1
|
Xu Y, Jian Q, Zhu K, Wang M, Hou W, Gong Z, Xu M, Cui K. Identifying fatigue of climbing workers using physiological data based on the XGBoost algorithm. Front Public Health 2024; 12:1462675. [PMID: 39444965 PMCID: PMC11496261 DOI: 10.3389/fpubh.2024.1462675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Background High-voltage workers often experience fatigue due to the physically demanding nature of climbing in dynamic and complex environments, which negatively impacts their motor and mental abilities. Effective monitoring is necessary to ensure safety. Methods This study proposed an experimental method to quantify fatigue in climbing operations. We collected subjective fatigue (using the RPE scale) and objective fatigue data, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood oxygen saturation (SpO2), vital capacity (VC), grip strength (GS), response time (RT), critical fusion frequency (CFF), and heart rate (HR) from 33 high-voltage workers before and after climbing tasks. The XGBoost algorithm was applied to establish a fatigue identification model. Results The analysis showed that the physiological indicators of SpO2, VC, GS, RT, and CFF can effectively evaluate fatigue in climbing operations. The XGBoost fatigue identification model, based on subjective fatigue and the five physiological indicators, achieved an average accuracy of 89.75%. Conclusion This study provides a basis for personalized management of fatigue in climbing operations, enabling timely detection of their fatigue states and implementation of corresponding measures to minimize the likelihood of accidents.
Collapse
Affiliation(s)
- Yonggang Xu
- Emergency Management Center of State Grid Shandong Electric Power Company, Jinan, China
| | - Qingzhi Jian
- State Grid Shandong Electric Power Company, Jinan, China
| | - Kunshuang Zhu
- Emergency Management Center of State Grid Shandong Electric Power Company, Jinan, China
| | - Mingjun Wang
- Emergency Management Center of State Grid Shandong Electric Power Company, Jinan, China
| | - Wei Hou
- Emergency Management Center of State Grid Shandong Electric Power Company, Jinan, China
| | - Zichao Gong
- Emergency Management Center of State Grid Shandong Electric Power Company, Jinan, China
| | - Mingkai Xu
- State Grid Shandong Electric Power Company, Jinan, China
| | - Kai Cui
- School of Modern Postal, Xi'an University of Posts and Telecommunications, Xi'an, China
| |
Collapse
|
2
|
MacAskill W, Hoffman B, Johnson MA, Sharpe GR, Rands J, Wotherspoon SE, Gevorkov Y, Kolbe‐Alexander TL, Mills DE. The effects of age on dyspnea and respiratory mechanical and neural responses to exercise in healthy men. Physiol Rep 2023; 11:e15794. [PMID: 37604647 PMCID: PMC10442526 DOI: 10.14814/phy2.15794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
The respiratory muscle pressure generation and inspiratory and expiratory neuromuscular recruitment patterns in younger and older men were compared during exercise, alongside descriptors of dyspnea. Healthy younger (n = 8, 28 ± 5 years) and older (n = 8, 68 ± 4 years) men completed a maximal incremental cycling test. Esophageal, gastric (Pga ) and transdiaphragmatic pressures, and electromyography (EMG) of the crural diaphragm were measured using a micro-transducer and EMG catheter. EMG of the parasternal intercostals, sternocleidomastoids, and rectus abdominis were measured using skin surface electrodes. After the exercise test, participants completed a questionnaire to evaluate descriptors of dyspnea. Pga at end-expiration, Pga expiratory tidal swings, and the gastric pressure-time product (PTPga ) at absolute and relative minute ventilation were higher (p < 0.05) for older compared to younger men. There were no differences in EMG responses between older and younger men. Younger men were more likely to report shallow breathing (p = 0.005) than older men. Our findings showed younger and older men had similar respiratory neuromuscular activation patterns and reported different dyspnea descriptors, and that older men had greater expiratory muscle pressure generation during exercise. Greater expiratory muscle pressures in older men may be due to compensatory mechanisms designed to offset increasing airway resistance due to aging. These results may have implications for exercise-induced expiratory muscle fatigue in older men.
Collapse
Affiliation(s)
- William MacAskill
- School of Health and Medical SciencesUniversity of Southern QueenslandIpswichQueenslandAustralia
- Respiratory and Exercise Physiology Research Group, School of Health and WellbeingUniversity of Southern QueenslandIpswichQueenslandAustralia
- Centre for Health ResearchInstitute for Resilient Regions, University of Southern QueenslandIpswichQueenslandAustralia
- Rural Clinical SchoolGriffith UniversityToowoombaQueenslandAustralia
| | - Ben Hoffman
- School of Health and Medical SciencesUniversity of Southern QueenslandIpswichQueenslandAustralia
- Centre for Health ResearchInstitute for Resilient Regions, University of Southern QueenslandIpswichQueenslandAustralia
| | - Michael A. Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamshireUK
| | - Graham R. Sharpe
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamshireUK
| | - Joshua Rands
- School of Health and Medical SciencesUniversity of Southern QueenslandIpswichQueenslandAustralia
- Respiratory and Exercise Physiology Research Group, School of Health and WellbeingUniversity of Southern QueenslandIpswichQueenslandAustralia
| | | | - Yaroslav Gevorkov
- Institute of Vision Systems, Hamburg University of TechnologyHamburgGermany
| | - Tracy L. Kolbe‐Alexander
- School of Health and Medical SciencesUniversity of Southern QueenslandIpswichQueenslandAustralia
- Centre for Health ResearchInstitute for Resilient Regions, University of Southern QueenslandIpswichQueenslandAustralia
- UCT Research Centre for Health through Physical Activity, Lifestyle and Sport (HPALS), Division of Research Unit for Exercise Science and Sports Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Dean E. Mills
- School of Health and Medical SciencesUniversity of Southern QueenslandIpswichQueenslandAustralia
- Respiratory and Exercise Physiology Research Group, School of Health and WellbeingUniversity of Southern QueenslandIpswichQueenslandAustralia
- Centre for Health ResearchInstitute for Resilient Regions, University of Southern QueenslandIpswichQueenslandAustralia
| |
Collapse
|
3
|
Bahenský P, Bunc V, Malátová R, Marko D, Grosicki GJ, Schuster J. Impact of a Breathing Intervention on Engagement of Abdominal, Thoracic, and Subclavian Musculature during Exercise, a Randomized Trial. J Clin Med 2021; 10:jcm10163514. [PMID: 34441810 PMCID: PMC8397177 DOI: 10.3390/jcm10163514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Breathing technique may influence endurance exercise performance by reducing overall breathing work and delaying respiratory muscle fatigue. We investigated whether a two-month yoga-based breathing intervention could affect breathing characteristics during exercise. Methods: Forty-six endurance runners (age = 16.6 ± 1.2 years) were randomized to either a breathing intervention or control group. The contribution of abdominal, thoracic, and subclavian musculature to respiration and ventilation parameters during three different intensities on a cycle ergometer was assessed pre- and post-intervention. Results: Post-intervention, abdominal, thoracic, and subclavian ventilatory contributions were altered at 2 W·kg−1 (27:23:50 to 31:28:41), 3 W·kg−1 (26:22:52 to 28:31:41), and 4 W·kg−1 (24:24:52 to 27:30:43), whereas minimal changes were observed in the control group. More specifically, a significant (p < 0.05) increase in abdominal contribution was observed at rest and during low intensity work (i.e., 2 and 3 W·kg−1), and a decrease in respiratory rate and increase of tidal volume were observed in the experimental group. Conclusions: These data highlight an increased reliance on more efficient abdominal and thoracic musculature, and less recruitment of subclavian musculature, in young endurance athletes during exercise following a two-month yoga-based breathing intervention. More efficient ventilatory muscular recruitment may benefit endurance performance by reducing energy demand and thus optimize energy requirements for mechanical work.
Collapse
Affiliation(s)
- Petr Bahenský
- Department of Sports Studies, Faculty of Education, University of South Bohemia, 371 15 České Budějovice, Czech Republic; (R.M.); (D.M.); (J.S.)
- Correspondence: ; Tel.: +42-038-777-3171
| | - Václav Bunc
- Sports Motor Skills Laboratory, Faculty of Sports, Physical Training and Education, Charles University, 165 52 Prague, Czech Republic;
| | - Renata Malátová
- Department of Sports Studies, Faculty of Education, University of South Bohemia, 371 15 České Budějovice, Czech Republic; (R.M.); (D.M.); (J.S.)
| | - David Marko
- Department of Sports Studies, Faculty of Education, University of South Bohemia, 371 15 České Budějovice, Czech Republic; (R.M.); (D.M.); (J.S.)
| | - Gregory J. Grosicki
- Department of Health Sciences and Kinesiology, Biodynamics and Human Performance Center, Armstrong Campus, Georgia Southern University, Savannah, GA 31419, USA;
| | - Jan Schuster
- Department of Sports Studies, Faculty of Education, University of South Bohemia, 371 15 České Budějovice, Czech Republic; (R.M.); (D.M.); (J.S.)
| |
Collapse
|
4
|
Hardy TA, How SC, Taylor BJ. The Effect of Preexercise Expiratory Muscle Loading on Exercise Tolerance in Healthy Men. Med Sci Sports Exerc 2021; 53:421-430. [PMID: 32735113 DOI: 10.1249/mss.0000000000002468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Acute nonfatiguing inspiratory muscle loading transiently increases diaphragm excitability and global inspiratory muscle strength and may improve subsequent exercise performance. We investigated the effect of acute expiratory muscle loading on expiratory muscle function and exercise tolerance in healthy men. METHODS Ten males cycled at 90% of peak power output to the limit of tolerance (TLIM) after 1) 2 × 30 expiratory efforts against a pressure-threshold load of 40% maximal expiratory gastric pressure (PgaMAX) (EML-EX) and 2) 2 × 30 expiratory efforts against a pressure-threshold load of 10% PgaMAX (SHAM-EX). Changes in expiratory muscle function were assessed by measuring the mouth pressure (PEMAX) and PgaMAX responses to maximal expulsive efforts and magnetically evoked (1 Hz) gastric twitch pressure (Pgatw). RESULTS Expiratory loading at 40% of PgaMAX increased PEMAX (10% ± 5%, P = 0.001) and PgaMAX (9% ± 5%, P = 0.004). Conversely, there was no change in PEMAX (166 ± 40 vs 165 ± 35 cm H2O, P = 1.000) or PgaMAX (196 ± 38 vs 192 ± 39 cm H2O, P = 0.215) from before to after expiratory loading at 10% of PgaMAX. Exercise time was not different in EML-EX versus SHAM-EX (7.91 ± 1.96 vs 8.09 ± 1.77 min, 95% CI = -1.02 to 0.67, P = 0.651). Similarly, exercise-induced expiratory muscle fatigue was not different in EML-EX versus SHAM-EX (-28% ± 12% vs -26% ± 7% reduction in Pgatw amplitude, P = 0.280). Perceptual ratings of dyspnea and leg discomfort were not different during EML-EX versus SHAM-EX. CONCLUSION Acute expiratory muscle loading enhances expiratory muscle function but does not improve subsequent severe-intensity exercise tolerance in healthy men.
Collapse
Affiliation(s)
- Tim A Hardy
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UNITED KINGDOM
| | - Stephen C How
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UNITED KINGDOM
| | | |
Collapse
|
5
|
Faghy MA, Brown PI. Functional training of the inspiratory muscles improves load carriage performance. ERGONOMICS 2019; 62:1439-1449. [PMID: 31389759 DOI: 10.1080/00140139.2019.1652352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Inspiratory Muscle Training (IMT) whilst adopting body positions that mimic exercise (functional IMT; IMTF) improves running performance above traditional IMT methods in unloaded exercise. We investigated the effect of IMTF during load carriage tasks. Seventeen males completed 60 min walking at 6.5 km·h-1 followed by a 2.4 km load carriage time-trial (LCTT) whilst wearing a 25 kg backpack. Trials were completed at baseline; post 4 weeks IMT (consisting of 30 breaths twice daily at 50% of maximum inspiratory pressure) and again following either 4 weeks IMTF (comprising four inspiratory loaded core exercises) or maintenance IMT (IMTCON). Baseline LCTT was 15.93 ± 2.30 min and was reduced to 14.73 ± 2.40 min (mean reduction 1.19 ± 0.83 min, p < 0.01) after IMT. Following phase two, LCTT increased in IMTF only (13.59 ± 2.33 min, p < 0.05) and was unchanged in post-IMTCON. Performance was increased following IMTF, providing an additional ergogenic effect beyond IMT alone. Practitioner Summary: We confirmed the ergogenic benefit of Inspiratory Muscle Training (IMT) upon load carriage performance. Furthermore, we demonstrate that functional IMT methods provide a greater performance benefit during exercise with thoracic loads. Abbreviations: [Lac-]B: blood lactate; FEV1: forced expiratory volume in one second; FEV1/FVC: forced expiratory volume in one second/forced vital capacity ratio; FVC: forced vital capacity; HR: heart rate; IMT: inspiratory muscle training; IMTCON: inspiratory muscle training maintenance; IMTF: functional inspiratory muscle training; LC: load carriage; LCTT: load carriage time trial; Pdi: transdiaphragmatic pressure; PEF: peak expiratory flow; PEmax: maximum expiratory mouth pressure; PImax: maximum inspiratory mouth pressure; RPE: rating of perceived exertion; RPEbreating: rating of perceived exertion for the breathing; RPEleg: rating of perceived exertion for the legs; SEPT: sport-specific endurance plank test; V̇ O2: oxygen consumption; V̇ O2peak: peak oxygen consumption.
Collapse
Affiliation(s)
- Mark A Faghy
- Human Science Research Centre, University of Derby , Derby , UK
| | - Peter I Brown
- English Institute of Sport, High Performance Centre, Loughborough University , Manchester , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
6
|
Phillips DB, Stickland MK. Respiratory limitations to exercise in health: a brief review. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Cao Y, Ichikawa Y, Sasaki Y, Ogawa T, Hiroyama T, Enomoto Y, Fujii N, Nishiyasu T. Expiratory flow limitation under moderate hypobaric hypoxia does not influence ventilatory responses during incremental running in endurance runners. Physiol Rep 2019; 7:e13996. [PMID: 30714335 PMCID: PMC6360241 DOI: 10.14814/phy2.13996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/12/2019] [Indexed: 11/24/2022] Open
Abstract
We tested whether expiratory flow limitation (EFL) occurs in endurance athletes in a moderately hypobaric hypoxic environment equivalent to 2500 m above sea level and, if so, whether EFL inhibits peak ventilation ( V ˙ Epeak ), thereby exacerbating the hypoxia-induced reduction in peak oxygen uptake ( V ˙ O2peak ). Seventeen young male endurance runners performed incremental exhaustive running on separate days under hypobaric hypoxic (560 mmHg) and normobaric normoxic (760 mmHg) conditions. Oxygen uptake ( V ˙ O2 ), minute ventilation ( V ˙ E), arterial O2 saturation (SpO2 ), and operating lung volume were measured throughout the incremental exercise. Among the runners tested, 35% exhibited EFL (EFL group, n = 6) in the hypobaric hypoxic condition, whereas the rest did not (Non-EFL group, n = 11). There were no differences between the EFL and Non-EFL groups for V ˙ Epeak and V ˙ O2peak under either condition. Percent changes in V ˙ Epeak (4 ± 4 vs. 2 ± 4%) and V ˙ O2peak (-18 ± 6 vs. -16 ± 6%) from normobaric normoxia to hypobaric hypoxia also did not differ between the EFL and Non-EFL groups (all P > 0.05). No differences in maximal running velocity, SpO2 , or operating lung volume were detected between the two groups under either condition. These results suggest that under the moderate hypobaric hypoxia (2500 m above sea level) frequently used for high-attitude training, ~35% of endurance athletes may exhibit EFL, but their ventilatory and metabolic responses during maximal exercise are similar to those who do not exhibit EFL.
Collapse
Affiliation(s)
- Yinhang Cao
- Faculty of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Yuhei Ichikawa
- Faculty of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Yosuke Sasaki
- Faculty of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
- Faculty of EconomicsNiigata Sangyo UniversityKashiwazakiJapan
| | - Takeshi Ogawa
- Department of Physical EducationOsaka Kyoiku UniversityOsakaJapan
| | - Tsutomu Hiroyama
- Faculty of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Yasushi Enomoto
- Faculty of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Naoto Fujii
- Faculty of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| |
Collapse
|
8
|
Tiller NB, Campbell IG, Romer LM. Influence of Upper-Body Exercise on the Fatigability of Human Respiratory Muscles. Med Sci Sports Exerc 2017; 49:1461-1472. [PMID: 28288012 PMCID: PMC5473371 DOI: 10.1249/mss.0000000000001251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Purpose Diaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue. Methods Seven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg−1·min−1) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively. Results Exercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min−1 (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min−1 (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5–15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25–35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise. Conclusions High-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax.
Collapse
Affiliation(s)
- Nicholas B Tiller
- 1Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, UNITED KINGDOM; 2Division of Sport, Health and Exercise Sciences, Brunel University London, London, UNITED KINGDOM; and 3School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UNITED KINGDOM
| | | | | |
Collapse
|
9
|
Expiratory flow limitation and operating lung volumes during exercise in older and younger adults. Respir Physiol Neurobiol 2017; 240:26-31. [DOI: 10.1016/j.resp.2016.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/14/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
|
10
|
Endurance exercise performance in acute hypoxia is influenced by expiratory flow limitation. Eur J Appl Physiol 2015; 115:1653-63. [DOI: 10.1007/s00421-015-3145-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
11
|
Duke JW, Stickford JL, Weavil JC, Chapman RF, Stager JM, Mickleborough TD. Operating lung volumes are affected by exercise mode but not trunk and hip angle during maximal exercise. Eur J Appl Physiol 2014; 114:2387-97. [DOI: 10.1007/s00421-014-2956-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
|
12
|
Does expiratory muscle activity influence dynamic hyperinflation and exertional dyspnea in COPD? Respir Physiol Neurobiol 2014; 199:24-33. [DOI: 10.1016/j.resp.2014.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 11/24/2022]
|
13
|
West CR, Goosey-Tolfrey VL, Campbell IG, Romer LM. Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury. J Appl Physiol (1985) 2014; 117:36-45. [PMID: 24855136 PMCID: PMC4458640 DOI: 10.1152/japplphysiol.00218.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/15/2014] [Indexed: 11/25/2022] Open
Abstract
We asked whether elastic binding of the abdomen influences respiratory mechanics during wheelchair propulsion in athletes with cervical spinal cord injury (SCI). Eight Paralympic wheelchair rugby players with motor-complete SCI (C5-C7) performed submaximal and maximal incremental exercise tests on a treadmill, both with and without abdominal binding. Measurements included pulmonary function, pressure-derived indices of respiratory mechanics, operating lung volumes, tidal flow-volume data, gas exchange, blood lactate, and symptoms. Residual volume and functional residual capacity were reduced with binding (77 ± 18 and 81 ± 11% of unbound, P < 0.05), vital capacity was increased (114 ± 9%, P < 0.05), whereas total lung capacity was relatively well preserved (99 ± 5%). During exercise, binding introduced a passive increase in transdiaphragmatic pressure, due primarily to an increase in gastric pressure. Active pressures during inspiration were similar across conditions. A sudden, sustained rise in operating lung volumes was evident in the unbound condition, and these volumes were shifted downward with binding. Expiratory flow limitation did not occur in any subject and there was substantial reserve to increase flow and volume in both conditions. V̇o2 was elevated with binding during the final stages of exercise (8-12%, P < 0.05), whereas blood lactate concentration was reduced (16-19%, P < 0.05). V̇o2/heart rate slopes were less steep with binding (62 ± 35 vs. 47 ± 24 ml/beat, P < 0.05). Ventilation, symptoms, and work rates were similar across conditions. The results suggest that abdominal binding shifts tidal breathing to lower lung volumes without influencing flow limitation, symptoms, or exercise tolerance. Changes in respiratory mechanics with binding may benefit O2 transport capacity by an improvement in central circulatory function.
Collapse
Affiliation(s)
- Christopher R West
- Centre for Sports Medicine and Human Performance, Brunel University, United Kingdom; and
| | - Victoria L Goosey-Tolfrey
- School of Sport, Exercise & Health Sciences, The Peter Harrison Centre for Disability Sport, Loughborough University, United Kingdom
| | - Ian G Campbell
- Centre for Sports Medicine and Human Performance, Brunel University, United Kingdom; and
| | - Lee M Romer
- Centre for Sports Medicine and Human Performance, Brunel University, United Kingdom; and
| |
Collapse
|