoots T, Wijn PFF, Kemps HMC. Limitations of skeletal muscle oxygen delivery and utilization during moderate-intensity exercise in moderately impaired patients with chronic heart failure. Am J Physiol Heart Circ Physiol 2016; 311:H1530-H1539. [DOI: 10.1152/ajpheart.00474.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022]
Abstract
The extent and speed of transient skeletal muscle deoxygenation during exercise onset in patients with chronic heart failure (CHF) are related to impairments of local O2 delivery and utilization. This study examined the physiological background of submaximal exercise performance in 19 moderately impaired patients with CHF (Weber class A, B, and C) compared with 19 matched healthy control (HC) subjects by measuring skeletal muscle oxygenation (SmO2) changes during cycling exercise. All subjects performed two subsequent moderate-intensity 6-min exercise tests (bouts 1 and 2) with measurements of pulmonary oxygen uptake kinetics and SmO2 using near-infrared spatially resolved spectroscopy at the vastus lateralis for determination of absolute oxygenation values, amplitudes, kinetics (mean response time for onset), and deoxygenation overshoot characteristics. In CHF, deoxygenation kinetics were slower compared with HC (21.3 ± 5.3 s vs. 16.7 ± 4.4 s, P < 0.05, respectively). After priming exercise (i.e., during bout 2), deoxygenation kinetics were accelerated in CHF to values no longer different from HC (16.9 ± 4.6 s vs. 15.4 ± 4.2 s, P = 0.35). However, priming did not speed deoxygenation kinetics in CHF subjects with a deoxygenation overshoot, whereas it did reduce the incidence of the overshoot in this specific group ( P < 0.05). These results provide evidence for heterogeneity with respect to limitations of O2 delivery and utilization during moderate-intensity exercise in patients with CHF, with slowed deoxygenation kinetics indicating a predominant O2 utilization impairment and the presence of a deoxygenation overshoot, with a reduction after priming in a subgroup, indicating an initial O2 delivery to utilization mismatch.
Collapse
Affiliation(s)
- Victor M. Niemeijer
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Ruud F. Spee
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Thijs Schoots
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Pieter F. F. Wijn
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; and
- Department of Medical Physics, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| |
Collapse
|
10
|
Richardson RS, Wary C, Wray DW, Hoff J, Rossiter HB, Layec G, Carlier PG. MRS Evidence of Adequate O₂ Supply in Human Skeletal Muscle at the Onset of Exercise. Med Sci Sports Exerc 2016; 47:2299-307. [PMID: 25830362 DOI: 10.1249/mss.0000000000000675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE At exercise onset, intramuscular oxidative energy production responds relatively slowly in comparison with the change in adenosine triphosphate demand. To determine whether the slow kinetics of oxidative adenosine triphosphate production is due to inadequate O2 supply or metabolic inertia, we studied the kinetics of intramyocellular deoxygenation (deoxy-myoglobin (Mb)) and metabolism (phosphocreatine (PCr)) using proton (1H) and phosphorus (31P) magnetic resonance spectroscopy in six healthy subjects (33 ± 5 yr). METHODS Specifically, using dynamic plantarflexion exercise, rest to exercise and recovery were assessed at both 60% of maximum work rate (moderate intensity) and 80% of maximum work rate (heavy intensity). RESULTS At exercise onset, [PCr] fell without delay and with a similar time constant (τ) at both exercise intensities (approximately 33 s). In contrast, the increase in deoxy-Mb was delayed at exercise onset by 5-7 s, after which it increased with kinetics (moderate τ = 37 ± 9 s; heavy τ = 29 ± 6 s) that was not different from τPCr (P > 0.05). At cessation, deoxy-Mb recovered without time delay and more rapidly (τ = ∼20 s) than PCr (τ = ∼33 s) (P < 0.05). CONCLUSIONS Using a unique combination of in vivo magnetic resonance spectroscopy techniques with high time resolution, this study revealed a delay in intramuscular deoxygenation at the onset of exercise and rapid reoxygenation kinetics upon cessation. Together, these data imply that intramuscular substrate-enzyme interactions, and not O2 availability, determine the exercise onset kinetics of oxidative metabolism in healthy human skeletal muscles.
Collapse
Affiliation(s)
- Russell S Richardson
- 1Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT; 2Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT; 3Geriatric Research, Education and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, UT; 4Institute of Myology, Paris, FRANCE; 5CEA, I2BM, MIRcen, IdM NMR Laboratory, Paris, FRANCE; 6Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, NORWAY; and 7Department of Medicine, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | | | | | | | | | | | | |
Collapse
|
11
|
Wilson DF. Regulation of metabolism: the work-to-rest transition in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 310:E633-E642. [PMID: 26837809 DOI: 10.1152/ajpendo.00512.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/28/2016] [Indexed: 11/22/2022]
Abstract
The behavior of oxidative phosphorylation predicted by a model for the mechanism and kinetics of cytochrome c oxidase is compared with the experimentally observed behavior during the work-to-rest transition in skeletal muscle. For both experiment and model, when work stops, the increase in creatine phosphate and decrease in creatine and inorganic phosphate concentrations ([CrP], [Cr], and [Pi]) begin immediately. The rate of change for each is maximal and then progressively slows as the increasing energy state ([ATP]/[ADP][Pi]) suppresses the rate of oxidative phosphorylation. The time courses can be reasonably fitted to single exponential curves with similar time constants. The energy state in the working and resting steady states at constant Po2 are dependent on the intramitochondrial [NAD+]/[NADH], mitochondrial content, and size of the creatine pool ([CrP] + [Cr]). The rate of change in [CrP] is linearly correlated with [CrP] and with [Pi] and [Cr]. The time constant for [CrP] increase in the resting and working steady states, and the rate of decrease in oxygen consumption are similarly dependent on the Po2 in the inspired gas (experimental) or tissue Po2 (model). Myoglobin strongly buffers intracellular Po2 below ∼15 torr, truncating the low end of the oxygen distribution in the tissue and suppressing intra- and intermyocyte oxygen gradients. The predictions of the model are consistent with the experimental data throughout the work/rest transition, providing valuable insights into the regulation of cellular and tissue metabolism.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Stary CM, Hogan MC. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers. J Appl Physiol (1985) 2016; 120:1260-6. [PMID: 26869714 DOI: 10.1152/japplphysiol.01060.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 11/22/2022] Open
Abstract
The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: <3 mmHg) or AMP kinase activation had no effect on HSP72 mRNA levels. These results suggest that the intermittent cytosolic Ca(2+) transient that occurs with skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role.
Collapse
Affiliation(s)
- Creed M Stary
- Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Michael C Hogan
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
13
|
Nugent WH, Song BK, Pittman RN, Golub AS. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle. Microvasc Res 2015; 105:15-22. [PMID: 26683232 DOI: 10.1016/j.mvr.2015.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
Abstract
Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues.
Collapse
Affiliation(s)
- William H Nugent
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bjorn K Song
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Roland N Pittman
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
14
|
Wilson DF. Regulation of metabolism: the rest-to-work transition in skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E793-801. [PMID: 26394666 DOI: 10.1152/ajpendo.00355.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial oxidative phosphorylation is programmed to set and maintain metabolic homeostasis, and understanding that program is essential for an integrated view of cellular and tissue metabolism. The behavior predicted by a mechanism-based model for oxidative phosphorylation is compared with that experimentally measured for skeletal muscle when work is initiated. For the model, initiation of work is simulated by imposing a rate of ATP utilization of either 0.6 (equivalent of 13.4 ml O2·100 g tissue(-1)·min(-1) or 6 μmol O2·g tissue(-1)·min(-1)) or 0.3 mM ATP/s. Creatine phosphate ([CrP]) decrease, both experimentally measured and predicted by the model, can be fit to a single exponential. Increase in ATP synthesis begins immediately but can show a "lag period," during which the rate accelerates. The length of the lag period is similar for both experiment and model; in the model, the lag depends on intramitochondrial [NAD(+)]/[NADH], mitochondrial content, and size of the creatine pool ([CrP] + [Cr]) as well as the resting [CrP]/[Cr]. For in vivo conditions, increase in oxygen consumption may be linearly correlated with a decrease in [CrP] and an increase in inorganic phosphate ([Pi]) and [Cr]. The decrease in [CrP], resting and working steady state [CrP], and the increase in oxygen consumption are dependent on the Po2 in the inspired gas (experimental) or tissue Po2 (model). The metabolic behavior predicted by the model is consistent with available experimental measurements in muscle upon initiation of work, with the model providing valuable insight into how metabolic homeostasis is set and maintained.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Buck AKW, Elder CP, Donahue MJ, Damon BM. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans. J Appl Physiol (1985) 2015; 119:280-9. [PMID: 26066829 DOI: 10.1152/japplphysiol.01027.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/08/2015] [Indexed: 12/23/2022] Open
Abstract
Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities.
Collapse
Affiliation(s)
- Amanda K W Buck
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Christopher P Elder
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Manus J Donahue
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry, Vanderbilt University, Nashville, Tennessee; Department of Neurology, Vanderbilt University, Nashville, Tennessee; Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee; and
| | - Bruce M Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
16
|
Kido K, Suga T, Tanaka D, Honjo T, Homma T, Fujita S, Hamaoka T, Isaka T. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep 2015; 3:3/5/e12395. [PMID: 25952936 PMCID: PMC4463825 DOI: 10.14814/phy2.12395] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ischemic preconditioning (IPC) improves maximal exercise performance. However, the potential mechanism(s) underlying the beneficial effects of IPC remain unknown. The dynamics of pulmonary oxygen uptake (VO2) and muscle deoxygenation during exercise is frequently used for assessing O2 supply and extraction. Thus, this study examined the effects of IPC on systemic and local O2 dynamics during the incremental step transitions from low- to moderate- and from moderate- to severe-intensity exercise. Fifteen healthy, male subjects were instructed to perform the work-to-work cycling exercise test, which was preceded by the control (no occlusion) or IPC (3 × 5 min, bilateral leg occlusion at >300 mmHg) treatments. The work-to-work test was performed by gradually increasing the exercise intensity as follows: low intensity at 30 W for 3 min, moderate intensity at 90% of the gas exchange threshold (GET) for 4 min, and severe intensity at 70% of the difference between the GET and VO2 peak until exhaustion. During the exercise test, the breath-by-breath pulmonary VO2 and near-infrared spectroscopy-derived muscle deoxygenation were continuously recorded. Exercise endurance during severe-intensity exercise was significantly enhanced by IPC. There were no significant differences in pulmonary VO2 dynamics between treatments. In contrast, muscle deoxygenation dynamics in the step transition from low- to moderate-intensity was significantly faster in IPC than in CON (27.2 ± 2.9 vs. 19.8 ± 0.9 sec, P < 0.05). The present findings showed that IPC accelerated muscle deoxygenation dynamics in moderate-intensity exercise and enhanced severe-intensity exercise endurance during work-to-work test. The IPC-induced effects may result from mitochondrial activation in skeletal muscle, as indicated by the accelerated O2 extraction.
Collapse
Affiliation(s)
- Kohei Kido
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Daichi Tanaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toyoyuki Honjo
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toshiyuki Homma
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takafumi Hamaoka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
17
|
Adami A, Koga S, Kondo N, Cannon DT, Kowalchuk JM, Amano T, Rossiter HB. Changes in whole tissue heme concentration dissociates muscle deoxygenation from muscle oxygen extraction during passive head-up tilt. J Appl Physiol (1985) 2015; 118:1091-9. [PMID: 25678700 DOI: 10.1152/japplphysiol.00918.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle deoxygenated hemoglobin and myoglobin concentration ([HHb]), assessed by near-infrared spectroscopy (NIRS), is commonly used as a surrogate of regional O2 extraction (reflecting the O2 delivery-to-consumption ratio, Q̇/V̇o2). However, [HHb] change (Δ[HHb]) is also influenced by capillary-venous heme concentration, and/or small blood vessel volume (reflected in total heme; [THb]). We tested the hypotheses that Δ[HHb] is associated with O2 extraction, and insensitive to [THb], over a wide range of Q̇/V̇o2 elicited by passive head-up tilt (HUT; 10-min, 15° increments, between -10° and 75°). Steady-state common femoral artery blood flow (FBF) was measured by echo-Doppler, and time-resolved NIRS measured [HHb] and [THb] of vastus lateralis (VL) and gastrocnemius (GS) in 13 men. EMG confirmed muscles were inactive. During HUT in VL [HHb] increased linearly (57 ± 10 to 101 ± 16 μM; P < 0.05 above 15°) and was associated (r(2) ∼ 0.80) with the reduction in FBF (618 ± 75 ml/min at 0° to 268 ± 52 ml/min at 75°; P < 0.05 above 30°) and the increase in [THb] (228 ± 30 vs. 252 ± 32 μM; P < 0.05 above 15°). GS response was qualitatively similar to VL. However, there was wide variation within and among individuals, such that the overall limits of agreement between Δ[HHb] and ΔFBF ranged from -35 to +19% across both muscles. Neither knowledge of tissue O2 saturation nor vascular compliance could appropriately account for the Δ[HHb]-ΔFBF dissociation. Thus, under passive tilt, [HHb] is influenced by Q̇/V̇o2, as well as microvascular hematocrit and/or tissue blood vessel volume, complicating its use as a noninvasive surrogate for muscle microvascular O2 extraction.
Collapse
Affiliation(s)
- Alessandra Adami
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan; and
| | - Daniel T Cannon
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - John M Kowalchuk
- School of Kinesiology and Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan; and
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California;
| |
Collapse
|
18
|
Selinger JC, Donelan JM. Estimating instantaneous energetic cost during non-steady-state gait. J Appl Physiol (1985) 2014; 117:1406-15. [PMID: 25257873 DOI: 10.1152/japplphysiol.00445.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory measures of oxygen and carbon dioxide are routinely used to estimate the body's steady-state metabolic energy use. However, slow mitochondrial dynamics, long transit times, complex respiratory control mechanisms, and high breath-by-breath variability obscure the relationship between the body's instantaneous energy demands (instantaneous energetic cost) and that measured from respiratory gases (measured energetic cost). The purpose of this study was to expand on traditional methods of assessing metabolic cost by estimating instantaneous energetic cost during non-steady-state conditions. To accomplish this goal, we first imposed known changes in energy use (input), while measuring the breath-by-breath response (output). We used these input/output relationships to model the body as a dynamic system that maps instantaneous to measured energetic cost. We found that a first-order linear differential equation well approximates transient energetic cost responses during gait. Across all subjects, model fits were parameterized by an average time constant (τ) of 42 ± 12 s with an average R(2) of 0.94 ± 0.05 (mean ± SD). Armed with this input/output model, we next tested whether we could use it to reliably estimate instantaneous energetic cost from breath-by-breath measures under conditions that simulated dynamically changing gait. A comparison of the imposed energetic cost profiles and our estimated instantaneous cost demonstrated a close correspondence, supporting the use of our methodology to study the role of energetics during locomotor adaptation and learning.
Collapse
Affiliation(s)
- Jessica C Selinger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - J Maxwell Donelan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
19
|
Murias JM, Spencer MD, Paterson DH. The critical role of O2 provision in the dynamic adjustment of oxidative phosphorylation. Exerc Sport Sci Rev 2014; 42:4-11. [PMID: 24188979 DOI: 10.1249/jes.0000000000000005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been proposed that the adjustment of oxygen uptake (V˙O2) during the exercise on-transient is controlled intracellularly in young healthy individuals and that insufficient local O2 delivery plays a rate-limiting role in aging and disease only. This review shows that adequate O2 provision to the active tissues is critical in the dynamic adjustment of oxidative phosphorylation even in young healthy individuals.
Collapse
Affiliation(s)
- Juan M Murias
- 1Canadian Centre for Activity and Aging; and 2School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
20
|
Epstein T, Xu L, Gillies RJ, Gatenby RA. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab 2014; 2:7. [PMID: 24982758 PMCID: PMC4060846 DOI: 10.1186/2049-3002-2-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/07/2014] [Indexed: 01/05/2023] Open
Abstract
Background Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. Results We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Conclusions Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but slow-responding aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism, which is inefficient but can rapidly increase adenosine triphosphate (ATP) production, to meet short-timescale energy demands, mainly from membrane transport activities. In this model, the origin of the Warburg effect in cancer cells and aerobic glycolysis in general represents a normal physiological function due to enhanced energy demand for membrane transporters activity required for cell division, growth, and migration.
Collapse
Affiliation(s)
- Tamir Epstein
- Program of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Liping Xu
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert A Gatenby
- Department of Radiology and Program of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
21
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
22
|
Abstract
Muscular exercise requires transitions to and from metabolic rates often exceeding an order of magnitude above resting and places prodigious demands on the oxidative machinery and O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of the respiratory, cardiovascular, and muscular systems and their integration to resolve the essential control mechanisms of muscle energetics and oxidative function: a goal not feasible using the steady-state response. Essential features of the O2 uptake (VO2) kinetics response are highly conserved across the animal kingdom. For a given metabolic demand, fast VO2 kinetics mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance. By the same token, slow VO2 kinetics incurs a high O2 deficit, presents a greater challenge to homeostasis and presages poor exercise tolerance. Compelling evidence supports that, in healthy individuals walking, running, or cycling upright, VO2 kinetics control resides within the exercising muscle(s) and is therefore not dependent upon, or limited by, upstream O2-transport systems. However, disease, aging, and other imposed constraints may redistribute VO2 kinetics control more proximally within the O2-transport system. Greater understanding of VO2 kinetics control and, in particular, its relation to the plasticity of the O2-transport/utilization system is considered important for improving the human condition, not just in athletic populations, but crucially for patients suffering from pathologically slowed VO2 kinetics as well as the burgeoning elderly population.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA.
| | | |
Collapse
|
23
|
Abstract
The activities of daily living typically occur at metabolic rates below the maximum rate of aerobic energy production. Such activity is characteristic of the nonsteady state, where energy demands, and consequential physiological responses, are in constant flux. The dynamics of the integrated physiological processes during these activities determine the degree to which exercise can be supported through rates of O₂ utilization and CO₂ clearance appropriate for their demands and, as such, provide a physiological framework for the notion of exercise intensity. The rate at which O₂ exchange responds to meet the changing energy demands of exercise--its kinetics--is dependent on the ability of the pulmonary, circulatory, and muscle bioenergetic systems to respond appropriately. Slow response kinetics in pulmonary O₂ uptake predispose toward a greater necessity for substrate-level energy supply, processes that are limited in their capacity, challenge system homeostasis and hence contribute to exercise intolerance. This review provides a physiological systems perspective of pulmonary gas exchange kinetics: from an integrative view on the control of muscle oxygen consumption kinetics to the dissociation of cellular respiration from its pulmonary expression by the circulatory dynamics and the gas capacitance of the lungs, blood, and tissues. The intensity dependence of gas exchange kinetics is discussed in relation to constant, intermittent, and ramped work rate changes. The influence of heterogeneity in the kinetic matching of O₂ delivery to utilization is presented in reference to exercise tolerance in endurance-trained athletes, the elderly, and patients with chronic heart or lung disease.
Collapse
Affiliation(s)
- Harry B Rossiter
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
24
|
|
25
|
Wüst RCI, van der Laarse WJ, Rossiter HB. On-off asymmetries in oxygen consumption kinetics of single Xenopus laevis skeletal muscle fibres suggest higher-order control. J Physiol 2012; 591:731-44. [PMID: 23165768 DOI: 10.1113/jphysiol.2012.241992] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanisms controlling skeletal muscle oxygen consumption (V(o)₂) during exercise are not well understood. We determined whether first-order control could explain V(o)₂kinetics at contractions onset (V(o)₂(on)) and cessation (V(o)₂off)) in single skeletal muscle fibres differing in oxdidative capacity, and across stimulation intensities up to V(o)₂(max). Xenopus laevis fibres (n = 21) were suspended in a sealed chamber with a fast response P(o)₂ electrode to measure V(o)₂ every second before, during and after stimulated isometric contractions. A first-order model did not well characterize on-transient V(o)₂ kinetics. Including a time delay (TD) in the model provided a significantly improved characterization than a first-order fit without TD (F-ratio; P < 0.05), and revealed separate 'activation' and 'exponential' phases in 15/21 fibres contracting at V(o)₂(max) (mean ± SD TD: 14 ± 3s). On-transient kinetics (τV(o)₂(on)) was weakly and linearly related to V(o)₂(max) (R² = 0.271, P = 0.015). Off-transient kinetics, however, were first-order, and τV(o)₂(off) was greater in low-oxidative (V(o)₂max < 0.05 nmol mm⁻³s⁻¹ than high-oxidative fibres (V(o)₂(max > 0.10 nmol mm ⁻³ s⁻¹; 170 ± 70 vs. 29 ± 6 s, P < 0.001). 1/ τV(o)₂(off) was proportional to V(o)₂(max) (R² = 0.727, P < 0.001), unlike in the on-transient. The calculated oxygen deficit was larger (P < 0.05) than the post-contraction volume of consumed oxygen at all intensities except V(o)₂(max). These data show a clear dissociation between the kinetic control of V(o)₂at the onset and cessation of contractions and across stimulation intensities. More complex models are therefore required to understand the activation of mitochondrial respiration in skeletal muscle at the start of exercise.
Collapse
Affiliation(s)
- Rob C I Wüst
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
26
|
Koga S, Wüst RCI, Walsh B, Kindig CA, Rossiter HB, Hogan MC. Increasing temperature speeds intracellular PO2 kinetics during contractions in single Xenopus skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol 2012; 304:R59-66. [PMID: 23152111 DOI: 10.1152/ajpregu.00337.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Precise determination of the effect of muscle temperature (T(m)) on mitochondrial oxygen consumption kinetics has proven difficult in humans, in part due to the complexities in controlling for T(m)-related variations in blood flow, fiber recruitment, muscle metabolism, and contractile properties. To address this issue, intracellular Po(2) (P(i)(O(2))) was measured continuously by phosphorescence quenching following the onset of contractions in single Xenopus myofibers (n = 24) while controlling extracellular temperature. Fibers were subjected to two identical contraction bouts, in random order, at 15°C (cold, C) and 20°C (normal, N; n = 12), or at N and 25°C (hot, H; n = 12). Contractile properties were determined for every contraction. The time delay of the P(i)(O(2)) response was significantly greater in C (59 ± 35 s) compared with N (35 ± 26 s, P = 0.01) and H (27 ± 14 s, P = 0.01). The time constant for the decline in P(i)(O(2)) was significantly greater in C (89 ± 34 s) compared with N (52 ± 15 s; P < 0.01) and H (37 ± 10 s; P < 0.01). There was a linear relationship between the rate constant for P(i)(O(2)) kinetics and T(m) (r = 0.322, P = 0.03). Estimated ATP turnover was significantly greater in H than in C (P < 0.01), but this increased energy requirement alone with increased T(m) could not account for the differences observed in P(i)(O(2)) kinetics among conditions. These results demonstrate that P(i)(O(2)) kinetics in single contracting myofibers are dependent on T(m), likely caused by temperature-induced differences in metabolic demand and by temperature-dependent processes underlying mitochondrial activation at the start of muscle contractions.
Collapse
Affiliation(s)
- S Koga
- Applied Physiology Laboratory, Kobe Design University, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Improvement of 800-m running performance with prior high-intensity exercise. Int J Sports Physiol Perform 2012; 8:77-83. [PMID: 22868404 DOI: 10.1123/ijspp.8.1.77] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Prior high-intensity exercise increases the oxidative energy contribution to subsequent exercise and may enhance exercise tolerance. The potential impact of a high-intensity warm-up on competitive performance, however, has not been investigated. PURPOSE To test the hypothesis that a high-intensity warm-up would speed VO2 kinetics and enhance 800-m running performance in well-trained athletes. METHODS Eleven highly trained middle-distance runners completed two 800-m time trials on separate days on an indoor track, preceded by 2 different warm-up procedures. The 800-m time trials were preceded by a 10-min self-paced jog and standardized mobility drills, followed by either 6 × 50-m strides (control [CON]) or 2 × 50-m strides and a continuous high-intensity 200-m run (HWU) at race pace. Blood [La] was measured before the time trials, and VO2 was measured breath by breath throughout exercise. RESULTS 800-m time-trial performance was significantly faster after HWU (124.5 ± 8.3 vs CON, 125.7 ± 8.7 s, P < .05). Blood [La] was greater after HWU (3.6 ± 1.9 vs CON, 1.7 ± 0.8 mM; P < .01). The mean response time for VO2 was not different between conditions (HWU, 27 ± 6 vs CON, 28 ± 7 s), but total O2 consumed (HWU, 119 ± 18 vs CON, 109 ± 28 ml/kg, P = .05) and peak VO2 attained (HWU, 4.21 ± 0.85 vs CON, 3.91 ± 0.63 L/min; P = .08) tended to be greater after HWU. CONCLUSIONS These data indicate that a sustained high-intensity warm-up enhances 800-m time-trial performance in trained athletes.
Collapse
|
28
|
Gandra PG, Nogueira L, Hogan MC. Mitochondrial activation at the onset of contractions in isolated myofibres during successive contractile periods. J Physiol 2012; 590:3597-609. [PMID: 22711953 DOI: 10.1113/jphysiol.2012.232405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
At the onset of skeletal muscle repetitive contractions, there is a significant delay in the time to achieve oxidative phosphorylation steady state. The purpose of the present study was to examine the factors that limit oxidative phosphorylation at the onset of contractions. NAD(P)H was measured in real time during two contractile periods (2 min each) separated by 5 min of rest in intact single muscle fibres (n = 7) isolated from Xenopus laevis. The fibres were then loaded with the dye tetramethylrhodamine methyl ester perchlorate (TMRM) to evaluate the kinetics of the mitochondrial membrane potential (Δψ (m)) during two further successive contractile periods. At the onset of contractions in the first period, NAD(P)H exhibited a time delay (14.1 ± 1.3 s) before decreasing toward a steady state. In contrast, Δψ(m) decreased immediately after the first contraction and started to be reestablished after 10.7 ± 0.9 s, with restoration to the pre-stimulation values after approximately 32 s. In the second contractile period (5 min after the first), NAD(P)H decreased immediately (i.e. no time delay) after the first contraction and had a significantly shorter time constant compared to the first contractile bout (3.3 ± 0.3 vs. 5.0 ± 0.2 s, P < 0.05). During the second bout, Δψ(m) remained unchanged from pre-stimulation values. These results suggest: (1) that at the onset of contractions, oxidative phosphorylation is primarily limited by the activity of the electron transport chain complexes rather than by a limited level of substrates; and (2) when the muscle is 'primed' by previous contractile activity, the faster enhancement of the cellular respiratory rate is due to intrinsic factors within the myofibre.
Collapse
Affiliation(s)
- Paulo G Gandra
- Department of Medicine-0623, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0623, USA
| | | | | |
Collapse
|
29
|
Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012. [PMID: 22259112 DOI: 10.1007/978-1-4614-1566-4_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
30
|
Goodwin ML, Hernández A, Lai N, Cabrera ME, Gladden LB. V̇o2 on-kinetics in isolated canine muscle in situ during slowed convective O2 delivery. J Appl Physiol (1985) 2012; 112:9-19. [DOI: 10.1152/japplphysiol.01480.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine O2 uptake (V̇o2) on-kinetics when the spontaneous blood flow (and therefore O2 delivery) on-response was slowed by 25 and 50 s. The isolated gastrocnemius muscle complex (GS) in situ was studied in six anesthetized dogs during transitions from rest to a submaximal metabolic rate (≈50–70% of peak V̇o2). Four trials were performed: 1) a pretrial in which resting and steady-state blood flows were established, 2) a control trial in which the blood flow on-kinetics mean response time (MRT) was set at 20 s (CT20), 3) an experimental trial in which the blood flow on-kinetics MRT was set at 45 s (EX45), and 4) an experimental trial in which the blood flow on-kinetics MRT was set at 70 s (EX70). Slowing O2 delivery via slowing blood flow on-kinetics resulted in a linear slowing of the V̇o2 on-kinetics response ( R = 0.96). Average MRT values for CT20, EX45, and EX70 V̇o2 on-kinetics were (means ± SD) 17 ± 2, 23 ± 4, and 26 ± 3 s, respectively ( P < 0.05 among all). During these transitions, slowing blood flow resulted in greater muscle deoxygenation (as indicated by near-infrared spectroscopy), suggesting that lower intracellular Po2 values were reached. In this oxidative muscle, V̇o2 and O2 delivery were closely matched during the transition period from rest to steady-state contractions. In conjunction with our previous work showing that speeding O2 delivery did not alter V̇o2 on-kinetics under similar conditions, it appears that spontaneously perfused skeletal muscle operates at the nexus of sufficient and insufficient O2 delivery in the transition from rest to contractions.
Collapse
Affiliation(s)
| | - Andrés Hernández
- Department of Kinesiology, Auburn University, Auburn, Alabama; and
| | - Nicola Lai
- Department of Biomedical Engineering and Pediatrics and Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio
| | - Marco E. Cabrera
- Department of Biomedical Engineering and Pediatrics and Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio
| | - L. Bruce Gladden
- Department of Kinesiology, Auburn University, Auburn, Alabama; and
| |
Collapse
|
31
|
Wüst RCI, Grassi B, Hogan MC, Howlett RA, Gladden LB, Rossiter HB. Implications of rapid early oxygen consumption in exercising skeletal muscle: The empirical, the theoretical and the rational. J Physiol 2011. [DOI: 10.1113/jphysiol.2011.221762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
32
|
Murias JM, Spencer MD, Kowalchuk JM, Paterson DH. Influence of phase I duration on phase II V̇o2 kinetics parameter estimates in older and young adults. Am J Physiol Regul Integr Comp Physiol 2011; 301:R218-24. [PMID: 21490368 DOI: 10.1152/ajpregu.00060.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Older adults (O) may have a longer phase I pulmonary O2 uptake kinetics (V̇o2p) than young adults (Y); this may affect parameter estimates of phase II V̇o2p. Therefore, we sought to: 1) experimentally estimate the duration of phase I V̇o2p (EE phase I) in O and Y subjects during moderate-intensity exercise transitions; 2) examine the effects of selected phase I durations (i.e., different start times for modeling phase II) on parameter estimates of the phase II V̇o2p response; and 3) thereby determine whether slower phase II kinetics in O subjects represent a physiological difference or a by-product of fitting strategy. V̇o2p was measured breath-by-breath in 19 O (68 ± 6 yr; mean ± SD) and 19 Y (24 ± 5 yr) using a volume turbine and mass spectrometer. Phase I V̇o2p was longer in O (31 ± 4 s) than Y (20 ± 7 s) ( P < 0.05). In O, phase II τV̇o2p was larger ( P < 0.05) when fitting started at 15 s (49 ± 12 s) compared with fits starting at the individual EE phase I (43 ± 12 s), 25 s (42 ± 10 s), 35 s (42 ± 12 s), and 45 s (45 ± 15 s). In Y, τV̇o2p was not affected by the time at which phase II V̇o2p fitting started (τV̇o2p = 31 ± 7 s, 29 ± 9 s, 30 ± 10 s, 32 ± 11 s, and 30 ± 8 s for fittings starting at 15 s, 25 s, 35 s, 45 s, and EE phase I, respectively). Fitting from EE phase I, 25 s, or 35 s resulted in the smallest CI τV̇o2p in both O and Y. Thus, fitting phase II V̇o2p from (but not constrained to) 25 s or 35 s provides consistent estimates of V̇o2p kinetics parameters in Y and O, despite the longer phase I V̇o2p in O.
Collapse
Affiliation(s)
- Juan M. Murias
- Canadian Centre for Activity and Aging,
- School of Kinesiology, and
| | | | - John M. Kowalchuk
- Canadian Centre for Activity and Aging,
- School of Kinesiology, and
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
33
|
Zuo L, Nogueira L, Hogan MC. Reactive oxygen species formation during tetanic contractions in single isolated Xenopus myofibers. J Appl Physiol (1985) 2011; 111:898-904. [PMID: 21700897 DOI: 10.1152/japplphysiol.00398.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Contracting skeletal muscle produces reactive oxygen species (ROS) that have been shown to affect muscle function and adaptation. However, real-time measurement of ROS in contracting myofibers has proven to be difficult. We used amphibian (Xenopus laevis) muscle to test the hypothesis that ROS are formed during contractile activity in isolated single skeletal muscle fibers and that this contraction-induced ROS formation affects fatigue development. Single myofibers were loaded with 5 μM dihydrofluorescein-DA (Hfluor-DA), a fluorescent probe that reacts with ROS and results in the formation of fluorescein (Fluor) to precisely monitor ROS generation within single myofibers in real time using confocal miscroscopy. Three identical periods of maximal tetanic contractions (1 contraction/3 s for 2 min, separated by 60 min of rest) were conducted by each myofiber (n = 6) at 20°C. Ebselen (an antioxidant) was present in the perfusate (10 μM) during the second contractile period. Force was reduced by ∼30% during each of the three contraction periods, with no significant difference in fatigue development among the three periods. The Fluor signal, indicative of ROS generation, increased significantly above baseline in both the first (42 ± 14%) and third periods (39 ± 10%), with no significant difference in the increase in fluorescence between the first and third periods. There was no increase of Fluor in the presence of ebselen during the second contractile period. These results demonstrated that, in isolated intact Xenopus myofibers, 1) ROS can be measured in real time during tetanic contractions, 2) contractile activity induced a significant increase above resting levels of ROS production, and 3) ebselen treatment reduced ROS generation to baseline levels but had no effect on myofiber contractility and fatigue development.
Collapse
Affiliation(s)
- Li Zuo
- Dept. of Medicine-0623A, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0623, USA.
| | | | | |
Collapse
|
34
|
Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D. Comparative determination of energy production rates and mitochondrial function using different 31P MRS quantitative methods in sedentary and trained subjects. NMR IN BIOMEDICINE 2011; 24:425-438. [PMID: 20963767 DOI: 10.1002/nbm.1607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 06/02/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
Muscle energetics has been largely and quantitatively investigated using (31)P MRS. Various methods have been used to estimate the corresponding rate of oxidative ATP synthesis (ATP(ox)); however, potential differences among methods have not been investigated. In this study, we aimed to compare the rates of ATP production and energy cost in two groups of subjects with different training status using four different methods: indirect method (method 1), ADP control model (method 2) and phosphate potential control model (method 3). Method 4 was a modified version of method 3 with the introduction of a correction factor allowing for similar values to be obtained for the end-exercise oxidative ATP synthesis rate inferred from exercise measurements and the initial recovery phosphocreatine resynthesis rate. Seven sedentary and seven endurance-trained subjects performed a dynamic standardised rest-exercise-recovery protocol. We quantified the rates of ATP(ox) and anaerobic ATP synthesis (ATP(ana)) using (31)P MRS data recorded at 1.5 T. The rates of ATP(ox) over the entire exercise session were independent of the method used, except for method 4 which provided significantly higher values in both groups (p < 0.01). In addition, methods 1-3 were cross-correlated, thereby confirming their statistical agreement. The rate of ATP(ana) was significantly higher with method 1 (p < 0.01) and lower with method 4 (p < 0.01). As a result of the higher rate of ATP(ox), EC (method 4) calculated over the entire exercise session was higher and initial EC (method 1) was lower in both groups compared with the other methods. We showed in this study that the rate of ATP(ox) was independent of the calculation method, as long as no corrections (method 4) were performed. In contrast, results related to the rates of ATP(ana) were strongly affected by the calculation method and, more exactly, by the estimation of protons generated by ATP(ox). Although the absolute EC values differed between the methods, within- or between-subject comparisons are still valid given the tight relationships between them.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, Faculté de Médecine de Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Vazquez A, Oltvai ZN. Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology. PLoS One 2011; 6:e19538. [PMID: 21559344 PMCID: PMC3084886 DOI: 10.1371/journal.pone.0019538] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022] Open
Abstract
Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions.
Collapse
Affiliation(s)
- Alexei Vazquez
- Department of Radiation Oncology, Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey, United States of America.
| | | |
Collapse
|
36
|
Murias JM, Spencer MD, Kowalchuk JM, Paterson DH. Muscle deoxygenation to VO2 relationship differs in young subjects with varying τVO2. Eur J Appl Physiol 2011; 111:3107-18. [PMID: 21461928 DOI: 10.1007/s00421-011-1937-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/19/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Juan M Murias
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON, Canada
| | | | | | | |
Collapse
|
37
|
Speeding of VO2 kinetics in response to endurance-training in older and young women. Eur J Appl Physiol 2010; 111:235-43. [DOI: 10.1007/s00421-010-1649-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2010] [Indexed: 11/25/2022]
|
38
|
Takakura H, Masuda K, Hashimoto T, Iwase S, Jue T. Quantification of myoglobin deoxygenation and intracellular partial pressure of O2during muscle contraction during haemoglobin-free medium perfusion. Exp Physiol 2010; 95:630-40. [DOI: 10.1113/expphysiol.2009.050344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Hepple RT, Howlett RA, Kindig CA, Stary CM, Hogan MC. The O2 cost of the tension-time integral in isolated single myocytes during fatigue. Am J Physiol Regul Integr Comp Physiol 2010; 298:R983-8. [PMID: 20130224 DOI: 10.1152/ajpregu.00715.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One proposed explanation for the Vo(2) slow component is that lower-threshold motor units may fatigue and develop little or no tension but continue to use O(2), thereby resulting in a dissociation of cellular respiration from force generation. The present study used intact isolated single myocytes with differing fatigue resistance profiles to investigate the relationship between fatigue, tension development, and aerobic metabolism. Single Xenopus skeletal muscle myofibers were allocated to a fast-fatiguing (FF) or a slow-fatiguing (SF) group, based on the contraction frequency required to elicit a fall in tension to 60% of peak. Phosphorescence quenching of a porphyrin compound was used to determine Delta intracellular Po(2) (Pi(O(2)); a proxy for Vo(2)), and developed isometric tension was monitored to allow calculation of the time-integrated tension (TxT). Although peak DeltaPi(O(2)) was not different between groups (P = 0.36), peak tension was lower (P < 0.05) in SF vs. FF (1.97 +/- 0. 17 V vs. 2. 73 +/- 0.30 V, respectively) and time to 60% of peak tension was significantly longer in SF vs. FF (242 +/- 10 s vs. 203 +/- 10 s, respectively). Before fatigue, both DeltaPi(O(2)) and TxT rose proportionally with contraction frequency in SF and FF, resulting in DeltaPi(O(2))/TxT being identical between groups. At fatigue, TxT fell dramatically in both groups, but DeltaPi(O(2)) decreased proportionately only in the FF group, resulting in an increase in DeltaPi(O(2))/TxT in the SF group relative to the prefatigue condition. These data show that more fatigue-resistant fibers maintain aerobic metabolism as they fatigue, resulting in an increased O(2) cost of contractions that could contribute to the Vo(2) slow component seen in whole body exercise.
Collapse
|
40
|
Geissbuehler M, Spielmann T, Formey A, Märki I, Leutenegger M, Hinz B, Johnsson K, Van De Ville D, Lasser T. Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell (A7r5). Biophys J 2010; 98:339-49. [PMID: 20338856 PMCID: PMC2808489 DOI: 10.1016/j.bpj.2009.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 11/19/2022] Open
Abstract
The measurement of tissue and cell oxygenation is important for understanding cell metabolism. We have addressed this problem with a novel optical technique, called triplet imaging, that exploits oxygen-induced triplet lifetime changes and is compatible with a variety of fluorophores. A modulated excitation of varying pulse widths allows the extraction of the lifetime of the essentially dark triplet state using a high-fluorescence signal intensity. This enables the monitoring of fast kinetics of oxygen concentration in living cells combined with high temporal and spatial resolution. First, the oxygen-dependent triplet-state quenching of tetramethylrhodamine is validated and then calibrated in an L-ascorbic acid titration experiment demonstrating the linear relation between triplet lifetime and oxygen concentration according to the Stern-Volmer equation. Second, the method is applied to a biological cell system, employing as reporter a cytosolic fusion protein of beta-galactosidase with SNAP-tag labeled with tetramethylrhodamine. Oxygen consumption in single smooth muscle cells A7r5 during an [Arg(8)]-vasopressin-induced contraction is measured. The results indicate a consumption leading to an intracellular oxygen concentration that decays monoexponentially with time. The proposed method has the potential to become a new tool for investigating oxygen metabolism at the single cell and the subcellular level.
Collapse
Affiliation(s)
- Matthias Geissbuehler
- Laboratoire d'Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bailey SJ, Vanhatalo A, Wilkerson DP, DiMenna FJ, Jones AM. Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J Appl Physiol (1985) 2009; 107:1743-56. [DOI: 10.1152/japplphysiol.00810.2009] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been suggested that a prior bout of high-intensity exercise has the potential to enhance performance during subsequent high-intensity exercise by accelerating the O2 uptake (V̇o2) on-response. However, the optimal combination of prior exercise intensity and subsequent recovery duration required to elicit this effect is presently unclear. Eight male participants, aged 18–24 yr, completed step cycle ergometer exercise tests to 80% of the difference between the preestablished gas exchange threshold and maximal V̇o2 (i.e., 80%Δ) after no prior exercise (control) and after six different combinations of prior exercise intensity and recovery duration: 40%Δ with 3 min (40-3-80), 9 min (40-9-80), and 20 min (40-20-80) of recovery and 70%Δ with 3 min (70-3-80), 9 min (70-9-80), and 20 min (70-20-80) of recovery. Overall V̇o2 kinetics were accelerated relative to control in all conditions except for 40-9-80 and 40-20-80 conditions as a consequence of a reduction in the V̇o2 slow component amplitude; the phase II time constant was not significantly altered with any prior exercise/recovery combination. Exercise tolerance at 80%Δ was improved by 15% and 30% above control in the 70-9-80 and 70-20-80 conditions, respectively, but was impaired by 16% in the 70-3-80 condition. Prior exercise at 40%Δ did not significantly influence exercise tolerance regardless of the recovery duration. These data demonstrate that prior high-intensity exercise (∼70%Δ) can enhance the tolerance to subsequent high-intensity exercise provided that it is coupled with adequate recovery duration (≥9 min). This combination presumably optimizes the balance between preserving the effects of prior exercise on V̇o2 kinetics and providing sufficient time for muscle homeostasis (e.g., muscle phosphocreatine and H+ concentrations) to be restored.
Collapse
Affiliation(s)
- Stephen J. Bailey
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| | - Anni Vanhatalo
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| | - Daryl P. Wilkerson
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| | - Fred J. DiMenna
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| | - Andrew M. Jones
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| |
Collapse
|
42
|
Chin LMK, Heigenhauser GJF, Paterson DH, Kowalchuk JM. Effect of hyperventilation and prior heavy exercise on O2 uptake and muscle deoxygenation kinetics during transitions to moderate exercise. Eur J Appl Physiol 2009; 108:913-25. [DOI: 10.1007/s00421-009-1293-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2009] [Indexed: 11/24/2022]
|
43
|
Gurd BJ, Peters SJ, Heigenhauser GJF, LeBlanc PJ, Doherty TJ, Paterson DH, Kowalchuk JM. Prior heavy exercise elevates pyruvate dehydrogenase activity and muscle oxygenation and speeds O2 uptake kinetics during moderate exercise in older adults. Am J Physiol Regul Integr Comp Physiol 2009; 297:R877-84. [PMID: 19605760 DOI: 10.1152/ajpregu.90848.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptation of pulmonary oxygen uptake (VO(2)(p)) kinetics during the transition to moderate-intensity exercise is slowed in older compared with younger adults; however, this response is faster following a prior bout of heavy-intensity exercise. We have examined VO(2)(p) kinetics, pyruvate dehydrogenase (PDH) activation, muscle metabolite contents, and muscle deoxygenation in older adults [n = 6; 70 +/- 5 (67-74) yr] during moderate-intensity exercise (Mod(1)) and during moderate-intensity exercise preceded by heavy-intensity warm-up exercise (Mod(2)). The phase 2 VO(2)(p) time constant (tauVO(2)(p)) was reduced (P < 0.05) in Mod(2) (29 +/- 5 s) compared with Mod(1) (39 +/- 14 s). PDH activity was elevated (P < 0.05) at baseline prior to Mod(2) (2.1 +/- 0.6 vs. 1.2 +/- 0.3 mmol acetyl-CoA x min(-1) x kg wet wt(-1)), and the delay in attaining end-exercise activity was abolished. Phosphocreatine breakdown during exercise was reduced (P < 0.05) at both 30 s and 6 min in Mod(2) compared with Mod(1). Near-infrared spectroscopy-derived indices of muscle oxygenation were elevated both prior to and throughout Mod(2), while muscle deoxygenation kinetics were not different between exercise bouts consistent with elevated perfusion and O(2) availability. These results suggest that in older adults, faster VO(2)(p) kinetics following prior heavy-intensity exercise are likely a result of prior activation of mitochondrial enzyme activity in combination with elevated muscle perfusion and O(2) availability.
Collapse
Affiliation(s)
- Brendon J Gurd
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The Univ. of Western Ontario, London, Ontario, Canada N6A 5B9
| | | | | | | | | | | | | |
Collapse
|
44
|
Jones AM, Davies RC, Ferreira LF, Barstow TJ, Koga S, Poole DC. Reply to Quaresima and Ferrari. J Appl Physiol (1985) 2009. [DOI: 10.1152/japplphysiol.00314.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Saitoh T, Ferreira LF, Barstow TJ, Poole DC, Ooue A, Kondo N, Koga S. Effects of prior heavy exercise on heterogeneity of muscle deoxygenation kinetics during subsequent heavy exercise. Am J Physiol Regul Integr Comp Physiol 2009; 297:R615-21. [PMID: 19535682 DOI: 10.1152/ajpregu.00048.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of prior heavy exercise on the spatial heterogeneity of muscle deoxygenation kinetics and the relationship to the pulmonary O(2) uptake (pVO(2)) kinetics during subsequent heavy exercise. Seven healthy men completed two 6-min bouts of heavy work rate cycling exercise, separated by 6 min of unloaded exercise. The changes in the concentration of deoxyhemoglobin/myoglobin (Delta deoxy-[Hb+Mb]) were assessed simultaneously at 10 different sites on the rectus femoris muscle using multichannel near-infrared spectroscopy. Prior exercise had no effect on either the time constant or the amplitude of the primary component pVO(2), whereas it reduced the amplitude of the slow component (SC). Delta deoxy-[Hb+Mb] across all 10 sites for bout 2 displayed a shorter time delay (mean and SD for subjects: 13.5 +/- 1.3 vs. 9.3 +/- 1.4 s; P < 0.01) and slower primary component time constant (tau: 9.3 +/- 1.3 vs. 17.8 +/- 1.0 s; P < 0.01) compared with bout 1. Prior exercise significantly reduced both the intersite coefficient of variation (CV) of the tau of Delta deoxy-[Hb+Mb] (26.6 +/- 11.8 vs. 13.7 +/- 5.6%; P < 0.01) and the point-by-point heterogeneity [root mean square error (RMSE)] during the primary component in the second bout. However, neither the change in the CV for tau nor RMSE of Delta deoxy-[Hb+Mb] correlated with the reduction in the SC in pVO(2) kinetics during subsequent heavy exercise. In conclusion, prior exercise reduced the spatial heterogeneity of the primary component of muscle deoxygenation kinetics. This effect was not correlated with alterations in the pVO(2) response during subsequent heavy exercise.
Collapse
Affiliation(s)
- Tadashi Saitoh
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
DiMenna FJ, Wilkerson DP, Burnley M, Bailey SJ, Jones AM. Influence of priming exercise on pulmonary O2 uptake kinetics during transitions to high-intensity exercise at extreme pedal rates. J Appl Physiol (1985) 2008; 106:432-42. [PMID: 19056997 DOI: 10.1152/japplphysiol.91195.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the pedal rate dependency of the effect of priming exercise on pulmonary oxygen uptake (Vo(2)) kinetics. Seven healthy men completed two, 6-min bouts of high-intensity cycle exercise (separated by 6 min of rest) using different combinations of extreme pedal rates for the priming and criterion exercise bouts (i.e., 35-->35, 35-->115, 115-->35, and 115-->115 rev/min). Pulmonary gas exchange and heart rate were measured breath-by-breath, and muscle oxygenation was assessed using near-infrared spectroscopy. When the priming bout was performed at 35 rev/min (35-->35 and 35-->115 conditions), the phase II Vo(2) time constant (tau) was not significantly altered (bout 1: 31 +/- 7 vs. bout 2: 30 +/- 5 s and bout 1: 48 +/- 16 vs. bout 2: 46 +/- 21 s, respectively). However, when the priming bout was performed at 115 rev/min (115-->35 and 115-->115 conditions), the phase II tau was significantly reduced (bout 1: 31 +/- 7 vs. bout 2: 26 +/- 5 s and bout 1: 48 +/- 16 vs. bout 2: 39 +/- 9 s, respectively, P < 0.05). Muscle oxygenation was significantly higher after priming exercise in all four conditions, but significant effects on Vo(2) kinetics were only evident when muscle O(2) extraction (measured as Delta[deoxyhemoglobin]/DeltaVo(2)) was elevated in the fundamental response phase. These data indicate that prior high-intensity exercise at a high pedal rate can speed Vo(2) kinetics during subsequent high-intensity exercise, presumably through specific priming effects on type II muscle fibers.
Collapse
|
47
|
Lai N, Gladden LB, Carlier PG, Cabrera ME. Models of muscle contraction and energetics. ACTA ACUST UNITED AC 2008; 5:273-288. [PMID: 24421861 DOI: 10.1016/j.ddmod.2009.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
How does skeletal muscle manage to regulate the pathways of ATP synthesis during large-scale changes in work rate while maintaining metabolic homeostasis remains unknown. The classic model of metabolic regulation during muscle contraction states that accelerating ATP utilization leads to increasing concentrations of ADP and Pi, which serve as substrates for oxidative phosphorylation and thus accelerate ATP synthesis. An alternative model states that both the ATP demand and ATP supply pathways are simultaneously activated. Here, we review experimental and computational models of muscle contraction and energetics at various organizational levels and compare them with respect to their pros and cons in facilitating understanding of the regulation of energy metabolism during exercise in the intact organism.
Collapse
Affiliation(s)
- Nicola Lai
- Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio. U.S.A
| | - L Bruce Gladden
- Department of Kinesiology, Auburn University, Auburn, Alabama. U.S.A
| | - Pierre G Carlier
- Institute of Myology, NMR Laboratory, F-75651 Paris, France ; CEA, I BM, MIRCen, IdM NMR Laboratory, F-75651 Paris, France ; UPMC Univ Paris 06, F-75005 Paris, France
| | - Marco E Cabrera
- Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio. U.S.A
| |
Collapse
|
48
|
Stary CM, Walsh BJ, Knapp AE, Brafman D, Hogan MC. Elevation in heat shock protein 72 mRNA following contractions in isolated single skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol 2008; 295:R642-8. [PMID: 18525012 PMCID: PMC2519928 DOI: 10.1152/ajpregu.00852.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 06/02/2008] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was 1) to develop a stable model for measuring contraction-induced elevations in mRNA in single skeletal muscle fibers and 2) to utilize this model to investigate the response of heat shock protein 72 (HSP72) mRNA following an acute bout of fatiguing contractions. Living, intact skeletal muscle fibers were microdissected from lumbrical muscle of Xenopus laevis and either electrically stimulated for 15 min of tetanic contractions (EX; n=26) or not stimulated to contract (REST; n=14). The relative mean developed tension of EX fibers decreased to 29+/-7% of initial peak tension at the stimulation end point. Following treatment, individual fibers were allowed to recover for 1 (n=9), 2 (n=8), or 4 h (n=9) prior to isolation of total cellular mRNA. HSP72, HSP60, and cardiac alpha-actin mRNA content were then assessed in individual fibers using quantitative PCR detection. Relative HSP72 mRNA content was significantly (P<0.05) elevated at the 2-h postcontraction time point relative to REST fibers when normalized to either HSP60 (18.5+/-7.5-fold) or cardiac alpha-actin (14.7+/-4.3-fold), although not at the 1- or 4-h time points. These data indicate that 1) extraction of RNA followed by relative quantification of mRNA of select genes in isolated single skeletal muscle fibers can be reliably performed, 2) HSP60 and cardiac alpha-actin are suitable endogenous normalizing genes in skeletal muscle following contractions, and 3) a significantly elevated content of HSP72 mRNA is detectable in skeletal muscle 2 h after a single bout of fatiguing contractions, despite minimal temperature changes and without influence from extracellular sources.
Collapse
Affiliation(s)
- Creed M Stary
- Division of Physiology, Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0623, USA
| | | | | | | | | |
Collapse
|
49
|
'Priming' exercise and O2 uptake kinetics during treadmill running. Respir Physiol Neurobiol 2008; 161:182-8. [PMID: 18342581 DOI: 10.1016/j.resp.2008.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 01/31/2008] [Accepted: 02/02/2008] [Indexed: 11/23/2022]
Abstract
We tested the hypothesis that priming exercise would speed V(O2) kinetics during treadmill running. Eight subjects completed a square-wave protocol, involving two bouts of treadmill running at 70% of the difference between the running speeds at lactate threshold (LT) and V(O2) max, separated by 6-min of walking at 4 km h(-1), on two occasions. Oxygen uptake was measured breath-by-breath and subsequently modelled using non-linear regression techniques. Heart rate and blood lactate concentration were significantly elevated prior to the second exercise bout compared to the first. However, V(O2) kinetics was not significantly different between the first and second exercise bouts (mean+/-S.D., phase II time constant, Bout 1: 16+/-3s vs. Bout 2: 16+/-4s; V(O2) slow component amplitude, Bout 1: 0.24+/-0.10 L min(-1)vs. Bout 2: 0.20+/-0.12 L min(-1); mean response time, Bout 1: 34+/-4s vs. Bout 2: 34+/-6s; P>0.05 for all comparisons). These results indicate that, contrary to previous findings with other exercise modalities, priming exercise does not alter V(O2) kinetics during high-intensity treadmill running, at least in physically active young subjects. We speculate that the relatively fast V(O2) kinetics and the relatively small V(O2) slow component in the control ('un-primed') condition negated any enhancement of V(O2) kinetics by priming exercise in this exercise modality.
Collapse
|
50
|
DeLorey DS, Paterson DH, Kowalchuk JM. Effects of ageing on muscle O2 utilization and muscle oxygenation during the transition to moderate-intensity exercise. Appl Physiol Nutr Metab 2007; 32:1251-62. [DOI: 10.1139/h07-121] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the onset of exercise, an increase in muscle and pulmonary O2 consumption is met by increases in muscle O2 delivery and muscle O2 extraction. Thus, the study of pulmonary O2 uptake kinetics reflects the integrated response between the convective and diffusive O2 delivery systems and the muscle metabolic machinery (i.e., mitochondrial enzyme activation and provision of acetyl groups to the tricarboxcylic acid cycle) to increase muscle O2 consumption. Pulmonary O2 uptake kinetics are slowed in older adults compared with young adults and previous studies suggest that the slower O2 uptake kinetics may be the result of an age-associated decline in the ability of older adults to increase O2 delivery to active muscles. However, an inherent limitation to understanding the control of and limitations to pulmonary O2 uptake kinetics is that it is methodologically difficult to examine the adaptation of muscle perfusion and O2 delivery and muscle O2 utilization in the muscle microcirculation of active muscles in the dynamically exercising human. In this review, we provide an overview of the effect of ageing on pulmonary O2 uptake kinetics (reflecting the activation of muscle O2 consumption) during the transition to moderate-intensity exercise. Age-related changes in O2 delivery systems and muscle oxidative capacity are examined as potential limitations to pulmonary O2 uptake kinetics. We then review recent studies from our laboratory that have investigated the control of pulmonary O2 uptake kinetics at the level of the muscle microcirculation by examining the adaptation of muscle O2 delivery and muscle O2 utilization using near-infrared spectroscopy during the transition to exercise in healthy young and older adults.
Collapse
Affiliation(s)
- Darren S. DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB T6G 2H9
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON N6A 3K7
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 3K7
| | - Donald H. Paterson
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB T6G 2H9
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON N6A 3K7
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 3K7
| | - John M. Kowalchuk
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB T6G 2H9
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, ON N6A 3K7
- School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 3K7
| |
Collapse
|