1
|
Silva Rubio C, Kim AB, Milsom WK, Pamenter ME, Smith GR, van Breukelen F. Common tenrecs (Tenrec ecaudatus) reduce oxygen consumption in hypoxia and in hypercapnia without concordant changes to body temperature or heart rate. J Comp Physiol B 2024; 194:869-885. [PMID: 39373763 DOI: 10.1007/s00360-024-01587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Common tenrecs (Tenrec ecaudatus) are fossorial mammals that use burrows during both active and hibernating seasons in Madagascar and its neighboring islands. Prevailing thought was that tenrecs hibernate for 8-9 months individually, but 13 tenrecs were removed from the same sealed burrow 1 m deep from the surface. Such group hibernation in sealed burrows presumably creates a hypoxic and/or hypercapnic environment and suggests that this placental mammal may have an increased tolerance to hypoxia and hypercapnia. Higher tolerances to hypoxia and hypercapnia have been documented for other mammals capable of hibernation and to determine if this is the case for tenrecs, we exposed them to acute hypoxia (4 h of 16 or 7% O2), progressive hypoxia (2 h of 16, 10 and 4% O2), or progressive hypercapnia (2 h of 2, 5 and 10% CO2) at cold (16 °C) or warm (28 °C) ambient temperatures (Ta). Oxygen equilibrium curves were also constructed on the whole blood of tenrecs at 10, 25, and 37 °C to determine if hemoglobin (Hb)-O2 affinity contributes to hypoxia tolerance. In animals held at 16 °C, normoxic and normocapnic levels of oxygen consumption rate (V ˙ O 2 ), body temperature (Tb), and heart rate (HR) were highly variable between individuals. This inter-individual variation was greatly reduced in animals held at 28 °C for oxygen consumption rate and body temperature. Both hypoxia (acute and progressive) and progressive hypercapnia led to decreases inV ˙ O 2 as well as the variation inV ˙ O 2 between animals held at 16 °C. The fall in oxygen consumption rate in 7% O2 independent of changes in body temperature in tenrecs held at 16 °C is unique and not consistent with the typical hypoxic metabolic response seen in other hibernating species that depends on concomitant falls in Tb. In animals held at 28 °C, exposure to O2 levels as low as 4% and CO2 levels as high as 10% had no significant effect onV ˙ O 2 , HR, or Tb, indicative of high tolerance to both hypoxia and hypercapnia. High variation in heart rate remained between individuals in all gas compositions and at all temperatures. Tenrec Hb-O2 affinity was similar to other homeothermic placental mammals and likely does not contribute to the increased hypoxia tolerance. Ultimately, our results suggest changes in Ta dictate physiological responses to hypoxia or hypercapnia in tenrecs, responses more characteristic of reptiles than of most placental mammals. Given that numerous anatomical and physiological characteristics of tenrecs suggest that they may be representative of an ancestral placental mammal, our findings suggest the typical hypoxic metabolic response evolved later in mammalian evolution.
Collapse
Affiliation(s)
- Claudia Silva Rubio
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Anne B Kim
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Biology and Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1N 9A7, Canada
| | - Gilbecca Rae Smith
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
2
|
Moretti EH, Lino CA, Steiner AA. INTERPLAY BETWEEN BRAIN OXYGENATION AND THE DEVELOPMENT OF HYPOTHERMIA IN ENDOTOXIC SHOCK. Shock 2024; 61:861-868. [PMID: 38662598 DOI: 10.1097/shk.0000000000002350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT There is evidence to suggest that the hypothermia observed in the most severe cases of systemic inflammation or sepsis is a regulated response with potential adaptive value, but the mechanisms involved are poorly understood. Here, we investigated the interplay between brain oxygenation (assessed by tissue P o2 ) and the development of hypothermia in unanesthetized rats challenged with a hypotension-inducing dose of bacterial LPS (1 mg/kg i.v.). At an ambient temperature of 22°C, oxygen consumption (V̇O 2 ) began to fall only a few minutes after the LPS injection, and this suppression in metabolic rate preceded the decrease in core temperature. No reduction in brain P o2 was observed prior to the development of the hypometabolic, hypothermic response, ruling out the possibility that brain hypoxia served as a trigger for hypothermia in this model. Brain P o2 was even increased. Such an improvement in brain oxygenation could reflect either an increased O 2 delivery or a decreased O 2 consumption. The former explanation seems unlikely because blood flow (cardiac output) was being progressively decreased during the recording period. On the other hand, the decrease in V̇O 2 usually preceded the rise in P o2 , and an inverse correlation between V̇O 2 and brain P o2 was consistently observed. These findings do not support the existence of a closed-loop feedback relationship between brain oxygenation and hypothermia in systemic inflammation. The data are consistent with a feedforward mechanism in which hypothermia is triggered (possibly by cryogenic inflammatory mediators) in anticipation of changes in brain oxygenation to prevent the development of tissue hypoxia.
Collapse
Affiliation(s)
- Eduardo H Moretti
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | |
Collapse
|
3
|
Bernardes-Ribeiro M, Patrone LGA, Cristina-Silva C, Bícego KC, Gargaglioni LH. Exercise derived myokine irisin as mediator of cardiorespiratory, metabolic and thermal adjustments during central and peripheral chemoreflex activation. Sci Rep 2024; 14:12262. [PMID: 38806563 PMCID: PMC11133352 DOI: 10.1038/s41598-024-62650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Exercise elicits physiological adaptations, including hyperpnea. However, the mechanisms underlying exercise-induced hyperpnea remain unresolved. Skeletal muscle acts as a secretory organ, releasing irisin (IR) during exercise. Irisin can cross the blood-brain barrier, influencing muscle and tissue metabolism, as well as signaling in the central nervous system (CNS). We evaluated the effect of intracerebroventricular or intraperitoneal injection of IR in adult male rats on the cardiorespiratory and metabolic function during sleep-wake cycle under room air, hypercapnia and hypoxia. Central IR injection caused an inhibition on ventilation (VE) during wakefulness under normoxia, while peripheral IR reduced VE during sleep. Additionally, central IR exacerbates hypercapnic hyperventilation by increasing VE and reducing oxygen consumption. As to cardiovascular regulation, central IR caused an increase in heart rate (HR) across all conditions, while no change was observed following peripheral administration. Finally, central IR attenuated the hypoxia-induced regulated hypothermia and increase sleep episodes, while peripheral IR augmented CO2-induced hypothermia, during wakefulness. Overall, our results suggest that IR act mostly on CNS exerting an inhibitory effect on breathing under resting conditions, while stimulating the hypercapnic ventilatory response and increasing HR. Therefore, IR seems not to be responsible for the exercise-induced hyperpnea, but contributes to the increase in HR.
Collapse
Affiliation(s)
- Mariana Bernardes-Ribeiro
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil
| | - Luis Gustavo A Patrone
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil
| | - Caroline Cristina-Silva
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil
| | - Kênia C Bícego
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil
| | - Luciane H Gargaglioni
- Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP/FCAV), Via de Acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-000, Brazil.
| |
Collapse
|
4
|
Henning Y, Adam K, Gerhardt P, Begall S. Hypoxic and hypercapnic burrow conditions lead to downregulation of free triiodothyronine and hematocrit in Ansell's mole-rats (Fukomys anselli). J Comp Physiol B 2024; 194:33-40. [PMID: 38059996 PMCID: PMC10940439 DOI: 10.1007/s00360-023-01526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
African mole-rats live in self-dug burrow systems under hypoxic and hypercapnic conditions. Adaptations to hypoxia include suppression of resting metabolic rate (RMR) and core body temperature (Tb). Because the thyroid hormones (THs) thyroxine (T4) and triiodothyronine (T3) are positive regulators of RMR and Tb, we hypothesized that serum TH concentrations would also be downregulated under hypoxic conditions. To test this hypothesis, we kept Ansell's mole-rats (Fukomys anselli) in terraria filled with soil in which they were allowed to construct underground burrows to achieve chronic intermittent hypoxia and hypercapnia. The animals stayed in these hypoxic and hypercapnic burrows voluntarily, although given the choice to stay aboveground. We collected blood samples before and after treatment to measure serum T4 and T3 concentrations as well as hematological parameters. The free fraction of the transcriptionally-active T3 was significantly decreased after treatment, indicating that cellular TH signaling was downregulated via peripheral mechanisms, consistent with the assumption that aerobic metabolism is downregulated under hypoxic conditions. Furthermore, we found that hematocrit and hemoglobin concentrations were also downregulated after treatment, suggesting that oxygen demand decreases under hypoxia, presumably due to the metabolic shift towards anaerobic metabolism. Taken together, we have identified a potential upstream regulator of physiological adaptations to hypoxia in these highly hypoxia-tolerant animals.
Collapse
Affiliation(s)
- Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Kamilla Adam
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Patricia Gerhardt
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Michelucci A, Sforna L, Franciolini F, Catacuzzeno L. Hypoxia, Ion Channels and Glioblastoma Malignancy. Biomolecules 2023; 13:1742. [PMID: 38136613 PMCID: PMC10742235 DOI: 10.3390/biom13121742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The malignancy of glioblastoma (GBM), the most aggressive type of human brain tumor, strongly correlates with the presence of hypoxic areas within the tumor mass. Oxygen levels have been shown to control several critical aspects of tumor aggressiveness, such as migration/invasion and cell death resistance, but the underlying mechanisms are still unclear. GBM cells express abundant K+ and Cl- channels, whose activity supports cell volume and membrane potential changes, critical for cell proliferation, migration and death. Volume-regulated anion channels (VRAC), which mediate the swelling-activated Cl- current, and the large-conductance Ca2+-activated K+ channels (BK) are both functionally upregulated in GBM cells, where they control different aspects underlying GBM malignancy/aggressiveness. The functional expression/activity of both VRAC and BK channels are under the control of the oxygen levels, and these regulations are involved in the hypoxia-induced GBM cell aggressiveness. The present review will provide a comprehensive overview of the literature supporting the role of these two channels in the hypoxia-mediated GBM malignancy, suggesting them as potential therapeutic targets in the treatment of GBM.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (L.S.); (F.F.)
| | | | | | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (L.S.); (F.F.)
| |
Collapse
|
6
|
Ingelson-Filpula WA, Storey KB. Hibernation-Induced microRNA Expression Promotes Signaling Pathways and Cell Cycle Dysregulation in Ictidomys tridecemlineatus Cardiac Tissue. Metabolites 2023; 13:1096. [PMID: 37887421 PMCID: PMC10608741 DOI: 10.3390/metabo13101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
The thirteen-lined ground squirrel Ictidomys tridecemlineatus is a rodent that lives throughout the United States and Canada and uses metabolic rate depression to facilitate circannual hibernation which helps it survive the winter. Metabolic rate depression is the reorganization of cellular physiology and molecular biology to facilitate a global downregulation of nonessential genes and processes, which conserves endogenous fuel resources and prevents the buildup of waste byproducts. Facilitating metabolic rate depression requires a complex interplay of regulatory approaches, including post-transcriptional modes such as microRNA. MicroRNA are short, single-stranded RNA species that bind to mRNA transcripts and target them for degradation or translational suppression. Using next-generation sequencing, we analyzed euthermic vs. hibernating cardiac tissue in I. tridecemlineatus to predict seven miRNAs (let-7e-5p, miR-122-5p, miR-2355-3p, miR-6715b-3p, miR-378i, miR-9851-3p, and miR-454-3p) that may be differentially regulated during hibernation. Gene ontology and KEGG pathway analysis suggested that these miRNAs cause a strong activation of ErbB2 signaling which causes downstream effects, including the activation of MAPK and PI3K/Akt signaling and concurrent decreases in p53 signaling and cell cycle-related processes. Taken together, these results predict critical miRNAs that may change during hibernation in the hearts of I. tridecemlineatus and identify key signaling pathways that warrant further study in this species.
Collapse
Affiliation(s)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
7
|
Devereaux MEM, Chiasson S, Brennan KF, Pamenter ME. The glutamatergic drive to breathe is reduced in severe but not moderate hypoxia in Damaraland mole-rats. J Exp Biol 2023; 226:jeb246185. [PMID: 37589556 PMCID: PMC10565110 DOI: 10.1242/jeb.246185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Damaraland mole-rats (Fukomys damarensis) are a hypoxia-tolerant fossorial species that exhibit a robust hypoxic metabolic response (HMR) and blunted hypoxic ventilatory response (HVR). Whereas the HVR of most adult mammals is mediated by increased excitatory glutamatergic signalling, naked mole-rats, which are closely related to Damaraland mole-rats, do not utilize this pathway. Given their phylogenetic relationship and similar lifestyles, we hypothesized that the signalling mechanisms underlying physiological responses to acute hypoxia in Damaraland mole-rats are like those of naked mole-rats. To test this, we used pharmacological antagonists of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-d-aspartate receptors (NMDARs), combined with plethysmography, respirometry and thermal RFID chips, to non-invasively evaluate the role of excitatory AMPAR and NMDAR signalling in mediating ventilatory, metabolic and thermoregulatory responses, respectively, to 1 h of 5 or 7% O2. We found that AMPAR or NMDAR antagonism have minimal impacts on the HMR or hypoxia-mediated changes in thermoregulation. Conversely, the 'blunted' HVR of Damaraland mole-rats is reduced by either AMPAR or NMDAR antagonism such that the onset of the HVR occurs in less severe hypoxia. In more severe hypoxia, antagonists have no impact, suggesting that these receptors are already inhibited. Together, these findings indicate that the glutamatergic drive to breathe decreases in Damaraland mole-rats exposed to severe hypoxia. These findings differ from other adult mammals, in which the glutamatergic drive to breathe increases with hypoxia.
Collapse
Affiliation(s)
| | - Sarah Chiasson
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kate F. Brennan
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Laaß M, Kaestner A. Nasal turbinates of the dicynodont Kawingasaurus fossilis and the possible impact of the fossorial habitat on the evolution of endothermy. J Morphol 2023; 284:e21621. [PMID: 37585231 DOI: 10.1002/jmor.21621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The nasal region of the fossorial anomodont Kawingasaurus fossilis was virtually reconstructed from neutron-computed tomographic data and compared with the terrestrial species Pristerodon mackayi and other nonmammalian synapsids. The tomography of the Kawingasaurus skull reveals a pattern of maxillo-, naso-, fronto- and ethmoturbinal ridges that strongly resemble the mammalian condition. On both sides of the nasal cavity, remains of scrolled maxilloturbinals were preserved that were still partially articulated with maxilloturbinal ridges. Furthermore, possible remains of the lamina semicircularis as well as fronto- or ethmoturbinals were found. In Kawingasaurus, the maxilloturbinal ridges were longer and stronger than in Pristerodon. Except for the nasoturbinal ridges, no other ridges in the olfactory region and no remains of turbinates were recognized. This supports the hypothesis that naso-, fronto-, ethmo- and maxilloturbinals were a plesiomorphic feature of synapsids, but due to their cartilaginous nature in most taxa were, in almost all cases, not preserved. The well-developed maxilloturbinals in Kawingasaurus were probably an adaptation to hypoxia-induced hyperventilation in the fossorial habitat, maintaining the high oxygen demands of Kawingasaurus' large brain. The surface area of the respiratory turbinates in Kawingasaurus falls into the mammalian range, which suggests that they functioned as a countercurrent exchange system for thermoregulation and conditioning of the respiratory airflow. Our results suggest that the environmental conditions of the fossorial habitat led to specific sensory adaptations, accompanied by a pulse in brain evolution and of endothermy in cistecephalids, ~50 million years before the origin of endothermy in the mammalian stem line. This supports the Nocturnal Bottleneck Theory, in that we found evidence for a similar evolutionary scenario in cistecephalids as proposed for early mammals.
Collapse
Affiliation(s)
- Michael Laaß
- Fakultät für Geowissenschaften, Geotechnik und Bergbau, TU Bergakademie Freiberg, Freiberg, Germany
- FRM II and Physics E21, Technische Universität München, Garching, Germany
| | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
9
|
Scariot PPM, Papoti M, Polisel EEC, Orsi JB, Van Ginkel PR, Prolla TA, Manchado-Gobatto FB, Gobatto CA. Living high - training low model applied to C57BL/6J mice: Effects on physiological parameters related to aerobic fitness and acid-base balance. Life Sci 2023; 317:121443. [PMID: 36709910 DOI: 10.1016/j.lfs.2023.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.
Collapse
Affiliation(s)
- Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | - Juan Bordon Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Paul R Van Ginkel
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Tomas A Prolla
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
10
|
Sprenger RJ, Milsom WK. Ventilatory sensitivity to ambient CO2 at different hibernation temperatures in 13-lined ground squirrels (Ictidomys tridecemlineatus). Physiol Biochem Zool 2022; 95:288-301. [DOI: 10.1086/720158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Cheng H, Sebaa R, Malholtra N, Lacoste B, El Hankouri Z, Kirby A, Bennett NC, van Jaarsveld B, Hart DW, Tattersall GJ, Harper ME, Pamenter ME. Naked mole-rat brown fat thermogenesis is diminished during hypoxia through a rapid decrease in UCP1. Nat Commun 2021; 12:6801. [PMID: 34815412 PMCID: PMC8610999 DOI: 10.1038/s41467-021-27170-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Naked mole-rats are among the most hypoxia-tolerant mammals. During hypoxia, their body temperature (Tb) decreases via unknown mechanisms to conserve energy. In small mammals, non-shivering thermogenesis in brown adipose tissue (BAT) is critical to Tb regulation; therefore, we hypothesize that hypoxia decreases naked mole-rat BAT thermogenesis. To test this, we measure changes in Tb during normoxia and hypoxia (7% O2; 1-3 h). We report that interscapular thermogenesis is high in normoxia but ceases during hypoxia, and Tb decreases. Furthermore, in BAT from animals treated in hypoxia, UCP1 and mitochondrial complexes I-V protein expression rapidly decrease, while mitochondria undergo fission, and apoptosis and mitophagy are inhibited. Finally, UCP1 expression decreases in hypoxia in three other social African mole-rat species, but not a solitary species. These findings suggest that the ability to rapidly down-regulate thermogenesis to conserve oxygen in hypoxia may have evolved preferentially in social species.
Collapse
Affiliation(s)
- Hang Cheng
- grid.28046.380000 0001 2182 2255Department of Biology, University of Ottawa, Ottawa, ON Canada
| | - Rajaa Sebaa
- grid.28046.380000 0001 2182 2255Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada ,grid.449644.f0000 0004 0441 5692Department of Medical Laboratories, College of Applied Medical Sciences, University of Shaqra, Duwadimi, Saudi Arabia
| | - Nikita Malholtra
- grid.28046.380000 0001 2182 2255Department of Biology, University of Ottawa, Ottawa, ON Canada
| | - Baptiste Lacoste
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255University of Ottawa Brain and Mind Research Institute, Ottawa, ON Canada ,grid.412687.e0000 0000 9606 5108Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Ziyad El Hankouri
- grid.28046.380000 0001 2182 2255Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| | - Alexia Kirby
- grid.28046.380000 0001 2182 2255Department of Biology, University of Ottawa, Ottawa, ON Canada
| | - Nigel C. Bennett
- grid.49697.350000 0001 2107 2298Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Barry van Jaarsveld
- grid.49697.350000 0001 2107 2298Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Daniel W. Hart
- grid.49697.350000 0001 2107 2298Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Glenn J. Tattersall
- grid.411793.90000 0004 1936 9318Department of Biological Sciences, Brock University, St. Catharines, ON Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Matthew E. Pamenter
- grid.28046.380000 0001 2182 2255Department of Biology, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255University of Ottawa Brain and Mind Research Institute, Ottawa, ON Canada
| |
Collapse
|
12
|
Cristina-Silva C, Gargaglioni LH, Bícego KC. A thermoregulatory role of the medullary raphe in birds. J Exp Biol 2021; 224:jeb.234344. [PMID: 33758021 DOI: 10.1242/jeb.234344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/17/2021] [Indexed: 12/29/2022]
Abstract
The brainstem region medullary raphe modulates non-shivering and shivering thermogenesis and cutaneous vasomotion in rodents. Whether the same scenario occurs in the other endothermic group, i.e. birds, is still unknown. Therefore, we hypothesised that the medullary raphe modulates heat gain and loss thermoeffectors in birds. We investigated the effect of glutamatergic and GABAergic inhibitions in this specific region on body temperature (Tb), oxygen consumption (thermogenesis), ventilation (O2 supply in cold, thermal tachypnea in heat) and heat loss index (cutaneous vasomotion) in one-week-old chicken exposed to neutral (31°C), cold (26°C) and heat (36°C) conditions. Intra-medullary raphe antagonism of NMDA glutamate (AP5; 0.5, 5 mM) and GABAA (bicuculline; 0.05, 0.5 mM) receptors reduced Tb of chicks at 31°C and 26oC, due mainly to an O2 consumption decrease. AP5 transiently increased breathing frequency during cold exposure. At 31°C, heat loss index was higher in the bicuculline and AP5 groups (higher doses) than vehicle at the beginning of the Tb reduction. No treatment affected any variable tested at 36oC. The results suggest that glutamatergic and GABAergic excitatory influences on the medullary raphe of chicks modulate thermogenesis and glutamatergic stimulation prevents tachypnea, without having any role in warmth-defence responses. A double excitation influence on the medullary raphe may provide a protective neural mechanism for supporting thermogenesis during early life, when energy expenditure to support growth and homeothermy is high. This novel demonstration of a thermoregulatory role for the raphe in birds suggests a convergent brainstem neurochemical regulation of body temperature in endotherms.
Collapse
Affiliation(s)
- Caroline Cristina-Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP, 14884-900, Brazil
- Joint UFSCar-UNESP Graduate Program of Physiological Sciences, Sao Carlos, SP, 13565-905, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP, 14884-900, Brazil
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
13
|
Dzal YA, Milsom WK. Effects of hypoxia on the respiratory and metabolic responses to progressive cooling in newborn rodents that range in heterothermic expression. Exp Physiol 2021; 106:1005-1023. [PMID: 33608952 DOI: 10.1113/ep089085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Adult homeotherms and heterotherms differ in cold and hypoxia tolerance and in how they match O2 supply and demand in response to these stressors. It has never been ascertained whether these differences reflect different developmental trajectories or whether they are already present at birth. What is the main finding and its importance? When exposed to cold and hypoxia, newborn rodents differed in how they matched O2 supply and demand, with responses reflecting the degree of heterothermic expression and tolerance. Our findings indicate that elements of the adult phenotype are already present at birth. ABSTRACT There are physiological differences in how adult rodents regulate O2 supply and O2 demand when exposed to hypoxia in the cold. We examined whether these differences reflect divergent developmental trajectories of homeotherms and heterotherms or whether the differences are already present at birth. We exposed newborn rodents (0-4 days old) that ranged in heterothermic expression [a homeotherm, the rat (Rattus norvegicus); two facultative heterotherms, the mouse (Mus musculus) and the hamster (Mesocricetus auratus); and an obligate heterotherm, the ground squirrel (Ictidomys tridecemlineatus)] to either normoxia (21% O2 ) or hypoxia (7% O2 ) and measured their metabolic, thermoregulatory and ventilatory responses while progressively reducing the ambient temperature from 33 to 15°C. All newborns reduced their body temperature, O2 consumption rate and ventilation during progressive cooling, both in normoxia and in hypoxia. When progressively cooled in hypoxia, however, the homeothermic rats exhibited the greatest thermogenic response, depressed their O2 consumption rate the least and increased ventilation the most. In contrast, the obligate heterotherm, the ground squirrel, did not mount a thermogenic response, exhibited the greatest reduction in O2 consumption rate and increased O2 uptake not by increasing ventilation like the rat, but by extracting ≤80% of the O2 from each breath. Facultative heterotherms (mice and hamsters) exhibited responses in between these two extreme phenotypes. We conclude that even as newborns, homeotherms and heterotherms diverge in how they match O2 supply and O2 demand when progressively cooled in hypoxia, with responses reflecting the degree of heterothermic expression, in addition to reported hypoxia and cold tolerance.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Combined stimuli of cold, hypoxia, and dehydration status on body temperature in rats: a pilot study with practical implications for humans. BMC Res Notes 2020; 13:530. [PMID: 33176867 PMCID: PMC7661168 DOI: 10.1186/s13104-020-05375-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE As human thermoregulatory responses to maintain core body temperature (Tcore) under multiple stressors such as cold, hypoxia, and dehydration (e.g., exposure to high-altitude) are varied, the combined effects of cold, hypoxia, and dehydration status on Tcore in rats were investigated. The following environmental conditions were constructed: (1) thermoneutral (24 °C) or cold (10 °C), (2) normoxia (21% O2) or hypoxia (12% O2), and (3) euhydration or dehydration (48 h water deprivation), resulted in eight environmental conditions [2 ambient temperatures (Ta) × 2 oxygen levels × 2 hydration statuses)]. Each condition lasted for 24 h. RESULTS Normoxic conditions irrespective of hypoxia or dehydration did not strongly decrease the area under the curve (AUC) in Tcore during the 24 period, whereas, hypoxic conditions caused greater decreases in the AUC in Tcore, which was accentuated with cold and dehydration (Ta × O2 × hydration, P = 0.040 by three-way ANOVA). In contrast, multiple stressors (Ta × O2 × hydration or Ta × O2 or O2 × hydration or Ta × hydration) did not affect locomotor activity counts (all P > 0.05), but a significant simple main effect for O2 and Ta was observed (P < 0.001). Heat loss index was not affected by all environmental conditions (all P > 0.05). In conclusion, decreases in Tcore were most affected by multiple environmental stressors such as cold, hypoxia, and dehydration.
Collapse
|
15
|
Landes J, Pavard S, Henry PY, Terrien J. Flexibility Is Costly: Hidden Physiological Damage From Seasonal Phenotypic Transitions in Heterothermic Species. Front Physiol 2020; 11:985. [PMID: 32903301 PMCID: PMC7434983 DOI: 10.3389/fphys.2020.00985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Heterothermy allows organisms to cope with fluctuating environmental conditions. The use of regulated hypometabolism allows seasonal heterothermic species to cope with annual resource shortages and thus to maximize survival during the unfavorable season. This comes with deep physiological remodeling at each seasonal transition to allow the organism to adjust to the changing environment. In the wild, this adaptation is highly beneficial and largely overcomes potential costs. However, researchers recently proposed that it might also generate both ecological and physiological costs for the organism. Here, we propose new perspectives to be considered when analyzing adaptation to seasonality, in particular considering these costs. We propose a list of putative costs, including DNA damage, inflammatory response to fat load, brain and cognitive defects, digestive malfunction and immunodeficiency, that should receive more attention in future research on physiological seasonality. These costs may only be marginal at each transition event but accumulate over time and therefore emerge with age. In this context, studies in captivity, where we have access to aging individuals with limited extrinsic mortality (e.g., predation), could be highly valuable to experimentally assess the costs of physiological flexibility. Finally, we offer new perspectives, which should be included in demographic models, on how the adaptive value of physiological flexibility could be altered in the future in the context of global warming.
Collapse
Affiliation(s)
- Julie Landes
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d'Histoire Naturelle, Brunoy, France.,Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Samuel Pavard
- Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Pierre-Yves Henry
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d'Histoire Naturelle, Brunoy, France
| |
Collapse
|
16
|
Ripamonte GC, Bernardes-Ribeiro M, Patrone LGA, Vicente MC, Bícego KC, Gargaglioni LH. Functional role for preoptic CB1 receptors in breathing and thermal control. Neurosci Lett 2020; 732:135021. [PMID: 32454147 DOI: 10.1016/j.neulet.2020.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
The anteroventral preoptic region (AVPO) of the hypothalamus is involved in both temperature and breathing regulation. This area densely express cannabinoid receptors type 1 (CB1) that modulate both excitatory and inhibitory synaptic transmission. However, it is still unknown if the endocannabinoid system located in the AVPO participates in breathing control and thermoregulation. Therefore, we tested the participation of CB1 in the AVPO in the modulation of ventilation and thermal control during normoxia and hypoxia. To this end, body temperature (Tb) of Wistar rats was monitored by datallogers and ventilation (VE) by whole body plethysmography before and after intra-AVPO microinjection of AM-251 (CB1 antagonist, 50 and 100 pmol) followed by 60 min of hypoxia exposure (7% O2). Intra-AVPO microinjection of the higher dose of AM-251 increased VE but did not change Tb under resting conditions. Exposure of rats to 7% of inspired oxygen evoked typical hypoxia-induced anapyrexia and hyperventilation after vehicle microinjection. The higher dose of the cannabinoid antagonist increased the hypoxia-induced hyperventilation, in the same magnitude as observed under normoxic condition, whereas the drop in Tb elicited by hypoxia was attenuated. Therefore, the present results demonstrate that the endocannabinoid system acting on CB1 receptors in the AVPO exerts a tonic inhibitory modulation on breathing but seem not be involved in thermoregulation during resting conditions. In addition, activation of CB1 receptors in the AVPO stimulate thermal response during hypoxia, reducing energetically expensive responses, such as the hypoxic hyperventilation.
Collapse
Affiliation(s)
- Gabriel C Ripamonte
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Mariana Bernardes-Ribeiro
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil.
| |
Collapse
|
17
|
Postnatal changes in O2 and CO2 sensitivity in rodents. Respir Physiol Neurobiol 2020; 272:103313. [DOI: 10.1016/j.resp.2019.103313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
|
18
|
Patrone LGA, Capalbo AC, Marques DA, Bícego KC, Gargaglioni LH. An age- and sex-dependent role of catecholaminergic neurons in the control of breathing and hypoxic chemoreflex during postnatal development. Brain Res 2019; 1726:146508. [PMID: 31606412 DOI: 10.1016/j.brainres.2019.146508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
The respiratory system undergoes significant development during the postnatal phase. Maturation of brainstem catecholaminergic (CA) neurons is important for the control and modulation of respiratory rhythmogenesis, as well as for chemoreception in early life. We demonstrated an inhibitory role for CA neurons in CO2 chemosensitivity in neonatal and juvenile male and female rats, but information regarding their role in the hypoxic ventilatory response (HVR) is lacking. We evaluated the contribution of brainstem CA neurons in the HVR during postnatal (P) development (P7-8, P14-15 and P20-21) in male and female rats through chemical injury with conjugated saporin anti-dopamine beta-hydroxylase (DβH-SAP, 420 ng·μL-1) injected in the fourth ventricle. Ventilation (V̇E) and oxygen consumption were recorded one week after the lesion in unanesthetized rats during exposure to normoxia and hypoxia. Hypoxia reduced breathing variability in P7-8 control rats of both sexes. At P7-8, the HVR for lesioned males and females increased 27% and 24%, respectively. Additionally, the lesion reduced the normoxic breathing variability in both sexes at P7-8, but hypoxia partially reverted this effect. For P14-15, the increase in V̇E during hypoxia was 30% higher for male and 24% higher for female lesioned animals. A sex-specific difference was detected at P20-21, as lesioned males exhibited a 24% decrease in the HVR, while lesioned females experienced a 22% increase. Furthermore, the hypoxia-induced body temperature reduction was attenuated in P20-21 lesioned females. We conclude that brainstem CA neurons modulate the HRV during the postnatal phase, and possibly thermoregulation during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Aretuza C Capalbo
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil.
| |
Collapse
|
19
|
Dzal YA, Milsom WK. Hypoxia alters the thermogenic response to cold in adult homeothermic and heterothermic rodents. J Physiol 2019; 597:4809-4829. [PMID: 31365126 DOI: 10.1113/jp277183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/26/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS For small mammals living in a cold, hypoxic environment, supplying enough O2 to sustain thermogenesis can be challenging. While heterothermic mammals are generally more tolerant of cold and hypoxia than homeothermic mammals, how they regulate O2 supply and demand during progressive cooling in hypoxia is largely unknown. We show that as ambient temperature is reduced in hypoxia, body temperature falls in both homeotherms and heterotherms. In the homeothermic rat, a decrease in O2 consumption rate and lung O2 extraction accompany this fall in body temperature, despite a relative hyperventilation. Paradoxically, in heterothermic mice, hamsters and ground squirrels, body temperature decreases more than in the homeothermic rat, even though they maintain ventilation, increase lung O2 extraction and maintain or elevate their O2 consumption rates. Variation in cold and hypoxia tolerance among homeotherms and heterotherms reflects divergent strategies in how O2 supply and demand are regulated under thermal and hypoxic challenges. ABSTRACT Compared to homeothermic mammals, heterothermic mammals are reported to be exceptionally tolerant of cold and hypoxia. We hypothesised that this variation in tolerance stems from divergent strategies in how homeotherms and heterotherms regulate O2 supply versus O2 demand when exposed to hypoxia during progressive cooling. To test this hypothesis, we exposed adult rodents ranging in their degree of heterothermic expression (homeotherm: rats, facultative heterotherms: mice and hamsters, and obligate heterotherm: ground squirrels) to either normoxia (21% O2 ) or environmental hypoxia (7% O2 ), while reducing ambient temperature from 38 to 5°C. We found that when ambient temperature was reduced in normoxia, all species increased their O2 consumption rate and ventilation in parallel, maintaining a constant ventilatory equivalent and level of lung O2 extraction. Surprisingly, body temperature fell in all species, significantly so in the heterotherms. When ambient temperature was reduced in hypoxia, however, the homeothermic rat decreased their O2 consumption rate and lung O2 extraction despite an increase in their ventilatory equivalent, indicative of a relative hyperventilation. Heterotherms (mice, hamsters and ground squirrels), on the other hand, decreased their ventilatory equivalent, but increased lung O2 extraction and maintained or elevated their O2 consumption rates, yet their body temperature fell even more than in the rat. These results are consistent with the idea that homeotherms and heterotherms diverge in the strategies they use to match O2 supply and O2 demand, and that enhanced cold and hypoxia tolerance in heterotherms may stem from an improved ability to extract O2 from the inspired air.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Vandewint AL, Zhu-Pawlowsky AJ, Kirby A, Tattersall GJ, Pamenter ME. Evaporative cooling and vasodilation mediate thermoregulation in naked mole-rats during normoxia but not hypoxia. J Therm Biol 2019; 84:228-235. [DOI: 10.1016/j.jtherbio.2019.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
21
|
Zhang SY, Pamenter ME. Ventilatory, metabolic, and thermoregulatory responses of Damaraland mole rats to acute and chronic hypoxia. J Comp Physiol B 2019; 189:319-334. [DOI: 10.1007/s00360-019-01206-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/13/2019] [Accepted: 01/27/2019] [Indexed: 01/22/2023]
|
22
|
Patrone LGA, Duarte JB, Bícego KC, Steiner AA, Romanovsky AA, Gargaglioni LH. TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO₂-Drive to Breathe. Pharmaceuticals (Basel) 2019; 12:ph12010019. [PMID: 30682830 PMCID: PMC6469189 DOI: 10.3390/ph12010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Receptors of the transient receptor potential (TRP) channels superfamily are expressed in many tissues and have different physiological functions. However, there are few studies investigating the role of these channels in cardiorespiratory control in mammals. We assessed the role of central and peripheral TRPV1 receptors in the cardiorespiratory responses to hypoxia (10% O2) and hypercapnia (7% CO2) by measuring pulmonary ventilation (V˙E), heart rate (HR), mean arterial pressure (MAP) and body temperature (Tb) of male Wistar rats before and after intraperitoneal (AMG9810 [2.85 µg/kg, 1 mL/kg]) or intracebroventricular (AMG9810 [2.85 µg/kg, 1 µL] or AMG7905 [28.5 μg/kg, 1 µL]) injections of TRPV1 antagonists. Central or peripheral injection of TRPV1 antagonists did not change cardiorespiratory parameters or Tb during room air and hypercapnic conditions. However, the hypoxic ventilatory response was exaggerated by both central and peripheral injection of AMG9810. In addition, the peripheral antagonist blunted the drop in Tb induced by hypoxia. Therefore, the current data provide evidence that TRPV1 channels exert an inhibitory modulation on the hypoxic drive to breathe and stimulate the Tb reduction during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Jaime B Duarte
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-090, Brazil.
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| |
Collapse
|
23
|
Vicente MC, Almeida MC, Bícego KC, Carrettiero DC, Gargaglioni LH. Hypercapnic and Hypoxic Respiratory Response During Wakefulness and Sleep in a Streptozotocin Model of Alzheimer's Disease in Rats. J Alzheimers Dis 2018; 65:1159-1174. [PMID: 30124447 DOI: 10.3233/jad-180397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides the typical cognitive decline, patients with Alzheimer's disease (AD) develop disorders of the respiratory system, such as sleep apnea, shortness of breath, and arrhythmias. These symptoms are aggravated with the progression of the disease. However, the cause and nature of these disturbances are not well understood. Here, we treated animals with intracerebroventricular streptozotocin (STZ, 2 mg/kg), a drug that has been described to cause Alzheimer-like behavioral and histopathological impairments. We measured ventilation (V̇E), electroencephalography, and electromyography during normocapnia, hypercapnia, and hypoxia in Wistar rats. In addition, we performed western blot analyses for phosphorylated tau, total tau, and amyloid-β (Aβ) peptide in the locus coeruleus (LC), retrotrapezoid nucleus, medullary raphe, pre-Bötzinger/Bötzinger complex, and hippocampus, and evaluated memory and learning acquisition using the Barnes maze. STZ treatment promoted memory and learning deficits and increased the percentage of total wakefulness during normocapnia and hypercapnia due to a reduction in the length of episodes of wakefulness. CO2-drive to breathe during wakefulness was increased by 26% in STZ-treated rats due to an enhanced tidal volume, but no changes in V̇E were observed in room air or hypoxic conditions. The STZ group also showed a 70% increase of Aβ in the LC and no change in tau protein phosphorylation. In addition, no alteration in body temperature was observed. Our findings suggest that AD animals present an increased sensitivity to CO2 during wakefulness, enhanced Aβ in the LC, and sleep disruption.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Maria C Almeida
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
24
|
Ren C, Li S, Rajah G, Shao G, Lu G, Han R, Huang Q, Li H, Ding Y, Jin K, Ji X. Hypoxia, hibernation and Neuroprotection: An Experimental Study in Mice. Aging Dis 2018; 9:761-768. [PMID: 30090664 PMCID: PMC6065299 DOI: 10.14336/ad.2018.0702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 11/01/2022] Open
Abstract
Hibernation is a unique physiological state that evolved to survive periods of food shortages. It is characterized by profound decreases in metabolic rate, body temperature and physiological functions. Studies have shown that animals in hibernation can resist neurological damage. Here, we aimed to study whether hypoxia can induce a hibernation-like state in a traditionally non-hibernating animal and whether it is neuroprotective. All procedures were conducted according to international guidelines on laboratory animal safety. Mice C57BL/6 (19-21g) were placed into a 125 mL jar with fresh air and the jar was sealed with a rubber plug. For each run, the tolerance limit was judged by the animals' appearance for "air hunger". The animal was removed from the jar as soon as its first gasping breath appeared and was moved to another fresh-air-containing jar of similar volume. This procedure was performed in four runs. The hypoxia exposure significantly decreased oxygen (O2) consumption, carbon dioxide (CO2) production, respiratory rate and heart rate. Meanwhile, rectal temperature reached a minimum of 12.7±2.56°C, which is lower than a wide range of ambient temperatures. The mimicked hibernation decreased the infarct size in a focal cerebral ischemia mouse model. Our findings suggest the possibility of inducing suspended animation-like hibernation states for medical applications post injury.
Collapse
Affiliation(s)
- Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guo Shao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Guowei Lu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Rongrong Han
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Qingjian Huang
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Yuchuan Ding
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kunlin Jin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| |
Collapse
|
25
|
Flor KC, Silva EF, Menezes MF, Pedrino GR, Colombari E, Zoccal DB. Short-Term Sustained Hypoxia Elevates Basal and Hypoxia-Induced Ventilation but Not the Carotid Body Chemoreceptor Activity in Rats. Front Physiol 2018. [PMID: 29535636 PMCID: PMC5835044 DOI: 10.3389/fphys.2018.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to chronic sustained hypoxia (SH), as experienced in high altitudes, elicits an increase in ventilation, named ventilatory acclimatization to hypoxia (VAH). We previously showed that rats exposed to short-term (24 h) SH exhibit enhanced abdominal expiratory motor activity at rest, accompanied by augmented baseline sympathetic vasoconstrictor activity. In the present study, we investigated whether the respiratory and sympathetic changes elicited by short-term SH are accompanied by carotid body chemoreceptor sensitization. Juvenile male Holtzman rats (60-80 g) were exposed to SH (10% O2 for 24 h) or normoxia (control) to examine basal and hypoxic-induced ventilatory parameters in unanesthetized conditions, as well as the sensory response of carotid body chemoreceptors in artificially perfused in situ preparations. Under resting conditions (normoxia/normocapnia), SH rats (n = 12) exhibited higher baseline respiratory frequency, tidal volume, and minute ventilation compared to controls (n = 11, P < 0.05). SH group also showed greater hypoxia ventilatory response than control group (P < 0.05). The in situ preparations of SH rats (n = 8) exhibited augmented baseline expiratory and sympathetic activities under normocapnia, with additional bursts in abdominal and thoracic sympathetic nerves during late expiratory phase that were not seen in controls (n = 8, P < 0.05). Interestingly, basal and potassium cyanide-induced afferent activity of carotid sinus nerve (CSN) was similar between SH and control rats. Our findings indicate that the maintenance of elevated resting ventilation, baseline sympathetic overactivity, and enhanced ventilatory responses to hypoxia in rats exposed to 24 h of SH are not dependent on increased basal and sensorial activity of carotid body chemoreceptors.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Pathology, São Paulo State University, Araraquara, Brazil
| | - Elaine F Silva
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Miguel F Menezes
- Department of Physiology and Pathology, São Paulo State University, Araraquara, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, São Paulo State University, Araraquara, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
26
|
Kirby AM, Fairman GD, Pamenter ME. Atypical behavioural, metabolic and thermoregulatory responses to hypoxia in the naked mole rat (Heterocephalus glaber
). J Zool (1987) 2018. [DOI: 10.1111/jzo.12542] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Alexia M Kirby
- Department of Biology; University of Ottawa; Ottawa ON Canada
| | | | - Matthew E Pamenter
- Department of Biology; University of Ottawa; Ottawa ON Canada
- Brain and Mind Research Institute; University of Ottawa; Ottawa ON Canada
| |
Collapse
|
27
|
Abstract
In some organisms and cells, oxygen availability influences oxygen consumption. In this review, we examine this phenomenon of hypoxic hypometabolism (HH), discussing its features, mechanisms, and implications. Small mammals and other vertebrate species exhibit "oxyconformism," a downregulation of metabolic rate and body temperature during hypoxia which is sensed by the central nervous system. Smaller body mass and cooler ambient temperature contribute to a high metabolic rate in mammals. It is this hypermetabolic state that is suppressed by hypoxia leading to HH. Larger mammals including humans do not exhibit HH. Tissues and cells also exhibit reductions in respiration during hypoxia in vitro, even at oxygen levels ample for mitochondrial oxidative phosphorylation. The mechanisms of cellular HH involve intracellular oxygen sensors including hypoxia-inducible factors, AMP-activated protein kinase (AMPK), and mitochondrial reactive oxygen species (ROS) which downregulate mitochondrial activity and ATP utilization. HH has a profound impact on cardiovascular, respiratory, and metabolic physiology in rodents. Therefore, caution should be exercised when extrapolating the results of rodent hypoxia studies to human physiology.
Collapse
|
28
|
Seo Y, Gerhart HD, Vaughan J, Kim JH, Glickman EL. Does Acute Normobaric Hypoxia Induce Anapyrexia in Adult Humans? High Alt Med Biol 2017; 18:185-190. [PMID: 28346847 PMCID: PMC10542910 DOI: 10.1089/ham.2016.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seo, Yongsuk, Hayden D. Gerhart, Jeremiah Vaughan, Jung-Hyun Kim, and Ellen L. Glickman. Does acute normobaric hypoxia induce anapyrexia in adult humans? High Alt Med Biol. 18:185-190, 2017.-Exposure to hypoxia is known to induce a reduction in core body temperature as a protective mechanism, which has been shown in both animals and humans. The purpose of this study was to test if acute exposure to normobaric hypoxia (NH) induces anapyrexia in adult humans in association with decreased peripheral oxygen saturation (SpO2). Ten healthy male subjects were seated in atmospheres of normobaric normoxia 21% (NN21), NH 17% (NH17), and 13% (NH13) O2 for 60 minutes in a counterbalanced manner. Rectal temperature (Tre) was continuously monitored together with the quantification of metabolic heat production (MHP) and body heat storage (S). Baseline physiological measurements showed no differences between the three conditions. SpO2 was significantly decreased in NH17 and NH13 compared with NN21 (p ≤ 0.001). Tre decreased following 60 minutes of resting in all conditions, but, independent of the conditions, showed no association between Tre and levels of hypoxic SpO2. There was also no significant difference in either MHP or S between conditions. The present results showed no evidence of hypoxia-induced anapyrexia in adult humans during 1 hour of resting after exposure to NH either at 13% or 17% O2.
Collapse
Affiliation(s)
- Yongsuk Seo
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Hayden D. Gerhart
- Department of Exercise Physiology, Kent State University, Kent, Ohio
- Kinesiology, Health, and Sport Science, Indiana University of Pennsylvania, Indiana, Pennsylvania
| | - Jeremiah Vaughan
- Department of Exercise Physiology, Kent State University, Kent, Ohio
| | - Jung-Hyun Kim
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania
| | - Ellen L. Glickman
- Department of Exercise Physiology, Kent State University, Kent, Ohio
| |
Collapse
|
29
|
Mu and kappa opioid receptors of the periaqueductal gray stimulate and inhibit thermogenesis, respectively, during psychological stress in rats. Pflugers Arch 2017; 469:1151-1161. [DOI: 10.1007/s00424-017-1966-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
|
30
|
Comparative ventilatory strategies of acclimated rats and burrowing plateau pika (Ochotona curzoniae) in response to hypoxic-hypercapnia. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:103-10. [PMID: 25988712 DOI: 10.1016/j.cbpa.2015.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/16/2015] [Accepted: 05/07/2015] [Indexed: 11/22/2022]
Abstract
The objective of this study was to compare the different ventilatory strategies that help in coping with hypoxic-hypercapnia environment among two species: use acclimated rats and plateau pikas (Ochotona curzoniae) that live in Tibetan plateaus, and have been well adjusted to high altitude. Arterial blood samples taken at 4100 m of elevation in acclimatized rats and adapted pikas revealed inter-species differences with lower hemoglobin and hematocrit and higher blood pH in pikas. A linear and significant increase in minute ventilation was observed in pikas, which help them to cope with hypoxic-hypercapnia. Pikas also displayed a high inspiratory drive and an invariant respiratory timing regardless of the conditions. Biochemical analysis revealed that N-methyl-D-aspartate receptor (NMDA) receptor gene and nNOS gene are highly conserved between rats and pikas, however pikas have higher expression of NMDA receptors and nNOS compared to rats at the brainstem level. Taken together, these results suggest that pikas have developed a specific ventilatory pattern supported by a modification of the NMDA/NO ventilatory central pathways to survive in extreme conditions imposed on the Tibetan plateaus. These physiological adaptive strategies help in maintaining a better blood oxygenation despite high CO2 concentration in burrows at high altitude.
Collapse
|
31
|
Jochmans-Lemoine A, Villalpando G, Gonzales M, Valverde I, Soria R, Joseph V. Divergent physiological responses in laboratory rats and mice raised at high altitude. J Exp Biol 2015; 218:1035-1043. [DOI: 10.1242/jeb.112862] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
ABSTRACTEcological studies show that mice can be found at high altitude (HA – up to 4000 m) while rats are absent at these altitudes, and there are no data to explain this discrepancy. We used adult laboratory rats and mice that have been raised for more than 30 generations in La Paz, Bolivia (3600 m), and compared their hematocrit levels, right ventricular hypertrophy (index of pulmonary hypertension) and alveolar surface area in the lungs. We also used whole-body plethysmography, indirect calorimetry and pulse oxymetry to measure ventilation, metabolic rate (O2 consumption and CO2 production), heart rate and pulse oxymetry oxygen saturation (pO2,sat) under ambient conditions, and in response to exposure to sea level PO2 (32% O2=160 mmHg for 10 min) and hypoxia (18% and 15% O2=90 and 75 mmHg for 10 min each). The variables used for comparisons between species were corrected for body mass using standard allometric equations, and are termed mass-corrected variables. Under baseline, compared with rats, adult mice had similar levels of pO2,sat, but lower hematocrit and hemoglobin levels, reduced right ventricular hypertrophy and higher mass-corrected alveolar surface area, tidal volume and metabolic rate. In response to sea level PO2 and hypoxia, mice and rats had similar changes of ventilation, but metabolic rate decreased much more in hypoxia in mice, while pO2,sat remained higher in mice. We conclude that laboratory mice and rats that have been raised at HA for >30 generations have different physiological responses to altitude. These differences might explain the different altitude distribution observed in wild rats and mice.
Collapse
Affiliation(s)
| | - Gabriella Villalpando
- Instituto Boliviano de Biologia de Altura, and Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Marcelino Gonzales
- Instituto Boliviano de Biologia de Altura, and Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Ibana Valverde
- Instituto Boliviano de Biologia de Altura, and Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Rudy Soria
- Instituto Boliviano de Biologia de Altura, and Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Vincent Joseph
- Centre de Recherche du CHU de Québec, and Université Laval, Quebec, Quebec, Canada G1L3L5
| |
Collapse
|
32
|
Dzal YA, Jenkin SEM, Lague SL, Reichert MN, York JM, Pamenter ME. Oxygen in demand: How oxygen has shaped vertebrate physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:4-26. [PMID: 25698654 DOI: 10.1016/j.cbpa.2014.10.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sabine L Lague
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michelle N Reichert
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julia M York
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
33
|
Cadena V, Tattersall G. Body temperature regulation during acclimation to cold and hypoxia in rats. J Therm Biol 2014; 46:56-64. [DOI: 10.1016/j.jtherbio.2014.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022]
|
34
|
Dzialowski EM, Tattersall GJ, Nicol SC, Frappell PB. Fluctuations in oxygen influence facultative endothermy in bumblebees. J Exp Biol 2014; 217:3834-42. [DOI: 10.1242/jeb.107052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bumblebees are facultative endotherms, having the ability to elevate thorax temperature above ambient temperature by elevating metabolism. Here, we investigated the influence of hypoxia on metabolic demands and thermoregulatory capabilities of the bumblebee Bombus terrestris. We measured thorax temperature, rates of oxygen consumption and carbon dioxide production, and abdominal pumping rates of bees randomly exposed to oxygen levels of 20, 15, 10 and 5 kPa at 26°C. Under normoxia, bumblebees maintained an elevated mean thorax temperature of 35.5°C. There was no significant change in thorax temperature at 15 kPa O2 (33.4°C). Mean thorax temperature decreased significantly at 10 kPa O2 (31.6°C) and 5 kPa O2 (27.3°C). Bees were able to maintain an elevated metabolic rate at 15 and 10 kPa O2. In normoxia, endothermic bees exhibited periods of rapid abdominal pumping (327 min−1) interspaced by periods of no abdominal pumping. At 10 kPa O2, abdominal pumping rate decreased (255 min−1) but became more continuous. Upon exposure to 5 kPa, metabolic rate and abdominal pumping rate (152 min−1) decreased, although the animals continued abdominal pumping at the reduced rate throughout the exposure period. Bumblebees are able to meet the energetic demands of endothermy at 15 kPa O2, but become compromised at levels of 10 kPa O2 and below.
Collapse
Affiliation(s)
- Edward M. Dzialowski
- Developmental Integrative Biology Cluster, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Glenn J. Tattersall
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada, L2S 3A1
| | - Stewart C. Nicol
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7005, Australia
| | - Peter B. Frappell
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
| |
Collapse
|
35
|
Branco LG, Soriano RN, Steiner AA. Gaseous Mediators in Temperature Regulation. Compr Physiol 2014; 4:1301-38. [DOI: 10.1002/cphy.c130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Kwiatkoski M, Soriano RN, da Silva GSF, Francescato HD, Coimbra TM, Glass ML, Carnio EC, Branco LGS. Endogenous preoptic hydrogen sulphide attenuates hypoxia-induced hyperventilation. Acta Physiol (Oxf) 2014; 210:913-27. [PMID: 24119224 DOI: 10.1111/apha.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/06/2013] [Accepted: 09/26/2013] [Indexed: 11/27/2022]
Abstract
AIM We hypothesized that hydrogen sulphide (H2 S), acting specifically in the anteroventral preoptic region (AVPO - an important integrating site of thermal and cardiorespiratory responses to hypoxia in which H2 S synthesis has been shown to be increased under hypoxic conditions), modulates the hypoxic ventilatory response. METHODS To test this hypothesis, we measured pulmonary ventilation (V˙E) and deep body temperature of rats before and after intracerebroventricular (icv) or intra-AVPO microinjection of aminooxyacetate (AOA; CBS inhibitor) or Na2 S (H2 S donor) followed by 60 min of hypoxia exposure (7% O2 ). Furthermore, we assessed the AVPO levels of H2 S of rats exposed to hypoxia. Control rats were kept under normoxia. RESULTS Microinjection of vehicle, AOA or Na2 S did not change V˙E under normoxic conditions. Hypoxia caused an increase in ventilation, which was potentiated by microinjection of AOA because of a further augmented tidal volume. Conversely, treatment with Na2 S significantly attenuated this response. The in vivo H2 S data indicated that during hypoxia the lower the deep body temperature the smaller the degree of hyperventilation. Under hypoxia, H2 S production was found to be increased in the AVPO, indicating that its production is responsive to hypoxia. The CBS inhibitor attenuated the hypoxia-induced increase in the H2 S synthesis, suggesting an endogenous synthesis of the gas. CONCLUSION These data provide solid evidence that AVPO H2 S production is stimulated by hypoxia, and this gaseous messenger exerts an inhibitory modulation of the hypoxic ventilatory response. It is probable that the H2 S modulation of hypoxia-induced hyperventilation is at least in part in proportion to metabolism.
Collapse
Affiliation(s)
- M. Kwiatkoski
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - R. N. Soriano
- Nursing School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - G. S. F. da Silva
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - H. D. Francescato
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - T. M. Coimbra
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - M. L. Glass
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - E. C. Carnio
- Nursing School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - L. G. S. Branco
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
37
|
Abstract
Hibernation in endotherms and ectotherms is characterized by an energy-conserving metabolic depression due to low body temperatures and poorly understood temperature-independent mechanisms. Rates of gas exchange are correspondly reduced. In hibernating mammals, ventilation falls even more than metabolic rate leading to a relative respiratory acidosis that may contribute to metabolic depression. Breathing in some mammals becomes episodic and in some small mammals significant apneic gas exchange may occur by passive diffusion via airways or skin. In ectothermic vertebrates, extrapulmonary gas exchange predominates and in reptiles and amphibians hibernating underwater accounts for all gas exchange. In aerated water diffusive exchange permits amphibians and many species of turtles to remain fully aerobic, but hypoxic conditions can challenge many of these animals. Oxygen uptake into blood in both endotherms and ectotherms is enhanced by increased affinity of hemoglobin for O₂ at low temperature. Regulation of gas exchange in hibernating mammals is predominately linked to CO₂/pH, and in episodic breathers, control is principally directed at the duration of the apneic period. Control in submerged hibernating ectotherms is poorly understood, although skin-diffusing capacity may increase under hypoxic conditions. In aerated water blood pH of frogs and turtles either adheres to alphastat regulation (pH ∼8.0) or may even exhibit respiratory alkalosis. Arousal in hibernating mammals leads to restoration of euthermic temperature, metabolic rate, and gas exchange and occurs periodically even as ambient temperatures remain low, whereas body temperature, metabolic rate, and gas exchange of hibernating ectotherms are tightly linked to ambient temperature.
Collapse
Affiliation(s)
- William K Milsom
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia, Canada
| | | |
Collapse
|
38
|
Nathaniel TI, Otukonyong EE, Okon M, Chaves J, Cochran T, Nathaniel AI. Metabolic regulatory clues from the naked mole rat: toward brain regulatory functions during stroke. Brain Res Bull 2013; 98:44-52. [PMID: 23886571 DOI: 10.1016/j.brainresbull.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 12/30/2022]
Abstract
Resistance to tissue hypoxia is a robust fundamental adaptation to low oxygen supply, and represents a novel neuroscience problem with significance to mammalian physiology as well as human health. With the underlying mechanisms strongly conserved in evolution, the ability to resist tissue hypoxia in natural systems has recently emerged as an interesting model in mammalian physiology research to understand mechanisms that can be manipulated for the clinical management of stroke. The extraordinary ability to resist tissue hypoxia by the naked mole rat (NMR) indicates the presence of a unique mechanism that underlies the remarkable healthy life span and exceptional hypoxia resistance. This opens an interesting line of research into understanding the mechanisms employed by the naked mole rat (Heterocephalus glaber) to protect the brain during hypoxia. In a series of studies, we first examined the presence of neuroprotection in the brain cells of naked mole rats (NMRs) subjected to hypoxic insults, and then characterized the expression of such neuroprotection in a wide range of time intervals. We used oxygen nutrient deprivation (OND), an in vitro model of resistance to tissue hypoxia to determine whether there is evidence of neuronal survival in the hippocampal (CA1) slices of NMRs that are subjected to chronic hypoxia. Hippocampus neurons of NMRs that were kept in hypoxic condition consistently tolerated OND right from the onset time of 5h. This tolerance was maintained for 24h. This finding indicates that there is evidence of resistance to tissue hypoxia by CA1 neurons of NMRs. We further examined the effect of hypoxia on metabolic rate in the NMR. Repeated measurement of metabolic rates during exposure of naked mole rats to hypoxia over a constant ambient temperature indicates that hypoxia significantly decreased metabolic rates in the NMR, suggesting that the observed decline in metabolic rate during hypoxia may contribute to the adaptive mechanism used by the NMR to resist tissue hypoxia. This work is aimed to contribute to the understanding of mechanisms of resistance to tissue hypoxia in the NMR as an important life-sustaining process, which can be translated into therapeutic interventions during stroke.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- University of South Carolina School of Medicine, HSEB, 607 Grove Road, Greenville, SC 29605, United States.
| | | | | | | | | | | |
Collapse
|
39
|
Interaction of hypoxia and core temperature: potential role of TRPV1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:173-8. [PMID: 23080159 DOI: 10.1007/978-94-007-4584-1_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hypoxia exposure in small mammals elicits an initial rise in ventilation followed by a reduction to levels that are often less than the normoxic value. The fall in ventilation is matched by a decrease in metabolism rate and a reduction in core body temperature (Tb). The transient receptor potential vanilloid 1 (TRPV1) ion channel has been implicated in thermoregulation (Caterina et al., Science 288:306-313, 2000) and recently shown to exert a tonic effect on Tb in human subjects (Gavva et al., Pain 136:202-210, 2008). We review herein the hypothesis that TRPV1 modulates the Tb response to hypoxia. We provide preliminary evidence that a 24 h hypoxia (FIO(2)=0.1) exposure caused an enhanced decrease in Tb in mutant TRPV1(-/-) mice compared to the TRPV1(+/+) genotype (Tb was » 1°C lower than TRPV1(+/+)). Further investigation is warranted to determine the extent of TRPV1 ion channel involvement in acute and adaptive responses to hypoxia.
Collapse
|
40
|
Porteus C, Hedrick MS, Hicks JW, Wang T, Milsom WK. Time domains of the hypoxic ventilatory response in ectothermic vertebrates. J Comp Physiol B 2011; 181:311-33. [PMID: 21312038 PMCID: PMC3058336 DOI: 10.1007/s00360-011-0554-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 01/11/2011] [Accepted: 01/19/2011] [Indexed: 01/19/2023]
Abstract
Over a decade has passed since Powell et al. (Respir Physiol 112:123-134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123-134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O(2) supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more 'holistic' fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind.
Collapse
Affiliation(s)
- Cosima Porteus
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | |
Collapse
|
41
|
Alò R, Avolio E, Carelli A, Facciolo RM, Canonaco M. Amygdalar glutamatergic neuronal systems play a key role on the hibernating state of hamsters. BMC Neurosci 2011; 12:10. [PMID: 21251260 PMCID: PMC3031265 DOI: 10.1186/1471-2202-12-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Excitatory transmitting mechanisms are proving to play a critical role on neuronal homeostasis conditions of facultative hibernators such as the Syrian golden hamster. Indeed works have shown that the glutamatergic system of the main olfactory brain station (amygdala) is capable of controlling thermoregulatory responses, which are considered vital for the different hibernating states. In the present study the role of amygdalar glutamatergic circuits on non-hibernating (NHIB) and hibernating (HIB) hamsters were assessed on drinking stimuli and subsequently compared to expression variations of some glutamatergic subtype mRNA levels in limbic areas. For this study the two major glutamatergic antagonists and namely that of N-methyl-D-aspartate receptor (NMDAR), 3-(+)-2-carboxypiperazin-4-yl-propyl-1-phosphonate (CPP) plus that of the acid α-amine-3-hydroxy-5-methyl-4-isoxazol-propionic receptor (AMPAR) site, cyano-7-nitro-quinoxaline-2,3-dione (CNQX) were infused into the basolateral amygdala nucleus. Attempts were made to establish the type of effects evoked by amygdalar glutamatergic cross-talking processes during drinking stimuli, a response that may corroborate their major role at least during some stages of this physiological activity in hibernators. RESULTS From the behavioral results it appears that the two glutamatergic compounds exerted distinct effects. In the first case local infusion of basolateral complexes (BLA) with NMDAR antagonist caused very great (p < 0.001) drinking rhythms while moderately increased feeding (p < 0.05) responses during arousal with respect to moderately increased drinking levels in euthermics. Conversely, treatment with CNQX did not modify drinking rhythms and so animals spent more time executing exploratory behaviors. These same antagonists accounted for altered glutamatergic transcription activities as displayed by greatly reduced GluR1, NR1 and GluR2 levels in hippocampus, ventromedial hypothalamic nucleus (VMN) and amygdala, respectively, plus a great (p < 0.01) up-regulation of GluR2 in VMN of hibernators. CONCLUSION We conclude that predominant drinking events evoked by glutamatergic mechanisms, in the presence of prevalently down regulated levels of NR1/2A of some telencephalic and hypothalamic areas appear to constitute an important neuronal switch at least during arousal stage of hibernation. The establishment of the type of glutamatergic subtypes that are linked to successful hibernating states, via drinking stimuli, may have useful bearings toward sleeping disorders.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory of Ecology Department, University of Calabria, Ponte Pietro Bucci, 87030 Arcavacata di Rende, Cosenza, Italy
| | | | | | | | | |
Collapse
|
42
|
Beaudry JL, McClelland GB. Thermogenesis in CD-1 mice after combined chronic hypoxia and cold acclimation. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:301-9. [PMID: 20659581 DOI: 10.1016/j.cbpb.2010.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/07/2023]
Abstract
Many small mammals thermoregulate through shivering in muscle and/or non-shivering thermogenesis (NST) via brown adipose tissue (BAT) by the actions of mitochondrial uncoupling proteins (UCPs). An up-regulation of these mechanisms would be advantageous in a cold environment but not in conditions of low oxygen as it leads to needless increases in energy expenditure. We examined the chronic effect of 4 weeks of exposure to hypobaric hypoxia (H, 480 mm Hg), cold (C, 5 degrees C) and the combination of the two stressors (HC) compared to normoxic thermoneutral controls (N, 28 degrees C) in male CD-1 mice. We found that hypoxic/cold acclimated mice had significantly lower body temperatures (T(b)) after acclimation along with complete abolishment of diurnal T(b) fluctuations. Capacity for NST was assessed by changes in intrascapular BAT mass, mitochondrial content and UCP1 content per milligram mitochondria. Acclimation caused distinct remodeling of BAT that was reflected in differences in NE-induced increases in oxygen consumption (VO(2)) used to assess NST capacity. Reduction of T(b) in HC acclimated mice was not due to a decreased heat-generating capacity of BAT. VO(2) during an acute temperature challenge (32 to 4 degrees C) in normoxia was similar in all treatment groups compared to controls but thermal conductance was greater in C acclimated mice and T(b) higher in HC acclimated mice. We propose that an overriding inhibition by hypoxia on neural feedback pathways persists even after weeks of acclimation when combined with chronic cold.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | |
Collapse
|
43
|
Branco LGS, Bicego KC, Carnio EC, Pittman QJ. Gaseous neurotransmitters and their role in anapyrexia. Front Biosci (Elite Ed) 2010; 2:948-60. [PMID: 20515766 DOI: 10.2741/e154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammals keep their body temperature (Tb) relatively constant even under a wide range of ambient temperature variation. However, in some particular situations it may be beneficial to increase or to decrease Tb. For instance, under hypoxic conditions, a regulated drop in Tb (anapyrexia) takes place which has been reported to be crucial for survival in a number of different species. This review highlights major advances in the research about nitric oxide (NO) and carbon monoxide (CO- where data are relatively less abundant), before focusing on the role played by these gaseous neuromediators in thermoregulation, under the conditions of euthermia and anapyrexia. Available data are consistent with the notion that both NO and CO, acting on the CNS, participate in thermoregulation, with NO decreasing Tb and CO increasing it. However further studies are required before definitive conclusions can be made as to their physiological mechanisms of action.
Collapse
Affiliation(s)
- Luiz G S Branco
- Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
44
|
Comparative respiratory strategies of subterranean and fossorial octodontid rodents to cope with hypoxic and hypercapnic atmospheres. J Comp Physiol B 2010; 180:877-84. [DOI: 10.1007/s00360-010-0465-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
|
45
|
Tattersall GJ, Milsom WK. Hypoxia reduces the hypothalamic thermogenic threshold and thermosensitivity. J Physiol 2009; 587:5259-74. [PMID: 19770191 PMCID: PMC2790263 DOI: 10.1113/jphysiol.2009.175828] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 09/14/2009] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is well known to reduce the body temperature (T(b)) of mammals, although the neural origins of this response remain uncertain. Short-term hypoxic exposure causes a reduction in the lower critical temperature of the thermal neutral zone and a reduction in whole body thermal conductance of rodents, providing indirect support that hypoxia lowers T(b) in a regulated manner. In this study, we examined directly the potential for changes in central thermosensitivity to evoke the hypoxic metabolic response by heating and cooling the preoptic area of the hypothalamus (the area which integrates thermoreceptor input and regulates thermoeffector outputs) using chronic, indwelling thermodes in ground squirrels during normoxia and hypoxia (7, 10 and 12% O(2)). We found that the threshold hypothalamic temperature for the metabolic response to cooling (T(th)) of approximately 38 degrees C in normoxia was proportionately reduced in hypoxia (down to 28-31 degrees C at 7% O(2)) and that the metabolic thermosensitivity (alpha; the change in metabolic rate for any given change in hypothalamic temperature below the lower critical temperature) was comparatively reduced by 5 to 9 times. This provides strong support for the hypothesis that the fall in temperature that occurs during hypoxia is the result of a reduction in the activation of thermogenic mechanisms. The decrease in the central thermosensitivity in hypoxia, however, appears to be a critical factor in the alteration of mammalian T(b). We suggest, therefore, that an altered central thermosensitivity may provide a proximate explanation of how low oxygen and similar stressors reduce normal fluctuations in T(b) (i.e. circadian), in addition to the depression in regulated T(b).
Collapse
Affiliation(s)
- Glenn J Tattersall
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada L2S 3A1.
| | | |
Collapse
|
46
|
Nathaniel TI, Saras A, Umesiri FE, Olajuyigbe F. Tolerance to oxygen nutrient deprivation in the hippocampal slices of the naked mole rats. J Integr Neurosci 2009; 8:123-36. [PMID: 19618484 DOI: 10.1142/s0219635209002149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/04/2009] [Indexed: 11/18/2022] Open
Abstract
Hypoxia tolerance in the naked mole rats (Heterocephalus glaber) represents a unique physiological phenomenon characterized by the capability to regulate oxygen demand to attenuate energetically costly response to low oxygen condition. Several aspects of tolerance to hypoxia in the naked mole rat are consistent with a state of neuroprotection; however, it remains to be established if such protective capability is expressed in the brain cells of mole rats subjected to hypoxia insults. The objective of this study was to determine whether evidence of tolerance to oxygen nutrient deprivation exists in the chronic cultures of the naked mole rats hippocampal slices. We used oxygen nutrient deprivation (OND), an in vitro model of hypoxia tolerance, to determine neuronal survival in the hippocampal slices of mole rats and rats (Rattus sp.). Our results indicate that hippocampal slices of mole rats kept in hypoxic condition consistently tolerate OND right from the onset time of 5 hrs and the tolerance to OND is maintained for 24 hrs, suggesting that there is evidence of tolerance to OND in hippocampal slices of mole rats.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- Center for Natural and Health Sciences, Science Department, Marywood University, 2300 Adams Avenue, Scranton, PA 18509, USA.
| | | | | | | |
Collapse
|
47
|
Levesque DL, Tattersall GJ. Seasonal changes in thermoregulatory responses to hypoxia in the Eastern chipmunk (Tamias striatus). ACTA ACUST UNITED AC 2009; 212:1801-10. [PMID: 19482997 DOI: 10.1242/jeb.027094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian heterotherms are known to be more tolerant of low oxygen levels than homeotherms. However, heterotherms demonstrate extreme seasonality in daily heterothermy and torpor expression. Because hypoxia depresses body temperature (T(b)) and metabolism in mammals, it was of interest to see if seasonal comparisons of normothermic animals of a species capable of hibernation produce changes in their responses to hypoxia that would reflect a seasonal change in hypoxia tolerance. The species studied, the Eastern chipmunk (Tamias striatus, Linnaeus 1758), is known to enter into torpor exclusively in the winter. To test for seasonal differences in the metabolic and thermoregulatory responses to hypoxia (9.9 kPa), flow-through respirometry was used to compare oxygen consumption, minimum thermal conductance and T(b) under fixed ambient temperature (T(a)) conditions whereas a thermal gradient was used to assess selected T(a) and T(b) in response to hypoxia, in both summer- and winter-acclimated animals. No differences were observed between seasons in resting metabolism or thermal conductance in normoxic, normothermic animals. Providing the animals with a choice of T(a) in hypoxia attenuated the hypoxic drop in T(b) in both seasons, suggesting that the reported fall in T(b) in hypoxia is not fully manifested in the behavioural pathways responsible for thermoregulation in chipmunks. Instead, T(b) in hypoxia tends to be more variable and dependent on both T(a) and season. Although T(b) dropped in hypoxia in both seasons, the decrease was less in the winter with no corresponding decrease in metabolism, indicating that winter chipmunks are more tolerant to hypoxia than summer animals.
Collapse
Affiliation(s)
- Danielle L Levesque
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada, L2S 3A1
| | | |
Collapse
|
48
|
Role of preoptic opioid receptors in the body temperature reduction during hypoxia. Brain Res 2009; 1286:66-74. [DOI: 10.1016/j.brainres.2009.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/10/2009] [Accepted: 06/13/2009] [Indexed: 11/16/2022]
|
49
|
Ma Y, Wu S, Rasley B, Duffy L. Adaptive response of brain tissue oxygenation to environmental hypoxia in non-sedated, non-anesthetized arctic ground squirrels. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:315-22. [PMID: 19559806 DOI: 10.1016/j.cbpa.2009.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/12/2009] [Accepted: 06/14/2009] [Indexed: 10/20/2022]
Abstract
The present study examined the physiological mechanisms of the responses of brain tissue oxygen partial pressure (P(t)O(2)), brain temperature (T(brain)), global oxygen consumption (V(O2)), and respiratory frequency (f(R)) to hypoxia in non-sedated and non-anesthetized arctic ground squirrels (Spermophilus parryii, AGS) and rats. We found that (1) in contrast to oxygen partial pressure in blood (P(a)O(2)), the baseline value of P(t)O(2) in summer euthermic AGS is significantly higher than in rats; (2) both P(t)O(2) and P(a)O(2) are dramatically reduced by inspired 8% O(2) in AGS and rats, but AGS have a greater capacity in P(t)O(2) to cope with environmental hypoxia; (3) metabolic rate before, during, and after hypoxic exposure is consistently lower in AGS than in rats; (4) the respiratory responding patterns to hypoxia in the two species differ in that f(R) decreases in AGS but increases in rats. These results suggest that (1) AGS have special mechanisms to maintain higher P(t)O(2) and lower P(a)O(2,) and these levels in AGS represent a typical pattern of adaptation of heterothermic species to and a brain protection from hypoxia; (2) AGS brain responds to hypoxia through greater decreases in P(t)O(2) and decreased f(R) and ventilation. In contrast, rat brain responds to hypoxia by less reduction in P(t)O(2) and increased f(R) and ventilation.
Collapse
Affiliation(s)
- Yilong Ma
- Alaska Basic Neuroscience Program, Institute of Arctic Biology, Box 757000, 902 N Koyukuk Dr, Irving I, Rm 402, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA.
| | | | | | | |
Collapse
|
50
|
Cadena V, Tattersall GJ. Decreased precision contributes to the hypoxic thermoregulatory response in lizards. J Exp Biol 2009; 212:137-44. [DOI: 10.1242/jeb.023531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The decrease in body temperature (Tb) observed in most vertebrate classes in response to hypoxia has been attributed to a regulated decrease in set-point, protecting organs against tissue death due to oxygen depletion. Hypoxia, however, imparts particular challenges to metabolic function which may, in turn, affect thermoregulation. In ectotherms, where thermoregulation is mainly behavioural, stressors that influence the propensity to move and respond to temperature gradients are expected to have an impact on thermoregulatory control. Using low oxygen as a potent stressor,we evaluated the variability and level of thermoregulation of inland bearded dragons. To examine the source of thermoregulatory variability, we studied their behaviour in an electronically controlled temperature-choice shuttle box, a constant temperature dual-choice shuttle box, and a linear thermal gradient. A significant increase in the size of the Tbrange was observed at the lowest oxygen concentration (4% O2),reflecting a decrease in thermoregulatory precision in the temperature-choice shuttle box. This was also accompanied by a drop of ∼2–4°C in Tb, the drop being greatest in situations where Tb must be actively defended. Situations that force the lizards to continually choose temperatures, rather than passively remain at a given temperature, lead to an increase in the variability in the manifested Tb, which is further exaggerated in hypoxia. This study reveals that a decrease in thermoregulatory precision caused by a diminished propensity to move or effect appropriate thermoregulatory responses may be a contributing component in the lowering of selected body temperatures observed in many hypoxic ectotherms.
Collapse
Affiliation(s)
- Viviana Cadena
- Department of Biological Sciences, Brock University, St Catharines, ON,Canada, L2S 3A1
| | - Glenn J. Tattersall
- Department of Biological Sciences, Brock University, St Catharines, ON,Canada, L2S 3A1
| |
Collapse
|