1
|
Król T, Kuszewski M, Kamiński M, Kluczniok K, Kubasik W. Is occlusion training effective in increasing strength and hypertrophy of lower limb muscles in MMA fighters? J Sports Med Phys Fitness 2024; 64:1003-1008. [PMID: 38888559 DOI: 10.23736/s0022-4707.24.15782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND The aim of this study is to evaluate the influence of implementation of the BFR training on the hypertrophy and strength of the lower limb muscles in combat sports fighters, using common and easy to perform both training and control methods. METHODS Design as a randomized control trial (RCT). The study included 30 men, MMA fighters since at least a year. They were divided into two groups: (A, a control group; B, men with the BFR training). The training lasted 8 weeks (3 times a week) and consisted of performing a set of specific exercises with a load of 20% 1RM. RESULTS The Wilcoxon analyzing test showed important changes in muscle girth (P<0.01) and lower limb muscular strength (P<0.05). These changes were to be seen in the tested group only, not in the control group. CONCLUSIONS Occlusion training is effective in increasing strength and hypertrophy of lower limb muscles in martial arts fighters.
Collapse
Affiliation(s)
- Tomasz Król
- Department of Kinesitherapy and Special Methods, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Kuszewski
- Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland -
| | | | - Kamila Kluczniok
- Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Galen Rehabilitacja, Bieruń, Poland
| | - Wojciech Kubasik
- Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Galen Rehabilitacja, Bieruń, Poland
| |
Collapse
|
2
|
Cho C, Lee S. The Effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. Int J Mol Sci 2024; 25:9274. [PMID: 39273223 PMCID: PMC11394695 DOI: 10.3390/ijms25179274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Blood flow restriction exercise has emerged as a promising alternative, particularly for elderly individuals and those unable to participate in high-intensity exercise. However, existing research has predominantly focused on blood flow restriction resistance exercise. There remains a notable gap in understanding the comprehensive effects of blood flow restriction aerobic exercise (BFRAE) on body composition, lipid profiles, glycemic metabolism, and cardiovascular function. This review aims to explore the physiological effects induced by chronic BFRAE. Chronic BFRAE has been shown to decrease fat mass, increase muscle mass, and enhance muscular strength, potentially benefiting lipid profiles, glycemic metabolism, and overall function. Thus, the BFRAE offers additional benefits beyond traditional aerobic exercise effects. Notably, the BFRAE approach may be particularly suitable for individuals with low fitness levels, those prone to injury, the elderly, obese individuals, and those with metabolic disorders.
Collapse
Affiliation(s)
- Chaeeun Cho
- Department of Human Movement Science, Graduate School, Incheon National University, Incheon 22012, Republic of Korea
| | - Sewon Lee
- Division of Sport Science, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Sport Science Institute, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Health Promotion Center, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
3
|
Wedig IJ, Durocher JJ, McDaniel J, Elmer SJ. Blood flow restriction as a potential therapy to restore physical function following COVID-19 infection. Front Physiol 2023; 14:1235172. [PMID: 37546539 PMCID: PMC10400776 DOI: 10.3389/fphys.2023.1235172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Accumulating evidence indicates that some COVID-19 survivors display reduced muscle mass, muscle strength, and aerobic capacity, which contribute to impairments in physical function that can persist for months after the acute phase of illness. Accordingly, strategies to restore muscle mass, muscle strength, and aerobic capacity following infection are critical to mitigate the long-term consequences of COVID-19. Blood flow restriction (BFR), which involves the application of mechanical compression to the limbs, presents a promising therapy that could be utilized throughout different phases of COVID-19 illness. Specifically, we hypothesize that: 1) use of passive BFR modalities can mitigate losses of muscle mass and muscle strength that occur during acute infection and 2) exercise with BFR can serve as an effective alternative to high-intensity exercise without BFR for regaining muscle mass, muscle strength, and aerobic capacity during convalescence. The various applications of BFR may also serve as a targeted therapy to address the underlying pathophysiology of COVID-19 and provide benefits to the musculoskeletal system as well as other organ systems affected by the disease. Consequently, we present a theoretical framework with which BFR could be implemented throughout the progression from acute illness to outpatient rehabilitation with the goal of improving short- and long-term outcomes in COVID-19 survivors. We envision that this paper will encourage discussion and consideration among researchers and clinicians of the potential therapeutic benefits of BFR to treat not only COVID-19 but similar pathologies and cases of acute critical illness.
Collapse
Affiliation(s)
- Isaac J. Wedig
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
| | - John J. Durocher
- Department of Biological Sciences and Integrative Physiology and Health Sciences Center, Purdue University Northwest, Hammond, IN, United States
| | - John McDaniel
- Department of Exercise Physiology, Kent State University, Kent, OH, United States
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
4
|
Zhou G, Liu J. Prognostic value of elevated plasma angiotensin-converting enzyme 2 in cardiometabolic diseases: A review. Medicine (Baltimore) 2023; 102:e33251. [PMID: 36897667 PMCID: PMC9997766 DOI: 10.1097/md.0000000000033251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Angiotensin-converting enzyme 2, as an internal anti regulator of the renin-angiotensin hormone cascade reaction, plays a protective role in vasodilation, inhibition of fibrosis, and initiation of anti-inflammatory and antioxidative stress by degrading angiotensin II and generating angiotensin (1-7). Multiple studies have shown that plasma angiotensin-converting enzyme 2 activity is low in healthy populations without significant cardiometabolic disease, and elevated plasma angiotensin-converting enzyme 2 levels can be used as a novel biomarker of abnormal myocardial structure and/or adverse events in cardiometabolic diseases. This article aims to elaborate the determinants of plasma angiotensin-converting enzyme 2 concentration, the relevance between angiotensin-converting enzyme 2 and cardiometabolic disease risk markers, and its relative importance compared with known cardiovascular disease risk factors. Confronted with the known cardiovascular risk factors, plasma angiotensin-converting enzyme 2 (ACE2) concentration uniformly emerged as a firm predictor of abnormal myocardial structure and/or adverse events in cardiometabolic diseases and may improve the risk prediction of cardiometabolic diseases when combined with other conventional risk factors. Cardiovascular disease is the leading cause of death worldwide, while the renin-angiotensin system is the main hormone cascade system involved in the pathophysiology of cardiovascular disease. A multi-ancestry global cohort study from the general population by Narula et al revealed that plasma ACE2 concentration was strongly associated with cardiometabolic disease and might be an easily measurable indicator of renin-angiotensin system disorder. The association between this atypical hormone disorder marker and cardiometabolic disease is isolated from conventional cardiac risk factors and brain natriuretic peptide, suggesting that a clearer comprehending of the changes in plasma ACE2 concentration and activity may help us to improve the risk prediction of cardiometabolic disease, guide early diagnosis and feasible therapies, and develop and test new therapeutic targets.
Collapse
Affiliation(s)
- Gang Zhou
- Department of First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingchen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Cahalin LP, Formiga MF, Owens J, Osman BM. A Meta-Analysis of Remote Ischemic Preconditioning in Lung Surgery and Its Potential Role in COVID-19. Physiother Can 2023; 75:30-41. [PMID: 37250733 PMCID: PMC10211375 DOI: 10.3138/ptc-2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 08/08/2023]
Abstract
Purpose: To determine the effects of remote ischemic preconditioning (RIPC) on pulmonary gas exchange in people undergoing pulmonary surgery and discuss a potential role of RIPC in COVID-19. Method: A search for studies examining the effects of RIPC after pulmonary surgery was performed. RevMan was used for statistical analyses examining measures of A-ado2, Pao2/Fio2, respiratory index (RI), a/A ratio and Paco2 obtained earlier after surgery (i.e., 6-8 hours) and later after surgery (i.e., 18-24 hours). Results: Four trials were included (N = 369 participants). Significant (p < 0.05) overall effects of RIPC were observed early after surgery on A-ado2 and RI (SMD -0.84 and SMD -1.23, respectively), and later after surgery on RI, Pao2/Fio2, and a/A ratio (SMD -0.39, 0.72, and 1.15, respectively) with the A-ado2 approaching significance (p = 0.05; SMD -0.45). Significant improvements in inflammatory markers and oxidative stress after RIPC were also observed. Conclusions: RIPC has the potential to improve pulmonary gas exchange, inflammatory markers, and oxidative stress in people with lung disease undergoing lung surgery and receiving mechanical ventilation. These potential improvements may be beneficial for people with COVID-19, but further investigation is warranted.
Collapse
Affiliation(s)
- Lawrence P. Cahalin
- University of Miami, Department of Physical Therapy, Coral Gables, Florida, United States
| | - Magno F. Formiga
- Universidade Federal do Ceará, Departamento de Fisioterapia, Fortaleza, Ceará, Brazil
| | - Johnny Owens
- Owens Recovery Science, San Antonio, Texas, United States
| | - Brian M. Osman
- of Miami, Department of Anesthesiology, Perioperative Medicine, and Pain Management, Miami, Florida, United States
| |
Collapse
|
6
|
Escaloni J, Mazloomdoost D, Young I. Novel Orthobiologic Preparation and Regenerative Rehabilitation of a Complex Shoulder Injury in a Competitive Adolescent Female Athlete. Int J Sports Phys Ther 2023; 18:240-252. [PMID: 36793563 PMCID: PMC9897030 DOI: 10.26603/001c.68143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background Platelet-rich plasma (PRP) and prolotherapy have resulted in promising outcomes in patients with various types of shoulder injuries. However, there is a lack of preliminary evidence supporting preparation of PRP production, timely application of these therapies and regenerative rehabilitation protocols. The purpose of this case report is to describe the distinct method including orthobiologic preparation, tissue-specific treatment and regenerative rehabilitation of an athlete with a complex shoulder injury. Case Presentation A 15y/o competitive female wrestler with a complex shoulder injury presented to the clinic after unsuccessful conservative rehabilitation. Unique methods were incorporated to optimize PRP production, specific tissue healing and regenerative rehabilitation. Multiple injuries required different orthobiologic interventions at different time frames, in order to promote optimal healing and stability of the shoulder. Outcomes The described interventions resulted in successful outcomes including pain, disability, full return to sport, and regenerative tissue healing confirmed with diagnostic imaging. Level of Evidence 5.
Collapse
Affiliation(s)
- James Escaloni
- American Academy of Manipulative Therapy
- Wellward Regenerative Medicine
| | | | - Ian Young
- American Academy of Manipulative Therapy
- Tybee Wellness & Osteopractic
| |
Collapse
|
7
|
Leowattana W, Leowattana T, Leowattana P. Circulating angiotensin converting enzyme 2 and COVID-19. World J Clin Cases 2022; 10:12470-12483. [PMID: 36579082 PMCID: PMC9791519 DOI: 10.12998/wjcc.v10.i34.12470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a widespread outbreak since December 2019. The SARS-CoV-2 infection-related illness has been dubbed the coronavirus disease 2019 (COVID-19) by the World Health Organization. Asymptomatic and subclinical infections, a severe hyper-inflammatory state, and mortality are all examples of clinical signs. After attaching to the angiotensin converting enzyme 2 (ACE2) receptor, the SARS-CoV-2 virus can enter cells through membrane fusion and endocytosis. In addition to enabling viruses to cling to target cells, the connection between the spike protein (S-protein) of SARS-CoV-2 and ACE2 may potentially impair the functionality of ACE2. Blood pressure is controlled by ACE2, which catalyzes the hydrolysis of the active vasoconstrictor octapeptide angiotensin (Ang) II to the heptapeptide Ang-(1-7) and free L-Phe. Additionally, Ang I can be broken down by ACE2 into Ang-(1-9) and metabolized into Ang-(1-7). Numerous studies have demonstrated that circulating ACE2 (cACE2) and Ang-(1-7) have the ability to restore myocardial damage in a variety of cardiovascular diseases and have anti-inflammatory, antioxidant, anti-apoptotic, and anti-cardiomyocyte fibrosis actions. There have been some suggestions for raising ACE2 expression in COVID-19 patients, which might be used as a target for the creation of novel treatment therapies. With regard to this, SARS-CoV-2 is neutralized by soluble recombinant human ACE2 (hrsACE2), which binds the viral S-protein and reduces damage to a variety of organs, including the heart, kidneys, and lungs, by lowering Ang II concentrations and enhancing conversion to Ang-(1-7). This review aims to investigate how the presence of SARS-CoV-2 and cACE2 are related. Additionally, there will be discussion of a number of potential therapeutic approaches to tip the ACE/ACE-2 balance in favor of the ACE-2/Ang-(1-7) axis.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Bangkok, Thailand
| |
Collapse
|
8
|
Wissing SI, Obeid R, Rädle-Hurst T, Rohrer T, Herr C, Schöpe J, Geisel J, Bals R, Abdul-Khaliq H. Concentrations of Soluble Angiotensin Converting Enzyme 2 (sACE2) in Children and Adults with and without COVID-19. J Clin Med 2022; 11:jcm11226799. [PMID: 36431276 PMCID: PMC9698605 DOI: 10.3390/jcm11226799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19) pandemic, leads to illness and death. Various risk factors for a severe course, such as higher age, male gender and pre-existing illnesses are known. However, pathophysiological risk factors are largely unclear. Notably, the mild course of disease in children is conspicuous. Angiotensin converting enzyme 2 (ACE2) serves as a receptor for SARS-CoV-2 and is a key enzyme in infection. Differences in the distribution of ACE2 can provide insights into different courses of COVID-19. Our aim was to elucidate the role of ACE2 as a pathophysiological risk factor by measuring soluble ACE2 (sACE2) via ELISA in blood samples (lithium-heparin-plasma or serum) of 367 individuals including children and adults with and without COVID-19. sACE2-levels were compared between the groups according to age and sex. In adults and children with COVID-19, sACE2-concentrations are significantly higher compared to healthy individuals. sACE2-levels increase with age and are lower in children compared to adults with COVID-19. Sex doesn't significantly influence sACE2-concentration. It remains unclear whether sACE2 concentrations increase because of the infection and what factors could influence this response. In conclusion, the increase of sACE2-concentration with age could indicate that ACE2 concentrations mirror increased COVID-19 severity.
Collapse
Affiliation(s)
- Sarah Isabella Wissing
- Department of Pediatric Cardiology, Saarland University Hospital, 66421 Homburg, Germany
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, 66421 Homburg, Germany
| | - Tanja Rädle-Hurst
- Department of Pediatric Cardiology, Saarland University Hospital, 66421 Homburg, Germany
| | - Tilman Rohrer
- Department of Pediatric Endocrinology, Saarland University Hospital, 66421 Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V–Pulmonology, Allergology and Critical Care Medicine, Saarland University Hospital, 66421 Homburg, Germany
| | - Jakob Schöpe
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Jürgen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, 66421 Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V–Pulmonology, Allergology and Critical Care Medicine, Saarland University Hospital, 66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Hospital, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-1628306
| |
Collapse
|
9
|
Nascimento DDC, Rolnick N, Neto IVDS, Severin R, Beal FLR. A Useful Blood Flow Restriction Training Risk Stratification for Exercise and Rehabilitation. Front Physiol 2022; 13:808622. [PMID: 35360229 PMCID: PMC8963452 DOI: 10.3389/fphys.2022.808622] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Blood flow restriction training (BFRT) is a modality with growing interest in the last decade and has been recognized as a critical tool in rehabilitation medicine, athletic and clinical populations. Besides its potential for positive benefits, BFRT has the capability to induce adverse responses. BFRT may evoke increased blood pressure, abnormal cardiovascular responses and impact vascular health. Furthermore, some important concerns with the use of BFRT exists for individuals with established cardiovascular disease (e.g., hypertension, diabetes mellitus, and chronic kidney disease patients). In addition, considering the potential risks of thrombosis promoted by BFRT in medically compromised populations, BFRT use warrants caution for patients that already display impaired blood coagulability, loss of antithrombotic mechanisms in the vessel wall, and stasis caused by immobility (e.g., COVID-19 patients, diabetes mellitus, hypertension, chronic kidney disease, cardiovascular disease, orthopedic post-surgery, anabolic steroid and ergogenic substance users, rheumatoid arthritis, and pregnant/postpartum women). To avoid untoward outcomes and ensure that BFRT is properly used, efficacy endpoints such as a questionnaire for risk stratification involving a review of the patient's medical history, signs, and symptoms indicative of underlying pathology is strongly advised. Here we present a model for BFRT pre-participation screening to theoretically reduce risk by excluding people with comorbidities or medically complex histories that could unnecessarily heighten intra- and/or post-exercise occurrence of adverse events. We propose this risk stratification tool as a framework to allow clinicians to use their knowledge, skills and expertise to assess and manage any risks related to the delivery of an appropriate BFRT exercise program. The questionnaires for risk stratification are adapted to guide clinicians for the referral, assessment, and suggestion of other modalities/approaches if/when necessary. Finally, the risk stratification might serve as a guideline for clinical protocols and future randomized controlled trial studies.
Collapse
Affiliation(s)
- Dahan da Cunha Nascimento
- Department of Physical Education, Catholic University of Brasília (UCB), Brasília, Brazil
- Department of Gerontology, Catholic University of Brasília (UCB), Brasília, Brazil
| | - Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York, NY, United States
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasília, Brasília, Brazil
| | - Richard Severin
- Department of Physical Therapy, College of Applied Health Sciences, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physical Therapy, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, United States
| | - Fabiani Lage Rodrigues Beal
- Department of Gerontology, Catholic University of Brasília (UCB), Brasília, Brazil
- Department of Nutrition, Health and Medicine School, Catholic University of Brasília (UCB), Brasília, Brazil
| |
Collapse
|
10
|
Hughes L, Hackney KJ, Patterson SD. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction. Aerosp Med Hum Perform 2022; 93:32-45. [PMID: 35063054 DOI: 10.3357/amhp.5855.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: During spaceflight missions, astronauts work in an extreme environment with several hazards to physical health and performance. Exposure to microgravity results in remarkable deconditioning of several physiological systems, leading to impaired physical condition and human performance, posing a major risk to overall mission success and crew safety. Physical exercise is the cornerstone of strategies to mitigate physical deconditioning during spaceflight. Decades of research have enabled development of more optimal exercise strategies and equipment onboard the International Space Station. However, the effects of microgravity cannot be completely ameliorated with current exercise countermeasures. Moreover, future spaceflight missions deeper into space require a new generation of spacecraft, which will place yet more constraints on the use of exercise by limiting the amount, size, and weight of exercise equipment and the time available for exercise. Space agencies are exploring ways to optimize exercise countermeasures for spaceflight, specifically exercise strategies that are more efficient, require less equipment, and are less time-consuming. Blood flow restriction exercise is a low intensity exercise strategy that requires minimal equipment and can elicit positive training benefits across multiple physiological systems. This method of exercise training has potential as a strategy to optimize exercise countermeasures during spaceflight and reconditioning in terrestrial and partial gravity environments. The possible applications of blood flow restriction exercise during spaceflight are discussed herein.Hughes L, Hackney KJ, Patterson SD. Optimization of exercise countermeasures to spaceflight using blood flow restriction. Aerosp Med Hum Perform. 2021; 93(1):32-45.
Collapse
|
11
|
The Effect of Blood Flow Restriction Training on Muscle Atrophy Following Meniscal Repair or Chondral Restoration Surgery in Active Duty Military: A Randomized Controlled Trial. J Sport Rehabil 2022; 31:77-84. [PMID: 34686624 DOI: 10.1123/jsr.2020-0518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Recently, blood flow restriction (BFR) training has gained popularity as an alternative to high-load resistance training for improving muscle strength and hypertrophy. Previous BFR studies have reported positive treatment effects; however, clinical benefits to using BFR following meniscal repair or chondral surgery are unknown. The purpose of this study was to determine the effect of resistance exercises with BFR training versus exercises alone on self-reported knee function, thigh circumference, and knee flexor/extensor strength postmeniscal or cartilage surgery. DESIGN Single-blinded randomized controlled trial in an outpatient military hospital setting. Twenty participants were randomized into 2 groups: BFR group (n = 11) and control group (n = 9). METHODS Participants completed 12 weeks of postoperative thigh strengthening. The BFR group performed each exercise with the addition of BFR. Both groups continued with the prescribed exercises without BFR from 12 weeks until discharged from therapy. Thigh circumference and self-reported knee function were measured at 1, 6, 12, and 24 weeks postoperatively along with knee extensor and flexor strength at 12 and 24 weeks. Change scores between time points were calculated for knee function. Limb symmetry indices (LSI) were computed for thigh circumference and knee strength variables. RESULTS Seventeen participants were included in the final analyses (BFR = 8 and control = 9) due to COVID-19 restrictions. There were no interactions or main effects for group. Time main effects were established for change in knee function scores, thigh circumference LSI, and knee extensor strength LSI. However, knee flexor strength LSI had no main effect for time. CONCLUSION The outcomes of this trial suggest that resistance exercises with and without BFR training may result in similar changes to function, thigh atrophy, and knee extensor strength postmeniscus repair/chondral restoration, though further study with larger sample sizes is needed.
Collapse
|
12
|
Lundström A, Ziegler L, Havervall S, Rudberg A, von Meijenfeldt F, Lisman T, Mackman N, Sandén P, Thålin C. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J Med Virol 2021; 93:5908-5916. [PMID: 34138483 PMCID: PMC8426677 DOI: 10.1002/jmv.27144] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
The main entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is angiotensin-converting enzyme 2 (ACE2). SARS-CoV-2 interactions with ACE2 may increase ectodomain shedding but consequences for the renin-angiotensin system and pathology in Coronavirus disease 2019 (COVID-19) remain unclear. We measured soluble ACE2 (sACE2) and sACE levels by enzyme-linked immunosorbent assay in 114 hospital-treated COVID-19 patients compared with 10 healthy controls; follow-up samples after four months were analyzed for 58 patients. Associations between sACE2 respectively sACE and risk factors for severe COVID-19, outcome, and inflammatory markers were investigated. Levels of sACE2 were higher in COVID-19 patients than in healthy controls, median 5.0 (interquartile range 2.8-11.8) ng/ml versus 1.4 (1.1-1.6) ng/ml, p < .0001. sACE2 was higher in men than women but was not affected by other risk factors for severe COVID-19. sACE2 decreased to 2.3 (1.6-3.9) ng/ml at follow-up, p < .0001, but remained higher than in healthy controls, p = .012. sACE was marginally lower during COVID-19 compared with at follow-up, 57 (45-70) ng/ml versus 72 (52-87) ng/ml, p = .008. Levels of sACE2 and sACE did not differ depending on survival or disease severity. sACE2 during COVID-19 correlated with von Willebrand factor, factor VIII and D-dimer, while sACE correlated with interleukin 6, tumor necrosis factor α, and plasminogen activator inhibitor 1. Conclusions: sACE2 was transiently elevated in COVID-19, likely due to increased shedding from infected cells. sACE2 and sACE during COVID-19 differed in correlations with markers of inflammation and endothelial dysfunction, suggesting release from different cell types and/or vascular beds.
Collapse
Affiliation(s)
- Annika Lundström
- Division of Neurology, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Louise Ziegler
- Division of Internal Medicine, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Sebastian Havervall
- Division of Internal Medicine, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Ann‐Sofie Rudberg
- Division of Neurology, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Fien von Meijenfeldt
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Per Sandén
- Division of Neurology, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| | - Charlotte Thålin
- Division of Internal Medicine, Department of Clinical SciencesKarolinska Institutet Danderyd HospitalStockholmSweden
| |
Collapse
|
13
|
Seman S, Dražilov SS, Ilić V, Tešić M, Stojiljković S, Arena R, Popović D. Physical activity and exercise as an essential medical strategy for the COVID-19 pandemic and beyond. Exp Biol Med (Maywood) 2021; 246:2324-2331. [PMID: 34233523 DOI: 10.1177/15353702211028543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
COVID-19 disease has been a problem in today's society, which has worldwide effects on different areas, especially on the economy; also, from a health perspective, the disease affects the daily life quality. Physical activity is one major positive factor with regard to enhancing life quality, as it can improve the whole psychological, social, and physical health conditions. Current measures such as social distancing are focused on preventing the viral spread. However, the consequences on other areas are yet to be investigated. Elderly, people with chronic diseases, obese, and others benefit largely from exercise from the perspective of improved health, and preventive measures can drastically improve daily living. In this article, we elaborate the effects of exercise on the immune system and the possible strategies that can be implemented toward greater preventive potential.
Collapse
Affiliation(s)
- Stefan Seman
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade 11000, Serbia.,Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL 60612, USA
| | | | - Vladimir Ilić
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade 11000, Serbia
| | - Milorad Tešić
- Division of Cardiology, Clinical Center of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Stanimir Stojiljković
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade 11000, Serbia
| | - Ross Arena
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL 60612, USA.,Department of Physical Therapy, College of Applied Science, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dejana Popović
- Healthy Living for Pandemic Event Protection (HL - PIVOT) Network, Chicago, IL 60612, USA.,Division of Cardiology, Clinical Center of Serbia, University of Belgrade, Belgrade 11000, Serbia.,Faculty of Pharmacy, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
14
|
Abstract
SARS-CoV-2 viruses are positive single-stranded RNA viruses, whose infection can be asymptomatic or lead to the coronavirus disease 2019 (Covid-19). Covid-19 is a respiratory infection with a significant impact on the hematopoietic system and hemostasis leading to several cardiovascular complications. Hematologic consequences of this new infection allowed medical community to start new treatment approaches concerning infection going from targeted anti-inflammatory drugs to anticoagulation or stem cell therapies. A better understanding of Covid-19 pathophysiology, in particular hematological disorders, will help to choose appropriate treatment strategies.
Collapse
|
15
|
Saatmann N, Zaharia OP, Loenneke JP, Roden M, Pesta DH. Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends Endocrinol Metab 2021; 32:106-117. [PMID: 33358931 DOI: 10.1016/j.tem.2020.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D.
Collapse
Affiliation(s)
- Nina Saatmann
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD eV), Partner Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD eV), Partner Düsseldorf, Germany
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, Oxford, MS, USA
| | - Michael Roden
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD eV), Partner Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Dominik H Pesta
- Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany; German Center for Diabetes Research (DZD eV), Partner Düsseldorf, Germany; Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
16
|
Kuriakose J, Montezano A, Touyz R. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021; 135:387-407. [PMID: 33511992 PMCID: PMC7846970 DOI: 10.1042/cs20200480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. Among the best characterized functions of ACE2 is its role in regulating vascular tone. ACE2 through its effector peptide Ang-(1-7) and receptor Mas1 induces vasodilation and attenuates Ang II-induced vasoconstriction. In endothelial cells activation of the ACE2/Ang-(1-7)/Mas1 axis increases production of the vasodilator's nitric oxide and prostacyclin's and in vascular smooth muscle cells it inhibits pro-contractile and pro-inflammatory signaling. Endothelial ACE2 is cleaved by proteases, shed into the circulation and measured as soluble ACE2. Plasma ACE2 activity is increased in cardiovascular disease and may have prognostic significance in disease severity. In addition to its enzymatic function, ACE2 is the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV) and SARS-Cov-2, which cause SARS and coronavirus disease-19 (COVID-19) respectively. ACE-2 is thus a double-edged sword: it promotes cardiovascular health while also facilitating the devastations caused by coronaviruses. COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.
Collapse
Affiliation(s)
- Jithin Kuriakose
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|