1
|
Cisterna B, Malatesta M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int J Mol Sci 2024; 25:1833. [PMID: 38339110 PMCID: PMC10855217 DOI: 10.3390/ijms25031833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
2
|
Yee EM, Hauser CT, Petrocelli JJ, de Hart NMMP, Ferrara PJ, Bombyck P, Fennel ZJ, van Onselen L, Mookerjee S, Funai K, Symons JD, Drummond MJ. Treadmill training does not enhance skeletal muscle recovery following disuse atrophy in older male mice. Front Physiol 2023; 14:1263500. [PMID: 37942230 PMCID: PMC10628510 DOI: 10.3389/fphys.2023.1263500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction: A hallmark of aging is poor muscle recovery following disuse atrophy. Efficacious strategies to enhance muscle recovery following disuse atrophy in aging are non-existent. Prior exercise training could result in favorable muscle morphological and cellular adaptations that may promote muscle recovery in aging. Here, we characterized the impact of exercise training on skeletal muscle inflammatory and metabolic profiles and cellular remodeling and function, together with femoral artery reactivity prior to and following recovery from disuse atrophy in aged male mice. We hypothesized that 12 weeks of treadmill training in aged male mice would improve skeletal muscle cellular remodeling at baseline and during recovery from disuse atrophy, resulting in improved muscle regrowth. Methods: Physical performance, ex vivo muscle and vascular function, tissue and organ mass, hindlimb muscle cellular remodeling (macrophage, satellite cell, capillary, myofiber size, and fibrosis), and proteolytic, inflammatory, and metabolic muscle transcripts were evaluated in aged exercise-trained and sedentary mice. Results: We found that at baseline following exercise training (vs. sedentary mice), exercise capacity and physical function increased, fat mass decreased, and endothelial function improved. However, exercise training did not alter tibialis anterior or gastrocnemius muscle transcriptional profile, macrophage, satellite cell, capillarity or collagen content, or myofiber size and only tended to increase tibialis mass during recovery from disuse atrophy. Conclusion: While exercise training in old male mice improved endothelial function, physical performance, and whole-body tissue composition as anticipated, 12 weeks of treadmill training had limited impact on skeletal muscle remodeling at baseline or in response to recovery following disuse atrophy.
Collapse
Affiliation(s)
- Elena M. Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Carson T. Hauser
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Naomi M. M. P. de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Patrick J. Ferrara
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Princess Bombyck
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Zachary J. Fennel
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Lisha van Onselen
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
| | - Sohom Mookerjee
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Katsuhiko Funai
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - J. David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Wiggs MP, Lee Y, Shimkus KL, O'Reilly CI, Lima F, Macias BR, Shirazi-Fard Y, Greene ES, Hord JM, Braby LA, Carroll CC, Lawler JM, Bloomfield SA, Fluckey JD. Combined effects of heavy ion exposure and simulated Lunar gravity on skeletal muscle. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:39-49. [PMID: 37087178 DOI: 10.1016/j.lssr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 02/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The limitations to prolonged spaceflight include unloading-induced atrophy of the musculoskeletal system which may be enhanced by exposure to the space radiation environment. Previous results have concluded that partial gravity, comparable to the Lunar surface, may have detrimental effects on skeletal muscle. However, little is known if these outcomes are exacerbated by exposure to low-dose rate, high-energy radiation common to the space environment. Therefore, the present study sought to determine the impact of highly charge, high-energy (HZE) radiation on skeletal muscle when combined with partial weightbearing to simulate Lunar gravity. We hypothesized that partial unloading would compromise skeletal muscle and these effects would be exacerbated by radiation exposure. METHODS For month old female BALB/cByJ mice were -assigned to one of 2 groups; either full weight bearing (Cage Controls, CC) or partial weight bearing equal to 1/6th bodyweight (G/6). Both groups were then divided to receive either a single whole body absorbed dose of 0.5 Gy of 300 MeV 28Si ions (RAD) or a sham treatment (SHAM). Radiation exposure experiments were performed at the NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory on Day 0, followed by 21 d of CC or G/6 loading. Muscles of the hind limb were used to measure protein synthesis and other histological measures. RESULTS Twenty-one days of Lunar gravity (G/6) resulted in lower soleus, plantaris, and gastrocnemius muscle mass. Radiation exposure did not further impact muscle mass. 28Si exposure in normal ambulatory animals (RAD+CC) did not impact gastrocnemius muscle mass when compared to SHAM+CC (p>0.05), but did affect the soleus, where mass was higher following radiation compared to SHAM (p<0.05). Mixed gastrocnemius muscle protein synthesis was lower in both unloading groups. Fiber type composition transitioned towards a faster isoform with partial unloading and was not further impacted by radiation. The combined effects of partial loading and radiation partially mitigated fiber cross-sectional area when compared to partial loading alone. Radiation and G/6 reduced the total number of myonuclei per fiber while leading to elevated BrdU content of skeletal muscle. Similarly, unloading and radiation resulted in higher collagen content of muscle when compared to controls, but the effects of combined exposure were not additive. CONCLUSIONS The results of this study confirm that partial weightbearing causes muscle atrophy, in part due to reductions of muscle protein synthesis in the soleus and gastrocnemius as well as reduced peripheral nuclei per fiber. Additionally, we present novel data illustrating 28Si exposure reduced nuclei in muscle fibers despite higher satellite cell fusion, but did not exacerbate muscle atrophy, CSA changes, or collagen content. In conclusion, both partial loading and HZE radiation can negatively impact muscle morphology.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, United States.
| | - Yang Lee
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Kevin L Shimkus
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Colleen I O'Reilly
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Florence Lima
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Brandon R Macias
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; NASA Johnson Space Center, Houston, Texas, United States
| | - Yasaman Shirazi-Fard
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; NASA Ames Research Center, Moffett Field, CA, United States
| | - Elizabeth S Greene
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Jeffrey M Hord
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Leslie A Braby
- Department of Nuclear Engineering, Texas A&M University, College Station, TX, United States
| | - Chad C Carroll
- Department of Physiology, Purdue University, West Lafayette, IN, United States
| | - John M Lawler
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - James D Fluckey
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Amarante do Nascimento M, Nunes JP, Pina FLC, Ribeiro AS, Carneiro NH, Venturini D, Barbosa DS, Mayhew JL, Cyrino ES. Comparison of 2 Weekly Frequencies of Resistance Training on Muscular Strength, Body Composition, and Metabolic Biomarkers in Resistance-Trained Older Women: Effects of Detraining and Retraining. J Strength Cond Res 2022; 36:1437-1444. [PMID: 32868680 DOI: 10.1519/jsc.0000000000003799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Amarante do Nascimento, M, Nunes, JPA, Pina, FLC, Ribeiro, AS, Carneiro, NH, Venturini, D, Barbosa, DS, Mayhew, JL, and Cyrino, ES. Comparison of 2 weekly frequencies of resistance training on muscular strength, body composition, and metabolic biomarkers in resistance-trained older women: Effects of detraining and retraining. J Strength Cond Res 36(5): 1437-1444, 2022-This study aimed to compare the effects of 2 weekly frequencies of resistance training (RT) on muscular strength, body composition, and metabolic biomarkers in previously resistance-trained older women after detraining and retraining. Forty subjects (>60 years) performed RT (8 exercises, 1 set of 10-15 repetitions maximum) 2 (G2x) or 3 (G3x) times per week over 12 weeks of training and retraining. After training, subjects were detrained for 12 weeks. After detraining, there were significant decreases (p < 0.05) in upper-body (∼12%) and lower-body (∼14%) muscular strength, fat-free mass (FFM) (∼2%), and testosterone (∼26%), whereas increases were revealed for fat mass (FM) (∼4%), relative body fat (∼3%), fasting glucose (∼8%), low-density lipoprotein cholesterol (LDL-C) (∼21%), and triglycerides (∼24%), with no differences between groups (p > 0.05). Following retraining, there were significant increases (p < 0.05) for upper (∼7%) and lower (∼10%) muscular strength, FFM (∼2%), and testosterone (∼20%). In contrast, decreases were found for FM (∼7%), relative body fat (∼3%), fasting glucose (∼6%), LDL-C (∼14%), and triglycerides (∼21%), also with no differences between groups (p > 0.05). Gains after retraining were lower than after training (p < 0.05) only for upper- and lower-body muscular strength (∼6%) and testosterone (∼11%). Total cholesterol, high-density lipoprotein cholesterol, IGF-1, and C-reactive protein did not change at any point in the study for either group (p > 0.05). Our results suggest that older women can regain previous RT program benefits following detraining, regardless of the weekly training frequency. However, some fitness components may take longer to reestablish than the initial training level.
Collapse
Affiliation(s)
- Matheus Amarante do Nascimento
- Paraná State University-UNESPAR, Paranavaí Campus, Physical Education Department, Paranavaí, Brazil
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, PR, Brazil
| | - João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, PR, Brazil
| | - Fábio L C Pina
- Center for Research in Health Science, University of Northern Paraná-UNOPAR, Londrina, PR, Brazil
| | - Alex S Ribeiro
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, PR, Brazil
- Center for Research in Health Science, University of Northern Paraná-UNOPAR, Londrina, PR, Brazil
| | - Nelson H Carneiro
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, PR, Brazil
| | - Danielle Venturini
- Clinical Analyses Laboratory, Londrina State University, Londrina, PR, Brazil ; and
| | - Décio S Barbosa
- Clinical Analyses Laboratory, Londrina State University, Londrina, PR, Brazil ; and
| | - Jerry L Mayhew
- Exercise Science Department, Truman State University, Kirksville, Missouri
| | - Edilson S Cyrino
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, PR, Brazil
| |
Collapse
|
5
|
Jardim RAC, de Sousa TS, Dos Santos WNN, Matos AP, Iosimuta NCR. Blood flow restriction with different load levels in patients with knee osteoarthritis: protocol of a randomized controlled trial. Trials 2022; 23:41. [PMID: 35033169 PMCID: PMC8761307 DOI: 10.1186/s13063-022-05998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The effectiveness of blood flow restriction training (BFR) in elderly with knee osteoarthritis (OA) is comparable to performing high-intensity protocols (70 to 80% of 1 RM [repetition maximum]) that are known to be effective for improving the muscle strength of knee extensors, with the advantage of generating less particular rating of perceived exertion and pain immediately after training. However, despite being a promising alternative, little is known about the best way to apply the BFR, such as level of pressure and combination or not with other therapeutic modalities. The purpose of this study is to evaluate whether different levels of blood flow restriction with low load (BFR + LL) and no load (BFR + rest) are non-inferior to high-intensity resistance exercise (HIRE+BFRplacebo) for pain reduction in patients with knee OA. Methods/design This clinical trial is a non-inferiority, five-arm, randomized, active-controlled, single trial which will be carried out in 165 patients of both sexes with knee OA, aged 50 years and older. Participants will be randomly allocated into 5 exercise groups (40% of BFR + LL; 80% of BFR + LL; 40% of BFR + rest; 80% BFR + rest, and HIRE+BFR placebo). A mixed linear model will be used to examine the effect of group-by-time interaction on pain intensity on the WOMAC subscale (primary outcome) and on disease severity, physical functional data, balance data, quality of life, global perceived effect scale, and muscle strength (secondary outcomes). Participants will be analyzed for intention-to-treat, and the statistical assessor blinded to the groups. The collection of outcomes 72 h after completion of the 16 weeks of interventions will be the primary measurement point. Follow-up secondary timepoints will be collected at 20, 28, 40, 52, and 64 weeks after the end of interventions, except for pain during the training, which will be measured immediately at the end of each session. Only the comparison of the primary outcome between the HIRE group with each BFR group will be analyzed in the non-inferiority framework, the other comparisons between the BFR groups for the primary outcome, and all secondary outcomes will be interpreted in the superiority framework. Discussion The results of this clinical trial can point out more clearly to ways to optimize the BFR training with the minimum of pain immediately after training, which will allow the offer of an effective and more adherent strengthening training to patients with knee OA. Trial registration Registro Brasileiro de Ensaios Clínicos, RBR-93rx9q. Registered on 23 July 2020. Version 1.0. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-05998-3.
Collapse
Affiliation(s)
- Roger Andrey Carvalho Jardim
- Postgraduate Program of Health Sciences, Department of Biological Sciences and Health, Federal University of Amapá - UNIFAP, Macapá, AP, Brazil.
| | - Tamara Silva de Sousa
- Postgraduate Program of Health Sciences, Department of Biological Sciences and Health, Federal University of Amapá - UNIFAP, Macapá, AP, Brazil
| | | | - Areolino Pena Matos
- Postgraduate Program of Health Sciences, Department of Biological Sciences and Health, Federal University of Amapá - UNIFAP, Macapá, AP, Brazil
| | - Natália Camargo Rodrigues Iosimuta
- Postgraduate Program of Health Sciences, Department of Biological Sciences and Health, Federal University of Amapá - UNIFAP, Macapá, AP, Brazil
| |
Collapse
|
6
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
7
|
Jayawardena TU, Kim SY, Jeon YJ. Sarcopenia; functional concerns, molecular mechanisms involved, and seafood as a nutritional intervention - review article. Crit Rev Food Sci Nutr 2021; 63:1983-2003. [PMID: 34459311 DOI: 10.1080/10408398.2021.1969889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental basis for the human function is provided by skeletal muscle. Advancing age causes selective fiber atrophy, motor unit loss, and hybrid fiber formation resulting in hampered mass and strength, thus referred to as sarcopenia. Influence on the loss of independence of aged adults, contribute toward inclined healthcare costs conveys the injurious impact. The current understating of age-related skeletal muscle changes are addressed in this review, and further discusses mechanisms regulating protein turnover, although they do not completely define the process yet. Moreover, the reduced capacity of muscle regeneration due to impairment of satellite cell activation and proliferation with neuronal, immunological, hormonal factors were brought into the light of attention. Nevertheless, complete understating of sarcopenia requires disentangling it from disuse and disease. Nutritional intervention is considered a potentially preventable factor contributing to sarcopenia. Seafood is a crucial player in the fight against hunger and malnutrition, where it consists of macro and micronutrients. Hence, the review shed light on seafood as a nutritional intrusion in the treatment and prevention of sarcopenia. Understanding multiple factors will provide therapeutic targets in the prevention, treatment, and overcoming adverse effects of sarcopenia.
Collapse
Affiliation(s)
- Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Seo-Young Kim
- Division of Practical Application, Honam National Institute of Biological Resources, Mokpo-si, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea.,Marine Science Institute, Jeju National University, Jeju, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
8
|
Lifelong Ulk1-Mediated Autophagy Deficiency in Muscle Induces Mitochondrial Dysfunction and Contractile Weakness. Int J Mol Sci 2021; 22:ijms22041937. [PMID: 33669246 PMCID: PMC7919824 DOI: 10.3390/ijms22041937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The accumulation of damaged mitochondria due to insufficient autophagy has been implicated in the pathophysiology of skeletal muscle aging. Ulk1 is an autophagy-related kinase that initiates autophagosome assembly and may also play a role in autophagosome degradation (i.e., autophagy flux), but the contribution of Ulk1 to healthy muscle aging is unclear. Therefore, the purpose of this study was to investigate the role of Ulk1-mediated autophagy in skeletal muscle aging. At age 22 months (80% survival rate), muscle contractile and metabolic function were assessed using electrophysiology in muscle-specific Ulk1 knockout mice (MKO) and their littermate controls (LM). Specific peak-isometric torque of the ankle dorsiflexors (normalized by tibialis anterior muscle cross-sectional area) and specific force of the fast-twitch extensor digitorum longus muscles was reduced in MKO mice compared to LM mice (p < 0.03). Permeabilized muscle fibers from MKO mice had greater mitochondrial content, yet lower mitochondrial oxygen consumption and greater reactive oxygen species production compared to fibers from LM mice (p ≤ 0.04). Alterations in neuromuscular junction innervation patterns as well as changes to autophagosome assembly and flux were explored as possible contributors to the pathological features in Ulk1 deficiency. Of primary interest, we found that Ulk1 phosphorylation (activation) to total Ulk1 protein content was reduced in older muscles compared to young muscles from both human and mouse, which may contribute to decreased autophagy flux and an accumulation of dysfunctional mitochondria. Results from this study support the role of Ulk1-mediated autophagy in aging skeletal muscle, reflecting Ulk1′s dual role in maintaining mitochondrial integrity through autophagosome assembly and degradation.
Collapse
|
9
|
Rader EP, Baker BA. Age-dependent stress response DNA demethylation and gene upregulation accompany nuclear and skeletal muscle remodeling following acute resistance-type exercise in rats. Facets (Ott) 2020; 5:455-473. [PMID: 32775614 PMCID: PMC7413608 DOI: 10.1139/facets-2019-0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Efficacy of high-intensity resistance exercise becomes progressively compromised with aging. Previously, to investigate this, we developed a rodent model of high-intensity training consisting of stretch-shortening contractions (SSCs) and determined that following one month of training, young rats exhibit a robust stress response and 20% performance increase, whereas old rats display a muted stress response and 30% performance decrease. Whether these age-specific responses occur early in training and constitute primary factors in adaptation/maladaptation was not addressed. The aim of the present study was to characterize performance, remodeling, and stress response transcriptional profile 6–120 h following acute SSC exposure. For young rats, the stress response pathway was highly regulated (≥20 differentially expressed genes at each time point) and was accompanied by robust DNA demethylation, tissue remodeling, and isometric torque recovery. For old rats, a muted transcriptional profile (13 and 2 differentially expressed genes at 6 and 120 h, respectively) coincided with deficiencies in demethylation, muscle remodeling, and torque recovery. These findings occurred in the context of heightened chronic levels of stress response gene expression with aging. This demonstrates that age-related constitutive elevations in stress response gene expression was accompanied by diminished SSC-induced responsiveness in epigenomic regulation and tissue remodeling.
Collapse
Affiliation(s)
- Erik P Rader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Brent A Baker
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
10
|
Suzuki H, Yoshikawa Y, Tsujimoto H, Kitaura T, Muraoka I. Clenbuterol accelerates recovery after immobilization-induced atrophy of rat hindlimb muscle. Acta Histochem 2020; 122:151453. [PMID: 31761272 DOI: 10.1016/j.acthis.2019.151453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 01/11/2023]
Abstract
Using immunohistochemistry, we investigated whether daily administration of clenbuterol (CLE; 1 mg/kg body weight per day) accelerates recovery after casted immobilization(IMM)-induced atrophy of fast-twitch plantaris and slow-twitch soleus muscles. Adult male Sprague-Dawley rats were assigned to the control (CON), casted immobilization (IMM), casted immobilization following recovery control (RCON), and casted immobilization following recovery with CLE administration (RCLE) groups. Casted immobilization and recovery periods were 9 and 14days, respectively. Rats of the CON group were subjected to the experiment simultaneously with the IMM group. Nine days of immobilization induced muscle fiber atrophy, which was greater in the soleus muscle than in the plantaris muscle. After the 2-week recovery period, the cross-sectional areas of each fiber type in both muscles were higher in the RCON group than in the IMM group. The cross-sectional areas of each fiber type in both muscles in the RCLE group were larger than those in the RCON group. The myonuclear number of each fiber type of the plantaris muscle in the RCON and RCLE groups was higher than that in the CON group. In contrast, the myonuclear number per fiber of the soleus muscle was not affected by hindlimb immobilization, reloading, and clenbuterol administration regardless of muscle fiber type. These results suggest that CLE accelerates the recovery of atrophied plantaris and soleus muscles fibers and that their mechanisms of responses to CLE in both muscles may be different during recovery period after muscle atrophy.
Collapse
Affiliation(s)
- Hideki Suzuki
- Department of Health and Physical Education, Aichi University of Education, Kariya, Japan.
| | | | | | | | - Isao Muraoka
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
11
|
Takeda K, Takeshima E, Kojima S, Watanabe M, Matsuzaki T, Hoso M. Daily and short-term application of joint movement for the prevention of infrapatellar fat pad atrophy due to immobilization. J Phys Ther Sci 2019; 31:873-877. [PMID: 31871369 PMCID: PMC6879406 DOI: 10.1589/jpts.31.873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/01/2019] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To mobilize the knee joint during cast fixation and to determine whether infrapatellar fat pad changes can be prevented. [Materials and Methods] We randomly allocated Wistar rats into 3 groups as follows: normal group, raised in normal conditions (n=5); contracture group, immobilized with cast fixation (n=5); and prevention group, treated with joint movement during immobilization (n=5). We immobilized the right hindlimb using cast fixation. Joint movement in the prevention group was accomplished by repeatedly pulling the right hindlimb caudally and then returning the leg to the bent position for 10 minutes every day for 2 weeks. We used a metronome to maintain a constant speed, with one set lasting 2 seconds (1-second traction and 1-second return). [Results] The contracture group had adipose cells of various sizes and fibrosis in the infrapatellar fat pad. These changes were also found in milder forms in the prevention group. We found significant differences in the cross section of adipose cells and in knee extension restriction between the groups. [Conclusion] Promoting joint movement may not only have a therapeutic effect on adipose cells but also a preventative effect.
Collapse
Affiliation(s)
- Keisuke Takeda
- Graduate School of Medical Science, Kanazawa University: 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.,Department of Rehabilitation, Kanazawa University Hospital, Japan
| | | | - Satoshi Kojima
- Graduate School of Rehabilitation, Kinjo University, Japan
| | | | - Taro Matsuzaki
- Graduate School of Medical Science, Kanazawa University: 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Masahiro Hoso
- Graduate School of Medical Science, Kanazawa University: 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
12
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial Dysfunction in Skeletal Muscle Pathologies. Curr Protein Pept Sci 2019; 20:536-546. [PMID: 30947668 DOI: 10.2174/1389203720666190402100902] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Several molecular mechanisms are involved in the regulation of skeletal muscle function. Among them, mitochondrial activity can be identified. The mitochondria is an important and essential organelle in the skeletal muscle that is involved in metabolic regulation and ATP production, which are two key elements of muscle contractibility and plasticity. Thus, in this review, we present the critical and recent antecedents regarding the mechanisms through which mitochondrial dysfunction can be involved in the generation and development of skeletal muscle pathologies, its contribution to detrimental functioning in skeletal muscle and its crosstalk with other typical signaling pathways related to muscle diseases. In addition, an update on the development of new strategies with therapeutic potential to inhibit the deleterious impact of mitochondrial dysfunction in skeletal muscle is discussed.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Laboratory of Integrative Physiopathology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.,Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine. Universidad d e Talca, Talca, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
13
|
Reidy PT, Dupont-Versteegden EE, Drummond MJ. Macrophage Regulation of Muscle Regrowth From Disuse in Aging. Exerc Sport Sci Rev 2019; 47:246-250. [DOI: 10.1249/jes.0000000000000201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Ikeda Y, Satoh A, Horinouchi Y, Hamano H, Watanabe H, Imao M, Imanishi M, Zamami Y, Takechi K, Izawa‐Ishizawa Y, Miyamoto L, Hirayama T, Nagasawa H, Ishizawa K, Aihara K, Tsuchiya K, Tamaki T. Iron accumulation causes impaired myogenesis correlated with MAPK signaling pathway inhibition by oxidative stress. FASEB J 2019; 33:9551-9564. [DOI: 10.1096/fj.201802724rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Akiho Satoh
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Yuya Horinouchi
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Hirofumi Hamano
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Hiroaki Watanabe
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Mizuki Imao
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Masaki Imanishi
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics Tokushima University Hospital Tokushima Japan
| | - Yuki Izawa‐Ishizawa
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry Gifu Pharmaceutical University Gifu Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry Gifu Pharmaceutical University Gifu Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
- Department of Pharmacy Tokushima University Hospital Tokushima Japan
| | - Ken‐Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| | - Toshiaki Tamaki
- Department of Pharmacology Institute of Biomedical Sciences Graduate School Tokushima University Tokushima Japan
| |
Collapse
|
15
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 783] [Impact Index Per Article: 156.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
16
|
Miller BF, Hamilton KL, Majeed ZR, Abshire SM, Confides AL, Hayek AM, Hunt ER, Shipman P, Peelor FF, Butterfield TA, Dupont‐Versteegden EE. Enhanced skeletal muscle regrowth and remodelling in massaged and contralateral non-massaged hindlimb. J Physiol 2018; 596:83-103. [PMID: 29090454 PMCID: PMC5746529 DOI: 10.1113/jp275089] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Muscle fibre cross sectional area is enhanced with massage in the form of cyclic compressive loading during regrowth after atrophy. Massage enhances protein synthesis of the myofibrillar and cytosolic, but not the mitochondrial fraction, in muscle during regrowth. Focal adhesion kinase activation and satellite cell number are elevated in muscles undergoing massage during regrowth. Muscle fibre cross sectional area and protein synthesis of the myofibrillar fraction, but not DNA synthesis, are elevated in muscle of the contralateral non-massaged limb. Massage in the form of cyclic compressive loading is a potential anabolic intervention during muscle regrowth after atrophy. ABSTRACT Massage, in the form of cyclic compressive loading (CCL), is associated with multiple health benefits, but its potential anabolic effect on atrophied muscle has not been investigated. We hypothesized that the mechanical activity associated with CCL induces an anabolic effect in skeletal muscle undergoing regrowth after a period of atrophy. Fischer-Brown Norway rats at 10 months of age were hindlimb unloaded for a period of 2 weeks. The rats were then allowed reambulation with CCL applied at a 4.5 N load at 0.5 Hz frequency for 30 min every other day for four bouts during a regrowth period of 8 days. Muscle fibre cross sectional area was enhanced by 18% with massage during regrowth compared to reloading alone, and this was accompanied by elevated myofibrillar and cytosolic protein as well as DNA synthesis. Focal adhesion kinase phosphorylation indicated that CCL increased mechanical stimulation, while a higher number of Pax7+ cells likely explains the elevated DNA synthesis. Surprisingly, the contralateral non-massaged limb exhibited a comparable 17% higher muscle fibre size compared to reloading alone, and myofibrillar protein synthesis, but not DNA synthesis, was also elevated. We conclude that massage in the form of CCL induces an anabolic response in muscles regrowing after an atrophy-inducing event. We suggest that massage can be used as an intervention to aid in the regrowth of muscle lost during immobilization.
Collapse
Affiliation(s)
- Benjamin F. Miller
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Karyn L. Hamilton
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Zana R. Majeed
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Sarah M. Abshire
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Amy L. Confides
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Amanda M. Hayek
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Emily R. Hunt
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Patrick Shipman
- Department of MathematicsColorado State UniversityFort CollinsCO80523‐1582USA
| | - Frederick F. Peelor
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Timothy A. Butterfield
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Esther E. Dupont‐Versteegden
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| |
Collapse
|
17
|
Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology (Bethesda) 2018; 33:26-38. [PMID: 29212890 PMCID: PMC5866409 DOI: 10.1152/physiol.00019.2017] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Recent loss-of-function studies show that satellite cell depletion does not promote sarcopenia or unloading-induced atrophy, and does not prevent regrowth. Although overload-induced muscle fiber hypertrophy is normally associated with satellite cell-mediated myonuclear accretion, hypertrophic adaptation proceeds in the absence of satellite cells in fully grown adult mice, but not in young growing mice. Emerging evidence also indicates that satellite cells play an important role in remodeling the extracellular matrix during hypertrophy.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Tyler J Kirby
- The Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Janna R Jackson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonah D Lee
- Environment, Health, and Safety, University of Michigan, Ann Arbor, Michigan
| | - Sarah H White
- Department of Animal Science, Texas A&M University, College Station, Texas; and
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky;
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
Stec MJ, Thalacker-Mercer A, Mayhew DL, Kelly NA, Tuggle SC, Merritt EK, Brown CJ, Windham ST, Dell'Italia LJ, Bickel CS, Roberts BM, Vaughn KM, Isakova-Donahue I, Many GM, Bamman MM. Randomized, four-arm, dose-response clinical trial to optimize resistance exercise training for older adults with age-related muscle atrophy. Exp Gerontol 2017; 99:98-109. [PMID: 28964826 DOI: 10.1016/j.exger.2017.09.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE The myriad consequences of age-related muscle atrophy include reduced muscular strength, power, and mobility; increased risk of falls, disability, and metabolic disease; and compromised immune function. At its root, aging muscle atrophy results from a loss of myofibers and atrophy of the remaining type II myofibers. The purpose of this trial (NCT02442479) was to titrate the dose of resistance training (RT) in older adults in an effort to maximize muscle regrowth and gains in muscle function. METHODS A randomized, four-arm efficacy trial in which four, distinct exercise prescriptions varying in intensity, frequency, and contraction mode/rate were evaluated: (1) high-resistance concentric-eccentric training (H) 3d/week (HHH); (2) H training 2d/week (HH); (3) 3d/week mixed model consisting of H training 2d/week separated by 1 bout of low-resistance, high-velocity, concentric only (L) training (HLH); and (4) 2d/week mixed model consisting of H training 1d/week and L training 1d/week (HL). Sixty-four randomized subjects (65.5±3.6y) completed the trial. All participants completed the same 4weeks of pre-training consisting of 3d/week followed by 30weeks of randomized RT. RESULTS The HLH prescription maximized gains in thigh muscle mass (TMM, primary outcome) and total body lean mass. HLH also showed the greatest gains in knee extension maximum isometric strength, and reduced cardiorespiratory demand during steady-state walking. HHH was the only prescription that led to increased muscle expression of pro-inflammatory cytokine receptors and this was associated with a lesser gain in TMM and total body lean mass compared to HLH. The HL prescription induced minimal muscle regrowth and generally lesser gains in muscle performance vs. the other prescriptions. MAJOR CONCLUSIONS The HLH prescription offers distinct advantages over the other doses, while the HL program is subpar. Although limited by a relatively small sample size, we conclude from this randomized dose-response trial that older adults benefit greatly from 2d/week high-intensity RT, and may further benefit from inserting an additional weekly bout of low-load, explosive RT. TRIAL REGISTRATION ClinicalTrials.govNCT02442479.
Collapse
Affiliation(s)
- Michael J Stec
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Anna Thalacker-Mercer
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David L Mayhew
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Neil A Kelly
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - S Craig Tuggle
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Edward K Merritt
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Cynthia J Brown
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Geriatric Research, Education, and Clinical Center, Veterans' Affairs Medical Center, Birmingham, AL 35233, United States
| | - Samuel T Windham
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Louis J Dell'Italia
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Research Service, Veterans' Affairs Medical Center, Birmingham, AL 35233, United States
| | - C Scott Bickel
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Brandon M Roberts
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kristina M Vaughn
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Irina Isakova-Donahue
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gina M Many
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Marcas M Bamman
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Geriatric Research, Education, and Clinical Center, Veterans' Affairs Medical Center, Birmingham, AL 35233, United States.
| |
Collapse
|
19
|
Kanazawa Y, Ikegami K, Sujino M, Koinuma S, Nagano M, Oi Y, Onishi T, Sugiyo S, Takeda I, Kaji H, Shigeyoshi Y. Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats. Exp Gerontol 2017; 98:153-161. [PMID: 28803135 DOI: 10.1016/j.exger.2017.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Aging is known to lead to the impaired recovery of muscle after disuse as well as the increased susceptibility of the muscle to damage. Here, we show that, in the older rats, reloading after disuse atrophy, causes the damage of the muscle fibers and the basement membrane (BM) that structurally support the muscle fibers. Male Wistar rats of 3-(young) and 20-(older) months of age were subjected to hindlimb-unloading for 2weeks followed by reloading for a week. In the older rats, the soleus muscles showed necrosis and central nuclei fiber indicating the regeneration of muscle fibers. Furthermore, ectopic immunoreactivity of collagen IV, a major component of the BM, remained mostly associated with the necrotic appearance, suggesting that the older rats were impaired with the ability of repairing the damaged BM. Further, after unloading and reloading, the older rats did not show a significant alteration, although the young rats showed clear response of Col4a1 and Col4a2 genes, both coding for collagen IV. In addition, during the recovery phase, the young rats showed increase in the amount of Hsp47 and Sparc mRNA, which are protein folding-related factor genes, while the older rats did not show any significant variation. Taken together, our findings suggest that the atrophic muscle fibers of the older rats induced by unloading were vulnerable to the weight loading, and that attenuated reactivity of the BM-synthesizing fibroblast to gravity contributes to the fragility of muscle fibers in the older animals.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Osaka University of Human Sciences, Shojyaku, Settsu, 566-8501, Japan; Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Keisuke Ikegami
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Mitsugu Sujino
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan; Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Yuki Oi
- Faculty of Health Care Sciences, Takarazuka University of Medical and Health care, Hanayashiki Midorigaoka, Takarazuka 666-0162, Japan
| | - Tomoya Onishi
- Faculty of Health Care Sciences, Takarazuka University of Medical and Health care, Hanayashiki Midorigaoka, Takarazuka 666-0162, Japan
| | - Shinichi Sugiyo
- Department of Physical Therapy, Osaka University of Human Sciences, Shojyaku, Settsu, 566-8501, Japan
| | - Isao Takeda
- Department of Physical Therapy, Osaka University of Human Sciences, Shojyaku, Settsu, 566-8501, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Graduate school of Medical Sciences, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan; Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama 589-8511, Japan.
| |
Collapse
|
20
|
Reilly BD, Franklin CE. Prevention of muscle wasting and osteoporosis: the value of examining novel animal models. J Exp Biol 2016; 219:2582-95. [DOI: 10.1242/jeb.128348] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT
Bone mass and skeletal muscle mass are controlled by factors such as genetics, diet and nutrition, growth factors and mechanical stimuli. Whereas increased mechanical loading of the musculoskeletal system stimulates an increase in the mass and strength of skeletal muscle and bone, reduced mechanical loading and disuse rapidly promote a decrease in musculoskeletal mass, strength and ultimately performance (i.e. muscle atrophy and osteoporosis). In stark contrast to artificially immobilised laboratory mammals, animals that experience natural, prolonged bouts of disuse and reduced mechanical loading, such as hibernating mammals and aestivating frogs, consistently exhibit limited or no change in musculoskeletal performance. What factors modulate skeletal muscle and bone mass, and what physiological and molecular mechanisms protect against losses of muscle and bone during dormancy and following arousal? Understanding the events that occur in different organisms that undergo natural periods of prolonged disuse and suffer negligible musculoskeletal deterioration could not only reveal novel regulatory factors but also might lead to new therapeutic options. Here, we review recent work from a diverse array of species that has revealed novel information regarding physiological and molecular mechanisms that dormant animals may use to conserve musculoskeletal mass despite prolonged inactivity. By highlighting some of the differences and similarities in musculoskeletal biology between vertebrates that experience disparate modes of dormancy, it is hoped that this Review will stimulate new insights and ideas for future studies regarding the regulation of atrophy and osteoporosis in both natural and clinical models of muscle and bone disuse.
Collapse
Affiliation(s)
- Beau D. Reilly
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Wanagat J, Hevener AL. Mitochondrial quality control in insulin resistance and diabetes. Curr Opin Genet Dev 2016; 38:118-126. [PMID: 27318536 DOI: 10.1016/j.gde.2016.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 01/07/2023]
Abstract
Diabetes is increasingly prevalent and a primary contributor to the major causes of disability and death. Despite the central role of mitochondria in metabolism, the relationship between mitochondrial quality and insulin action remains unclear. An increasing number of genetically-engineered and aging rodent models are shedding additional light on the mitochondrion's role in regulating glucose metabolism and insulin sensitivity by modulating mitochondrial morphology, function and quality control pathways. Clarification of the role of mitochondria in regulating key cellular processes including metabolic flux, autophagy, and apoptosis will drive the development of novel therapeutic strategies for maintaining mitochondrial quality and improving human health.
Collapse
Affiliation(s)
- Jonathan Wanagat
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Geriatrics, Los Angeles, CA 90095, United States.
| | - Andrea L Hevener
- UCLA David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, CA 90095, United States.
| |
Collapse
|
22
|
Kao M, Columbus DA, Suryawan A, Steinhoff-Wagner J, Hernandez-Garcia A, Nguyen HV, Fiorotto ML, Davis TA. Enteral β-hydroxy-β-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E1072-84. [PMID: 27143558 PMCID: PMC4935142 DOI: 10.1152/ajpendo.00520.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023]
Abstract
Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were studied immediately (F) or fed one of five diets for 24 h: low-protein (LP), high-protein (HP), or LP diet supplemented with 4 (HMB4), 40 (HMB40), or 80 (HMB80) μmol HMB·kg body wt(-1)·day(-1) Cell replication was assessed from nuclear incorporation of BrdU in the longissimus dorsi (LD) muscle and jejunum crypt cells. Protein synthesis rates in LD, gastrocnemius, rhomboideus, and diaphragm muscles, lung, and brain were greater in HMB80 and HP and in brain were greater in HMB40 compared with LP and F groups. Formation of the eIF4E·eIF4G complex and S6K1 and 4E-BP1 phosphorylation in LD, gastrocnemius, and rhomboideus muscles were greater in HMB80 and HP than in LP and F groups. Phosphorylation of eIF2α and eEF2 and expression of SNAT2, LAT1, MuRF1, atrogin-1, and LC3-II were unchanged. Numbers of BrdU-positive myonuclei in the LD were greater in HMB80 and HP than in the LP and F groups; there were no differences in jejunum. The results suggest that enteral supplementation with HMB increases skeletal muscle protein anabolism in neonates by stimulation of protein synthesis and satellite cell proliferation.
Collapse
Affiliation(s)
- Michelle Kao
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Daniel A Columbus
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Adriana Hernandez-Garcia
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
23
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
24
|
Cheema N, Herbst A, McKenzie D, Aiken JM. Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. Aging Cell 2015; 14:1085-93. [PMID: 26365892 PMCID: PMC4693455 DOI: 10.1111/acel.12399] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/07/2023] Open
Abstract
Sarcopenia, the age‐induced loss of skeletal muscle mass and function, results from the contributions of both fiber atrophy and loss of myofibers. We have previously characterized sarcopenia in FBN rats, documenting age‐dependent declines in muscle mass and fiber number along with increased fiber atrophy and fibrosis in vastus lateralis and rectus femoris muscles. Concomitant with these sarcopenic changes is an increased abundance of mitochondrial DNA deletion mutations and electron transport chain (ETC) abnormalities. In this study, we used immunohistological and histochemical approaches to define cell death pathways involved in sarcopenia. Activation of muscle cell death pathways was age‐dependent with most apoptotic and necrotic muscle fibers exhibiting ETC abnormalities. Although activation of apoptosis was a prominent feature of electron transport abnormal muscle fibers, necrosis was predominant in atrophic and broken ETC‐abnormal fibers. These data suggest that mitochondrial dysfunction is a major contributor to the activation of cell death processes in aged muscle fibers. The link between ETC abnormalities, apoptosis, fiber atrophy, and necrosis supports the hypothesis that mitochondrial DNA deletion mutations are causal in myofiber loss. These studies suggest a progression of events beginning with the generation and accumulation of a mtDNA deletion mutation, the concomitant development of ETC abnormalities, a subsequent triggering of apoptotic and, ultimately, necrotic events resulting in muscle fiber atrophy, breakage, and fiber loss.
Collapse
Affiliation(s)
- Nashwa Cheema
- Department of Biological Sciences Centre for Prions and Protein Folding Diseases University of Alberta Edmonton AB Canada
| | - Allen Herbst
- Department of Agricultural Food and Nutritional Sciences Centre for Prions and Protein Folding Diseases University of Alberta Edmonton AB Canada
| | - Debbie McKenzie
- Department of Biological Sciences Centre for Prions and Protein Folding Diseases University of Alberta Edmonton AB Canada
| | - Judd M. Aiken
- Department of Agricultural Food and Nutritional Sciences Centre for Prions and Protein Folding Diseases University of Alberta Edmonton AB Canada
| |
Collapse
|
25
|
Fearing CM, Melton DW, Lei X, Hancock H, Wang H, Sarwar ZU, Porter L, McHale M, McManus LM, Shireman PK. Increased Adipocyte Area in Injured Muscle With Aging and Impaired Remodeling in Female Mice. J Gerontol A Biol Sci Med Sci 2015; 71:992-1004. [PMID: 26273023 DOI: 10.1093/gerona/glv104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/15/2015] [Indexed: 12/30/2022] Open
Abstract
We demonstrated that young male and female mice similarly regenerated injured skeletal muscle; however, female mice transiently increased adipocyte area within regenerated muscle in a sex hormone-dependent manner. We extended these observations to investigate the effect of aging and sex on sarcopenia and muscle regeneration. Cardiotoxin injury to the tibialis anterior muscle of young, middle, and old-aged C57Bl/6J male and female mice was used to measure regenerated myofiber cross-sectional area (CSA), adipocyte area, residual necrosis, and inflammatory cell recruitment. Baseline (uninjured) myofiber CSA was decreased in old mice of both sexes compared to young and middle-aged mice. Regenerated CSA was similar in male mice in all age groups until baseline CSA was attained but decreased in middle and old age female mice compared to young females. Furthermore, adipocyte area within regenerated muscle was transiently increased in young females compared to young males and these sex-dependent increases persisted in middle and old age female mice and were associated with increased Pparg Young female mice had more pro-inflammatory monocytes/macrophages in regenerating muscle than young male mice and increased Sca-1(+)CD45(-)cells. In conclusion, sex and age influence pro-inflammatory cell recruitment, muscle regeneration, and adipocyte area following skeletal muscle injury.
Collapse
Affiliation(s)
| | - David W Melton
- Department of Surgery, Department of Cellular and Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies
| | | | | | | | | | | | | | - Linda M McManus
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pathology, and Department of Periodontics, University of Texas Health Science Center, San Antonio
| | - Paula K Shireman
- Department of Surgery, Sam and Ann Barshop Institute for Longevity and Aging Studies, The South Texas Veterans Health Care System, San Antonio.
| |
Collapse
|
26
|
Vechetti-Junior IJ, Bertaglia RS, Fernandez GJ, de Paula TG, de Souza RWA, Moraes LN, Mareco EA, de Freitas CEA, Aguiar AF, Carvalho RF, Dal-Pai-Silva M. Aerobic Exercise Recovers Disuse-induced Atrophy Through the Stimulus of the LRP130/PGC-1α Complex in Aged Rats. J Gerontol A Biol Sci Med Sci 2015; 71:601-9. [PMID: 25991827 DOI: 10.1093/gerona/glv064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022] Open
Abstract
Physical training has been shown to be important to the control of muscle mass during aging, through the activation of several pathways including, IGF1-AKT and PGC-1α. Also, it was demonstrated that LRP130, a component of the PGC-1α complex, is important for the PGC-1α-dependent transcription of several mitochondrial genes in vivo. To explore the role of physical training during aging, we investigated the effects on muscle recovery after short-term immobilization followed by 3 or 7 days with aerobic or resistance training. Using morphological (myofibrillar adenosine triphosphatase activity, to assess the total muscle fiber cross-sectional area (CSA) and the frequency of specific fiber types), biochemical (myosin heavy chain), and molecular analyses (quantitative real-time PCR, functional pathways analyses, and Western blot), our results indicated that after an atrophic stimulus, only animals subjected to aerobic training showed entire recovery of cross-sectional area; aerobic training reduced the ubiquitin-proteasome system components involved in muscle atrophy after 3 days of recovery, and the upregulation in PGC-1α expression enhanced the process of muscle recovery by inhibiting the FoxO pathway, with the possible involvement of LRP130. These results suggest that aerobic training enhanced the muscle regeneration process after disuse-induced atrophy in aged rats possibly through of the LRP130/PGC-1α complex by inhibiting the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Ivan J Vechetti-Junior
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil.
| | - Raquel S Bertaglia
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil
| | - Geysson J Fernandez
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil
| | - Tassiana G de Paula
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil
| | - Rodrigo W A de Souza
- Department of Molecular Biology, University of São Paulo, Institute of Biosciences, Brazil
| | - Leonardo N Moraes
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil
| | - Edson A Mareco
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil
| | - Carlos E A de Freitas
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil. Department of Physiotherapy, University of Oeste Paulista, Presidente Prudente, São Paulo, Brazil
| | - Andreo F Aguiar
- Center of Biological and Health Sciences, North University of Paraná, Londrina, Brazil
| | - Robson F Carvalho
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, São Paulo State University, Institute of Biosciences, Botucatu, Brazil
| |
Collapse
|
27
|
White JR, Confides AL, Moore-Reed S, Hoch JM, Dupont-Versteegden EE. Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways. Exp Gerontol 2015; 64:17-32. [PMID: 25681639 DOI: 10.1016/j.exger.2015.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
Skeletal muscle regrowth after atrophy is impaired in the aged and in this study we hypothesized that this can be explained by a blunted response of signaling pathways and cellular processes during reloading after hind limb suspension in muscles from old rats. Male Brown Norway Fisher 344 rats at 6 (young) and 32 (old) months of age were subjected to normal ambulatory conditions (amb), hind limb suspension for 14 days (HS), and HS followed by reloading through normal ambulation for 14 days (RE); soleus muscles were used for analysis of intracellular signaling pathways and cellular processes. Soleus muscle regrowth was blunted in old compared to young rats which coincided with a recovery of serum IGF-1 and IGFBP-3 levels in young but not old. However, the response to reloading for p-Akt, p-p70s6k and p-GSK3β protein abundance was similar between muscles from young and old rats, even though main effects for age indicate an increase in activation of this protein synthesis pathway in the aged. Similarly, MAFbx mRNA levels in soleus muscle from old rats recovered to the same extent as in the young, while Murf-1 was unchanged. mRNA abundance of autophagy markers Atg5 and Atg7 showed an identical response in muscle from old compared to young rats, but beclin did not. Autophagic flux was not changed at either age at the measured time point. Apoptosis was elevated in soleus muscle from old rats particularly with HS, but recovered in HSRE and these changes were not associated with differences in caspase-3, -8 or -9 activity in any group. Protein abundance of apoptosis repressor with caspase-recruitment domain (ARC), cytosolic EndoG, as well as cytosolic and nuclear apoptosis inducing factor (AIF) were lower in muscle from old rats, and there was no age-related difference in the response to atrophy or regrowth. Soleus muscles from old rats had a higher number of ED2 positive macrophages in all groups and these decreased with HS, but recovered in HSRE in the old, while no changes were observed in the young. Pro-inflammatory cytokines in serum did not show a differential response with age to different loading conditions. Results indicate that at the measured time point the impaired skeletal muscle regrowth after atrophy in aged animals is not associated with a general lack of responsiveness to changes in loading conditions.
Collapse
Affiliation(s)
- Jena R White
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Amy L Confides
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Stephanie Moore-Reed
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Johanna M Hoch
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536-0200, USA.
| |
Collapse
|
28
|
Alway SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, Edens NK, Pereira SL. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J Appl Physiol (1985) 2014; 118:319-30. [PMID: 25414242 DOI: 10.1152/japplphysiol.00674.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to improve muscle recovery following a period of atrophy in old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; West Virginia Center for Clinical and Translational Science Institute, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Justin Sperringer
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | | | | |
Collapse
|
29
|
Matsumoto Y, Nakano J, Oga S, Kataoka H, Honda Y, Sakamoto J, Okita M. The non-thermal effects of pulsed ultrasound irradiation on the development of disuse muscle atrophy in rat gastrocnemius muscle. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1578-1586. [PMID: 24613643 DOI: 10.1016/j.ultrasmedbio.2013.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 12/10/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
This study examined the effects of therapeutic pulsed ultrasound (US) on the development of disuse muscle atrophy in rat gastrocnemius muscle. Male Wistar rats were randomly distributed into control, immobilization (Im), sham US, and US groups. In the Im, sham US and US groups, the bilateral ankle joints of each rat were immobilized in full plantar flexion with a plaster cast for a 4-wk period. The pulsed US (frequency, 1 MHz; intensity, 1.0 W/cm(2); pulsed mode 1:4; 15 min) was irradiated to the gastrocnemius muscle in the US group over a 4-wk immobilization period. The pulsed US irradiation delivered only non-thermal effects to the muscle. In conjunction with US irradiation, 5-bromo-2'-deoxyuridine (BrdU) was injected subcutaneously to label the nuclei of proliferating satellite cells 1 h before each pulsed US irradiation. Immobilization resulted in significant decreases in the mean diameters of type I, IIA and IIB muscle fibers of the gastrocnemius muscle in the Im, sham US and US groups compared with the control group. However, the degrees of muscle fiber atrophy for all types were significantly lower in the US group compared with the Im and sham US groups. Although the number of capillaries and the concentrations of insulin-like growth factor and basic fibroblast growth factor did not change in the muscle, the number of BrdU-positive nuclei in the muscle was significantly increased by pulsed US irradiation in the US group. The results of this study suggest that pulsed US irradiation inhibits the development of disuse muscle atrophy partly via activation of satellite cells.
Collapse
Affiliation(s)
- Yoko Matsumoto
- Department of Rehabilitation, Saiseikai Nagasaki Hospital, Nagasaki, Japan
| | - Jiro Nakano
- Unit of Physical and Occupational Therapy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Satoshi Oga
- Department of Rehabilitation, Saiseikai Nagasaki Hospital, Nagasaki, Japan
| | - Hideki Kataoka
- Department of Rehabilitation, Nagasaki Memorial Hospital, Nagasaki, Japan; Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuichiro Honda
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junya Sakamoto
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Japan
| | - Minoru Okita
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
30
|
Alway SE, Bennett BT, Wilson JC, Edens NK, Pereira SL. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats. Exp Gerontol 2013; 50:82-94. [PMID: 24316035 DOI: 10.1016/j.exger.2013.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Aging exacerbates muscle loss and slows the recovery of muscle mass and function after disuse. In this study we investigated the potential that epigallocatechin-3-gallate (EGCg), an abundant catechin in green tea, would reduce signaling for apoptosis and promote skeletal muscle recovery in the fast plantaris muscle and the slow soleus muscle after hindlimb suspension (HLS) in senescent animals. Fischer 344 × Brown Norway inbred rats (age 34 months) received either EGCg (50 mg/kg body weight), or water daily by gavage. One group of animals received HLS for 14 days and a second group of rats received 14 days of HLS, then the HLS was removed and they recovered from this forced disuse for 2 weeks. Animals that received EGCg over the HLS followed by 14 days of recovery, had a 14% greater plantaris muscle weight (p<0.05) as compared to the animals treated with the vehicle over this same period. Plantaris fiber area was greater after recovery in EGCg (2715.2±113.8 μm(2)) vs. vehicle treated animals (1953.0±41.9 μm(2)). In addition, activation of myogenic progenitor cells was improved with EGCg over vehicle treatment (7.5% vs. 6.2%) in the recovery animals. Compared to vehicle treatment, the apoptotic index was lower (0.24% vs. 0.52%), and the abundance of pro-apoptotic proteins Bax (-22%), and FADD (-77%) was lower in EGCg treated plantaris muscles after recovery. While EGCg did not prevent unloading-induced atrophy, it improved muscle recovery after the atrophic stimulus in fast plantaris muscles. However, this effect was muscle specific because EGCg had no major impact in reversing HLS-induced atrophy in the slow soleus muscle of old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; West Virginia Center for Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States.
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States
| | - Neile K Edens
- Discovery R&D, Abbott Nutrition, Columbus, OH, United States
| | | |
Collapse
|
31
|
Alway SE, Pereira SL, Edens NK, Hao Y, Bennett BT. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy. Exp Gerontol 2013; 48:973-84. [DOI: 10.1016/j.exger.2013.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023]
|
32
|
Skeletal muscle adaptations to physical inactivity and subsequent retraining in young men. Biogerontology 2013; 14:247-59. [DOI: 10.1007/s10522-013-9427-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
33
|
Harsløf T, Frost M, Nielsen TL, Husted LB, Nyegaard M, Brixen K, Børglum AD, Mosekilde L, Andersen M, Rejnmark L, Langdahl BL. Polymorphisms of muscle genes are associated with bone mass and incident osteoporotic fractures in Caucasians. Calcif Tissue Int 2013; 92:467-76. [PMID: 23370486 DOI: 10.1007/s00223-013-9702-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/06/2013] [Indexed: 01/30/2023]
Abstract
The interaction between muscle and bone is complex. The aim of this study was to investigate if variations in the muscle genes myostatin (MSTN), its receptor (ACVR2B), myogenin (MYOG), and myoD1 (MYOD1) were associated with fracture risk, bone mineral density (BMD), bone mineral content (BMC), and lean body mass. We analyzed two independent cohorts: the Danish Osteoporosis Prevention Study (DOPS), comprising 2,016 perimenopausal women treated with hormone therapy or not and followed for 10 years, and the Odense Androgen Study (OAS), a cross-sectional, population-based study on 783 men aged 20-29 years. Nine tag SNPs in the four genes were investigated. In the DOPS, individuals homozygous for the variant allele of the MSTN SNP rs7570532 had an increased risk of any osteoporotic fracture, with an HR of 1.82 (95 % CI 1.15-2.90, p = 0.01), and of nonvertebral osteoporotic fracture, with an HR of 2.02 (95 % CI 1.20-3.41, p = 0.01). The same allele was associated with increased bone loss (BMC) at the total hip of 4.1 versus 0.5 % in individuals either heterozygous or homozygous for the common allele (p = 0.006), a reduced 10-year growth in bone area at the total hip of 0.4 versus 2.2 and 2.3 % in individuals heterozygous or homozygous for the common allele, respectively (p = 0.01), and a nonsignificantly increased 10-year loss of total-hip BMD of 4.4 versus 2.7 and 2.9 % in individuals heterozygous or homozygous for the common allele, respectively (p = 0.08). This study is the first to demonstrate an association between a variant in MSTN and fracture risk and bone loss. Further studies are needed to confirm the findings.
Collapse
Affiliation(s)
- T Harsløf
- Department of Endocrinology and Internal Medicine, THG, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kawai M, Saitsu K, Yamashita H, Miyata H. Age-related changes in satellite cell proliferation by compensatory activation in rat diaphragm muscles. Biomed Res 2012; 33:167-73. [PMID: 22790216 DOI: 10.2220/biomedres.33.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To investigate the age-related changes in satellite cell (SC) proliferation in vivo, we used a compensatory activation (CAC) model of the hemi-diaphragm muscle. Young (2-month), adult (14-month) and old (24-month) rats were randomly divided into control and CAC groups. In the CAC group, denervation surgery in the left hemi-diaphragm was performed to induce CAC of the right hemi-diaphragm. Six days after the surgery, the CAC diaphragm muscle was removed and separated into two blocks for immunohistochemical staining and real time RT-PCR procedures. The number of SCs in type I and IIa fibers were not affected significantly by the CAC in any age groups, but that in type IIx/b fibers was significantly increased in the young and adult groups. As compared to the age-matched control group, the Pax7 mRNA expression level was significantly higher in the young and adult CAC groups, but not in the old CAC group. These results may suggest that the mechanism of SC proliferation in type IIx/b fibers is impaired in aged diaphragm muscles.
Collapse
Affiliation(s)
- Minako Kawai
- Biological Science, Graduate School of Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515 Japan
| | | | | | | |
Collapse
|
35
|
Kim JS, Park YM, Lee SR, Masad IS, Khamoui AV, Jo E, Park BS, Arjmandi BH, Panton LB, Lee WJ, Grant SC. β-hydroxy-β-methylbutyrate did not enhance high intensity resistance training-induced improvements in myofiber dimensions and myogenic capacity in aged female rats. Mol Cells 2012; 34:439-48. [PMID: 23149873 PMCID: PMC3887788 DOI: 10.1007/s10059-012-0196-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
Abstract
Older women exhibit blunted skeletal muscle hypertrophy following resistance training (RT) compared to other age and gender cohorts that is partially due to an impaired regenerative capacity. In the present study, we examined whether β-hydroxy-β-methylbutyrate (HMB) provision to aged female rodents would enhance regenerative mechanisms and facilitate RT-induced myofiber growth. Nineteen-month old female Sprague-Dawley rats were randomly divided into three groups: HMB (0.48 g/kg/d; n = 6), non-HMB (n = 6), and control (n = 4). HMB and non-HMB groups underwent RT every third day for 10 weeks using a ladder climbing apparatus. Whole body strength, grip strength, and body composition was evaluated before and after RT. The gastrocnemius and soleus muscles were analyzed using magnetic resonance diffusion tensor imaging, RT-PCR, and immunohistochemistry to determine myofiber dimensions, transcript expression, and satellite cells/myonuclei, respectively. ANOVAs were used with significance set at p < 0.05. There were significant time effects (pre vs. post) for whole body strength (+262%), grip strength (+17%), lean mass (+20%), and fat mass (-19%). Both RT groups exhibited significant increases in the mean myofiber cross-sectional area (CSA) in the gastrocnemius and soleus (+8-22%) compared to control. Moreover, both groups demonstrated significant increases in the numbers of satellite cells (+100-108%) and myonuclei (+32%) in the soleus but not the gastrocnemius. A significant IGF-I mRNA elevation was only observed in soleus of the HMB group (+33%) whereas MGF and myogenin increased significantly in both groups (+32-40%). Our findings suggest that HMB did not further enhance intense RT-mediated myogenic mechanisms and myofiber CSA in aged female rats.
Collapse
Affiliation(s)
- Jeong-Su Kim
- Department of Nutrition, Food, and Exercise Sciences, The Florida State University, Tallahassee, FL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jackson JR, Mula J, Kirby TJ, Fry CS, Lee JD, Ubele MF, Campbell KS, McCarthy JJ, Peterson CA, Dupont-Versteegden EE. Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. Am J Physiol Cell Physiol 2012; 303:C854-61. [PMID: 22895262 DOI: 10.1152/ajpcell.00207.2012] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Resident muscle stem cells, known as satellite cells, are thought to be the main mediators of skeletal muscle plasticity. Satellite cells are activated, replicate, and fuse into existing muscle fibers in response to both muscle injury and mechanical load. It is generally well-accepted that satellite cells participate in postnatal growth, hypertrophy, and muscle regeneration following injury; however, their role in muscle regrowth following an atrophic stimulus remains equivocal. The current study employed a genetic mouse model (Pax7-DTA) that allowed for the effective depletion of >90% of satellite cells in adult muscle upon the administration of tamoxifen. Vehicle and tamoxifen-treated young adult female mice were either hindlimb suspended for 14 days to induce muscle atrophy or hindlimb suspended for 14 days followed by 14 days of reloading to allow regrowth, or they remained ambulatory for the duration of the experimental protocol. Additionally, 5-bromo-2'-deoxyuridine (BrdU) was added to the drinking water to track cell proliferation. Soleus muscle atrophy, as measured by whole muscle wet weight, fiber cross-sectional area, and single-fiber width, occurred in response to suspension and did not differ between satellite cell-depleted and control muscles. Furthermore, the depletion of satellite cells did not attenuate muscle mass or force recovery during the 14-day reloading period, suggesting that satellite cells are not required for muscle regrowth. Myonuclear number was not altered during either the suspension or the reloading period in soleus muscle fibers from vehicle-treated or satellite cell-depleted animals. Thus, myonuclear domain size was reduced following suspension due to decreased cytoplasmic volume and was completely restored following reloading, independent of the presence of satellite cells. These results provide convincing evidence that satellite cells are not required for muscle regrowth following atrophy and that, instead, the myonuclear domain size changes as myofibers adapt.
Collapse
Affiliation(s)
- Janna R Jackson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, 40536-0200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bruusgaard JC, Egner IM, Larsen TK, Dupre-Aucouturier S, Desplanches D, Gundersen K. No change in myonuclear number during muscle unloading and reloading. J Appl Physiol (1985) 2012; 113:290-6. [PMID: 22582213 DOI: 10.1152/japplphysiol.00436.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.
Collapse
Affiliation(s)
- J C Bruusgaard
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
38
|
Kim JH, Thompson LV. Differential effects of mild therapeutic exercise during a period of inactivity on power generation in soleus type I single fibers with age. J Appl Physiol (1985) 2012; 112:1752-61. [PMID: 22422796 DOI: 10.1152/japplphysiol.01077.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to investigate the effects of mild therapeutic exercise (treadmill) in preventing the inactivity-induced alterations in contractile properties (e.g., power, force, and velocity) of type I soleus single fibers in three different age groups. Young adult (5- to 12-mo-old), middle-aged (24- to 31-mo-old), and old (32- to 40-mo-old) F344BNF1 rats were randomly assigned to three experimental groups: weight-bearing control (CON), non-weight bearing (NWB), and NWB with exercise (NWBX). NWB rats were hindlimb suspended for 2 wk, representing inactivity. The NWBX rats were hindlimb suspended for 2 wk and received therapeutic exercise on a treadmill four times a day for 15 min each. Peak power and isometric maximal force were reduced following hindlimb suspension (HS) in all three age groups. HS decreased fiber diameter in young adult and old rats (-21 and -12%, respectively). Specific tension (isometric maximal force/cross-sectional area) was significantly reduced in both the middle-aged (-36%) and old (-23%) rats. The effects of the mild therapeutic exercise program on fiber diameter and contractile properties were age specific. Mild treadmill therapeutic exercise attenuated the HS-induced reduction in fiber diameter (+17%, 93% level of CON group) and peak power (μN·fiber length·s(-1)) (+46%, 63% level of CON group) in young adult rats. In the middle-aged animals, this exercise protocol improved peak power (+60%, 100% level of CON group) and normalized power (kN·m(-2)·fiber length·s(-1)) (+45%, 108% level of CON group). Interestingly, treadmill exercise resulted in a further reduction in shortening velocity (-42%, 67% level of CON group) and specific tension (-29%, 55% level of CON group) in the old animals. These results suggest that mild treadmill exercise is beneficial in attenuating and preventing inactivity-induced decline in peak power of type I soleus single fibers in young adult and middle-aged animals, respectively. However, this exercise program does not prevent the HS-induced decline in muscle function in the old animals.
Collapse
Affiliation(s)
- Jong-Hee Kim
- Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
39
|
Kano Y, Sonobe T, Inagaki T, Sudo M, Poole DC. Mechanisms of exercise-induced muscle damage and fatigue: Intracellular calcium accumulation. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Xu J, Hwang JCY, Lees HA, Wohlgemuth SE, Knutson MD, Judge AR, Dupont-Versteegden EE, Marzetti E, Leeuwenburgh C. Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy. Exp Gerontol 2011; 47:100-8. [PMID: 22085543 DOI: 10.1016/j.exger.2011.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 10/06/2011] [Accepted: 10/28/2011] [Indexed: 11/26/2022]
Abstract
In the present study, we investigated the effects of 7 and 14 days of re-loading following 14-day muscle unweighting (hindlimb suspension, HS) on iron transport, non-heme iron levels and oxidative damage in the gastrocnemius muscle of young (6 months) and old (32 months) male Fischer 344×Brown Norway rats. Our results demonstrated that old rats had lower muscle mass, higher levels of total non-heme iron and oxidative damage in skeletal muscle in comparison with young rats. Non-heme iron concentrations and total non-heme iron amounts were 3.4- and 2.3-fold higher in aged rats as compared with their young counterparts, respectively. Seven and 14 days of re-loading was associated with higher muscle weights in young animals as compared with age-matched HS rats, but there was no difference in muscle weights among aged HS, 7 and 14 days of re-loading rats, indicating that aged rats may have a lower adaptability to muscle disuse and a lower capacity to recover from muscle atrophy. Protein levels of cellular iron transporters, such as divalent metal transport-1 (DMT1), transferrin receptor-1 (TfR1), Zip14, and ferroportin (FPN), and their mRNA abundance were determined. TfR1 protein and mRNA levels were significantly lower in aged muscle. Seven and 14 days of re-loading were associated with higher TfR1 mRNA and protein levels in young animals in comparison with their age-matched HS counterparts, but there was no difference between cohorts in aged animals, suggesting adaptive responses in the old to cope with iron deregulation. The extremely low expression of FPN in skeletal muscle might lead to inefficient iron export in the presence of iron overload and play a critical role in age-related iron accumulation in skeletal muscle. Moreover, oxidative stress was much greater in the muscles of the older animals measured as 4-hydroxy-2-nonhenal (HNE)-modified proteins and 8-oxo-7,8-dihydroguanosine levels. These markers remained fairly constant with either HS or re-loading in young rats. In old rats, HNE-modified proteins and 8-oxo-7,8-dihydroguanosine levels were markedly higher in HS and were lower after 7 days of recovery. However, no difference was observed following 14 days of recovery between control and re-loading animals. In conclusion, advanced age is associated with disruption of muscle iron metabolism which is further perturbed by disuse and persists over a longer time period.
Collapse
Affiliation(s)
- Jinze Xu
- Department of Aging and Geriatric Research, Division of Biology of Aging, Genomics and Biomarkers Core of The Institute on Aging, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bütikofer L, Zurlinden A, Bolliger MF, Kunz B, Sonderegger P. Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J 2011; 25:4378-93. [PMID: 21885656 DOI: 10.1096/fj.11-191262] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Etiology and pathogenesis of sarcopenia, the progressive decline in skeletal muscle mass and strength that occurs with aging, are still poorly understood. We recently found that overexpression of the neural serine protease neurotrypsin in motoneurons resulted in the degeneration of their neuromuscular junctions (NMJ) within days. Therefore, we wondered whether neurotrypsin-dependent NMJ degeneration also affected the structure and function of the skeletal muscles. Using histological and functional analyses of neurotrypsin-overexpressing and neurotrypsin-deficient mice, we found that overexpression of neurotrypsin in motoneurons installed the full sarcopenia phenotype in young adult mice. Characteristic muscular alterations included a reduced number of muscle fibers, increased heterogeneity of fiber thickness, more centralized nuclei, fiber-type grouping, and an increased proportion of type I fibers. As in age-dependent sarcopenia, excessive fragmentation of the NMJ accompanied the muscular alterations. These results suggested the destabilization of the NMJ through proteolytic cleavage of agrin at the onset of a pathogenic pathway ending in sarcopenia. Studies of neurotrypsin-deficient and agrin-overexpressing mice revealed that old-age sarcopenia also develops without neurotrypsin and is not prevented by elevated levels of agrin. Our results define neurotrypsin- and age-dependent sarcopenia as the common final outcome of 2 etiologically distinct entities.
Collapse
Affiliation(s)
- Lukas Bütikofer
- University of Zurich, Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts. Apoptosis 2011; 16:221-34. [PMID: 21161388 DOI: 10.1007/s10495-010-0566-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle atrophy is associated with elevated apoptosis while muscle differentiation results in apoptosis resistance, indicating that the role of apoptosis in skeletal muscle is multifaceted. The objective of this study was to investigate mechanisms underlying apoptosis susceptibility in proliferating myoblasts compared to differentiated myotubes and we hypothesized that cell death-resistance in differentiated myotubes is mediated by enhanced anti-apoptotic pathways. C(2)C(12) myoblasts and myotubes were treated with H(2)O(2) or staurosporine (Stsp) to induce cell death. H(2)O(2) and Stsp induced DNA fragmentation in more than 50% of myoblasts, but in myotubes less than 10% of nuclei showed apoptotic changes. Mitochondrial membrane potential dissipation was detected with H(2)O(2) and Stsp in myoblasts, while this response was greatly diminished in myotubes. Caspase-3 activity was 10-fold higher in myotubes compared to myoblasts, and Stsp caused a significant caspase-3 induction in both. However, exposure to H(2)O(2) did not lead to caspase-3 activation in myoblasts, and only to a modest induction in myotubes. A similar response was observed for caspase-2, -8 and -9. Abundance of caspase-inhibitors (apoptosis repressor with caspase recruitment domain (ARC), and heat shock protein (HSP) 70 and -25 was significantly higher in myotubes compared to myoblasts, and in addition ARC was suppressed in response to Stsp in myotubes. Moreover, increased expression of HSPs in myoblasts attenuated cell death in response to H(2)O(2) and Stsp. Protein abundance of the pro-apoptotic protein endonuclease G (EndoG) and apoptosis-inducing factor (AIF) was higher in myotubes compared to myoblasts. These results show that resistance to apoptosis in myotubes is increased despite high levels of pro-apoptotic signaling mechanisms, and we suggest that this protective effect is mediated by enhanced anti-caspase mechanisms.
Collapse
|
43
|
de Souza TOF, Mesquita DA, Ferrari RAM, Dos Santos Pinto D, Correa L, Bussadori SK, Fernandes KPS, Martins MD. Phototherapy with low-level laser affects the remodeling of types I and III collagen in skeletal muscle repair. Lasers Med Sci 2011; 26:803-14. [PMID: 21761120 DOI: 10.1007/s10103-011-0951-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
The purpose of this article was to analyze the photobiomodulator role of low-level laser therapy (LLLT) on the skeletal muscle remodeling following cryoinjury in rats, focusing the types I and III collagen proteins. Laser phototherapy has been employed to stimulate repair in different tissues. However, its role in skeletal muscle remodeling is not yet well clarified, especially its effect on the collagen component of the extracellular matrix. Fifty adult Wistar rats were divided into four groups: control, sham, cryoinjury, and laser-treated cryoinjury. Laser irradiation was performed three times a week on the injured region using the InGaAlP (indium-gallium-aluminum-phosphorous) laser (660 nm; beam spot of 0.04 cm(2), output power of 20 mW, power density of 0.5 mW/cm(2), energy density of 5 J/cm(2), 10-s exposure time, with a total energy dose of 0.2 J). Five animals were killed after short-term (days 1 and 7) and long-term (14 and 21) durations following injury. The muscles were processed and submitted to hematoxylin and eosin (H&E) and immunohistochemical staining. The histological slices were analyzed qualitatively, semi-quantitatively, and quantitatively. The data were submitted to statistical analysis using the Kruskal-Wallis test. The qualitative analysis of morphological aspects revealed that the muscle repair were very similar in cryoinjury and laser groups on days 1, 14 and 21. However, at 7 days, differences could be observed because there was a reduction in myonecrosis associated to formation of new vessels (angiogenesis) in the laser-treated group. The analysis of the distribution of types I and III collagen, on day 7, revealed a significant increase in the depositing of these proteins in the laser-treated group when compared to the cryoinjury group. InGaAlP diode laser within the power parameters and conditions tested had a biostimulatory effect at the regenerative and fibrotic phases of the skeletal muscle repairs, by promoting angiogenesis, reducing myonecrosis, and inducing types I and III collagen synthesis, following cryoinjury in rat.
Collapse
Affiliation(s)
- Thais Oricchio Fedri de Souza
- Rehabilitation Sciences, Universidade Nove de Julho - UNINOVE, 612, Avenida Francisco Matarazzo, São Paulo, SP, CEP: 05001-100, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Duddy WJ, Cohen T, Duguez S, Partridge TA. The isolated muscle fibre as a model of disuse atrophy: characterization using PhAct, a method to quantify f-actin. Exp Cell Res 2011; 317:1979-93. [PMID: 21635888 DOI: 10.1016/j.yexcr.2011.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/08/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Research into muscle atrophy and hypertrophy is hampered by limitations of the available experimental models. Interpretation of in vivo experiments is confounded by the complexity of the environment while in vitro models are subject to the marked disparities between cultured myotubes and the mature myofibres of living tissues. Here we develop a method (PhAct) based on ex vivo maintenance of the isolated myofibre as a model of disuse atrophy, using standard microscopy equipment and widely available analysis software, to measure f-actin content per myofibre and per nucleus over two weeks of ex vivo maintenance. We characterize the 35% per week atrophy of the isolated myofibre in terms of early changes in gene expression and investigate the effects on loss of muscle mass of modulatory agents, including Myostatin and Follistatin. By tracing the incorporation of a nucleotide analogue we show that the observed atrophy is not associated with loss or replacement of myonuclei. Such a completely controlled investigation can be conducted with the myofibres of a single muscle. With this novel method we can distinguish those features and mechanisms of atrophy and hypertrophy that are intrinsic to the muscle fibre from those that include activities of other tissues and systemic agents.
Collapse
Affiliation(s)
- William J Duddy
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | | | | | | |
Collapse
|
45
|
van der Meer SF, Jaspers RT, Jones DA, Degens H. Time-course of changes in the myonuclear domain during denervation in young-adult and old rat gastrocnemius muscle. Muscle Nerve 2011; 43:212-22. [DOI: 10.1002/mus.21822] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 2010; 20:49-64. [PMID: 20487503 DOI: 10.1111/j.1600-0838.2009.01084.x] [Citation(s) in RCA: 453] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aging is characterized by loss of spinal motor neurons (MNs) due to apoptosis, reduced insulin-like growth factor I signaling, elevated amounts of circulating cytokines, and increased cell oxidative stress. The age-related loss of spinal MNs is paralleled by a reduction in muscle fiber number and size (sarcopenia), resulting in impaired mechanical muscle performance that in turn leads to a reduced functional capacity during everyday tasks. Concurrently, maximum muscle strength, power, and rate of force development are decreased with aging, even in highly trained master athletes. The impairment in muscle mechanical function is accompanied and partly caused by an age-related loss in neuromuscular function that comprise changes in maximal MN firing frequency, agonist muscle activation, antagonist muscle coactivation, force steadiness, and spinal inhibitory circuitry. Strength training appears to elicit effective countermeasures in elderly individuals even at a very old age (>80 years) by evoking muscle hypertrophy along with substantial changes in neuromuscular function, respectively. Notably, the training-induced changes in muscle mass and nervous system function leads to an improved functional capacity during activities of daily living.
Collapse
Affiliation(s)
- P Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | |
Collapse
|
47
|
The time course of myonuclear accretion during hypertrophy in young adult and older rat plantaris muscle. Ann Anat 2010; 193:56-63. [PMID: 20833519 DOI: 10.1016/j.aanat.2010.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/30/2010] [Accepted: 08/10/2010] [Indexed: 02/04/2023]
Abstract
To investigate whether accretion of myonuclei precedes or follows the increase in fibre cross-sectional area and whether this time course is affected by age, left plantaris muscle of 5- and 25-month-old male Wistar rats was overloaded by denervation of its synergists for 1, 2 or 4 weeks. Contralateral plantaris muscle served as control. Myonuclei were counted in haematoxylin-stained cross-sections. While hypertrophy (33% in young adult) became significant after 2 weeks overload (p<0.01), the myonuclear number was increased only at 4 weeks of overload (p<0.001). The time course and magnitude of hypertrophy were similar in young adult and older rats. Older muscles contained 26% more myonuclei per mm fibre length (p=0.001) and had a 10-fold larger proportion of central myonuclei (p<0.001) than young adult muscles. In conclusion, our data indicate that muscle fibre hypertrophy precedes the acquisition of new myonuclei and that the ability to develop hypertrophy is not attenuated or delayed in 25-month-old rat muscle.
Collapse
|
48
|
Dai Z, Wu F, Yeung EW, Li Y. IGF-IEc expression, regulation and biological function in different tissues. Growth Horm IGF Res 2010; 20:275-281. [PMID: 20494600 DOI: 10.1016/j.ghir.2010.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/14/2009] [Accepted: 03/15/2010] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factor I (IGF-I) is an important growth factor for embryonic development, postnatal growth, tissue repair and maintenance of homeostasis. IGF-I functions and regulations are complex and tissue-specific. IGF-I mediates growth hormone signaling to target tissues during growth, but many IGF-I variants have been discovered, resulting in complex models to describe IGF-I function and regulation. Mechano-growth factor (MGF) is an alternative splicing variant of IGF-I and serves as a local tissue repair factor that responds to changes in physiological conditions or environmental stimuli. MGF expression is significantly increased in muscle, bone and tendon following damage resulting from mechanical stimuli and in the brain and heart following ischemia. MGF has been shown to activate satellite cells in muscle resulting in hypertrophy or regeneration, and functions as a neuroprotectant in brain ischemia. Both expression and processing of this IGF-I variant are tissue specific, but the functional mechanism is poorly understood. MGF and its short derivative have been examined as a potential therapy for muscular dystrophy and cerebral hypoxia-ischemia using experimental animals. Although the unique mode of action of MGF has been identified, the details remain elusive. Here we review the expression and regulation of MGF and the function of this IGF-I isoform in tissue protection.
Collapse
Affiliation(s)
- Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application China Astronaut Research and Training Center, Beijing, China.
| | | | | | | |
Collapse
|
49
|
Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 2010; 21:543-59. [PMID: 19779761 PMCID: PMC2832869 DOI: 10.1007/s00198-009-1059-y] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/18/2009] [Indexed: 02/07/2023]
Abstract
The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence.
Collapse
Affiliation(s)
- T Lang
- Department of Radiology and Biomedical Imaging, University of California, UCSF, San Francisco, CA 94143-0946, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Thalacker-Mercer AE, Dell'Italia LJ, Cui X, Cross JM, Bamman MM. Differential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loading. Physiol Genomics 2010; 40:141-9. [PMID: 19903761 PMCID: PMC2825766 DOI: 10.1152/physiolgenomics.00151.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/09/2009] [Indexed: 02/07/2023] Open
Abstract
Across numerous model systems, aging skeletal muscle demonstrates an impaired regenerative response when exposed to the same stimulus as young muscle. To better understand the impact of aging in a human model, we compared changes to the skeletal muscle transcriptome induced by unaccustomed high-intensity resistance loading (RL) sufficient to cause moderate muscle damage in young (37 yr) vs. older (73 yr) adults. Serum creatine kinase was elevated 46% 24 h after RL in all subjects with no age differences, indicating similar degrees of myofiber membrane wounding by age. Despite this similarity, from genomic microarrays 318 unique transcripts were differentially expressed after RL in old vs. only 87 in young subjects. Follow-up pathways analysis and functional annotation revealed among old subjects upregulation of transcripts related to stress and cellular compromise, inflammation and immune responses, necrosis, and protein degradation and changes in expression (up- and downregulation) of transcripts related to skeletal and muscular development, cell growth and proliferation, protein synthesis, fibrosis and connective tissue function, myoblast-myotube fusion and cell-cell adhesion, and structural integrity. Overall the transcript-level changes indicative of undue inflammatory and stress responses in these older adults were not mirrored in young subjects. Follow-up immunoblotting revealed higher protein expression among old subjects for NF-kappaB, heat shock protein (HSP)70, and IL-6 signaling [total and phosphorylated signal transducer and activator of transcription (STAT)3 at Tyr705]. Together, these novel findings suggest that young and old adults are equally susceptible to RL-mediated damage, yet the muscles of older adults are much more sensitive to this modest degree of damage-launching a robust transcriptome-level response that may begin to reveal key differences in the regenerative capacity of skeletal muscle with advancing age.
Collapse
Affiliation(s)
- Anna E Thalacker-Mercer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | | | |
Collapse
|