1
|
Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 2022; 323:C866-C878. [PMID: 35912990 PMCID: PMC9467472 DOI: 10.1152/ajpcell.00227.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Ian M Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Cormac T Taylor
- School of Medicine, Conway Institute and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| |
Collapse
|
2
|
Nath A, Chakrabarti P, Sen S, Barui A. Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Rev Rep 2022; 18:2328-2350. [DOI: 10.1007/s12015-022-10377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
3
|
Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S. Gut-on-chip: Recreating human intestine in vitro. J Tissue Eng 2020; 11:2041731420965318. [PMID: 33282173 PMCID: PMC7682210 DOI: 10.1177/2041731420965318] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
The human gut is important for food digestion and absorption, as well as a venue for a large number of microorganisms that coexist with the host. Although numerous in vitro models have been proposed to study intestinal pathology or interactions between intestinal microbes and host, they are far from recapitulating the real intestinal microenvironment in vivo. To assist researchers in further understanding gut physiology, the intestinal microbiome, and disease processes, a novel technology primarily based on microfluidics and cell biology, called "gut-on-chip," was developed to simulate the structure, function, and microenvironment of the human gut. In this review, we first introduce various types of gut-on-chip systems, then highlight their applications in drug pharmacokinetics, host-gut microbiota crosstalk, and nutrition metabolism. Finally, we discuss challenges in this field and prospects for better understanding interactions between intestinal flora and human hosts, and then provide guidance for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yunqing Xiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiongfei Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqiang Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Aller MA, Blanco-Rivero J, Arias N, Santamaria L, Arias J. The Lymphatic Headmaster of the Mast Cell-Related Splanchnic Inflammation in Portal Hypertension. Cells 2019; 8:cells8070658. [PMID: 31261968 PMCID: PMC6678304 DOI: 10.3390/cells8070658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Portal hypertension is a common complication of liver disease, either acute or chronic. Consequently, in chronic liver disease, such as the hypertensive mesenteric venous pathology, the coexisting inflammatory response is classically characterized by the splanchnic blood circulation. However, a vascular lymphatic pathology is produced simultaneously with the splanchnic arterio-venous impairments. The pathological increase of the mesenteric venous pressure, by mechanotransduction of the venous endothelium hyperpressure, causes an inflammatory response involving the subendothelial mast cells and the lymphatic endothelium of the intestinal villi lacteal. In portal hypertension, the intestinal lymphatic inflammatory response through the development of mesenteric-systemic lymphatic collateral vessels favors the systemic diffusion of substances with a molecular pattern associated with damage and pathogens of intestinal origin. When the chronic hepatic insufficiency worsens the portal hypertensive inflammatory response, the splanchnic lymphatic system transports the hyperplasied intestinal mast cells to the mesenteric lymphatic complex. Then, an acquired immune response regulating a new hepato-intestinal metabolic scenario is activated. Therefore, reduction of the hepatic metabolism would reduce its key centralized functions, such as the metabolic, detoxifying and antioxidant functions which would try to be substituted by their peroxisome activity, among other functions of the mast cells.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Autonomous University of Madrid, 28049 Madrid, Spain
- Instituto de Investigación Biomédica La Paz (IdIPAZ), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red (Ciber) de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- INEUROPA (Instituto de Neurociencias del Principado de Asturias), 33003 Oviedo, Spain
| | - Luis Santamaria
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, 28029 Madrid, Spain
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Spiga L, Winter SE. Using Enteric Pathogens to Probe the Gut Microbiota. Trends Microbiol 2019; 27:243-253. [DOI: 10.1016/j.tim.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
|
6
|
Xu C, Liu X, Zha H, Fan S, Zhang D, Li S, Xiao W. A pathogen-derived effector modulates host glucose metabolism by arginine GlcNAcylation of HIF-1α protein. PLoS Pathog 2018; 14:e1007259. [PMID: 30125331 PMCID: PMC6117090 DOI: 10.1371/journal.ppat.1007259] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/30/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
The essential role of pathogens in host metabolism is widely recognized, yet the mechanisms by which they affect host physiology remain to be fully defined. Here, we found that NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to possess N-acetylglucosamine (GlcNAc) transferase activity, GlcNAcylates HIF-1α, a master regulator of cellular O2 homeostasis. We determined that NleB-mediated GlcNAcylation at a conserved arginine 18 (Arg18) at the N-terminus of HIF-1α enhanced HIF-1α transcriptional activity, thereby inducing HIF-1α downstream gene expression to alter host glucose metabolism. The arginine transferase activity of NleB was required for its enhancement of HIF-1α transactivity and the subsequent effect on glucose metabolism in a mouse model of EPEC infection. In addition, HIF-1α acted as a mediator to transact NleB-mediated induction of glucose metabolism-associated gene expression under hypoxia. Thus, our results further show a causal link between pathogen infection and host glucose metabolism, and we propose a new mechanism by which this occurs. Accumulating evidence shows that pathogens can affect host metabolism, resulting in human diseases such as obesity and type 2 diabetes. However, how pathogens influence their hosts is still not clear, and this results in a lack of effective and specific clinical treatments. Further investigations into the causes of pathogen disturbance of host metabolism are urgently needed. In this study, we show that a protein molecule, NleB, secreted by enteropathogenic bacteria (EPEC) can get into host cells and modify the function of a master regulator of cellular O2 homeostasis, HIF-1α, thereby altering host glucose metabolism. We show that HIF-1α acts as a mediator to transact NleB-mediated induction of glucose metabolism-associated gene expression under hypoxia. Our results reveal a causal link between pathogen infection and host glucose metabolism, which may provide a new explanation for the causes of human diseases related to metabolic disturbance.
Collapse
Affiliation(s)
- Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Dawei Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, P. R. China
- Biomedical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
7
|
Krzywinska E, Stockmann C. Hypoxia, Metabolism and Immune Cell Function. Biomedicines 2018; 6:E56. [PMID: 29762526 PMCID: PMC6027519 DOI: 10.3390/biomedicines6020056] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a hallmark of inflamed, infected or damaged tissue, and the adaptation to inadequate tissue oxygenation is regulated by hypoxia-inducible factors (HIFs). HIFs are key mediators of the cellular response to hypoxia, but they are also associated with pathological stress such as inflammation, bacteriological infection or cancer. In addition, HIFs are central regulators of many innate and adaptive immunological functions, including migration, antigen presentation, production of cytokines and antimicrobial peptides, phagocytosis as well as cellular metabolic reprogramming. A characteristic feature of immune cells is their ability to infiltrate and operate in tissues with low level of nutrients and oxygen. The objective of this article is to discuss the role of HIFs in the function of innate and adaptive immune cells in hypoxia, with a focus on how hypoxia modulates immunometabolism.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Unit 970, 56 Rue Leblanc, 75015 Paris, France.
| | - Christian Stockmann
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Unit 970, 56 Rue Leblanc, 75015 Paris, France.
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Srinivasan V. Nutrition Support and Tight Glucose Control in Critically Ill Children: Food for Thought! Front Pediatr 2018; 6:340. [PMID: 30460219 PMCID: PMC6232306 DOI: 10.3389/fped.2018.00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/22/2018] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have examined the strategy of tight glucose control (TGC) with intensive insulin therapy (IIT) to improve clinical outcomes in critically ill adults and children. Although early studies of TGC with IIT demonstrated improved outcomes at the cost of elevated hypoglycemia rates, subsequent studies in both adults and children have not demonstrated any benefit from such a strategy. Differences in patient populations, variable glycemic targets, and glucose control protocols, inconsistency in attaining these targets, heterogeneous intermittent sampling, and measurement techniques, and variable expertise in protocol implementation are possible reasons for the contrasting results from these studies. Notably, differences in modes of nutrition support may have also contributed to these disparate results. In particular, combined use of early parenteral nutrition (PN) and a strategy of TGC with IIT may be associated with improved outcomes, while combined use of enteral nutrition (EN) and a strategy of TGC with IIT may be associated with equivocal or worse outcomes. This article critically examines published clinical trials that have employed a strategy of TGC with IIT in critically ill children to highlight the role of EN vs. PN in influencing clinical outcomes including efficacy of TGC, and adverse effects such as occurrence of hypoglycemia and hospital acquired infections. The perspective afforded by this article should help practitioners consider the potential importance of mode of nutrition support in impacting key clinical outcomes if they should choose to employ a strategy of TGC with IIT in critically ill children with hyperglycemia.
Collapse
Affiliation(s)
- Vijay Srinivasan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Roach RC, Wagner PD, Ainslie PN, Hackett PH. Translation in Progress: Hypoxia 2017. J Appl Physiol (1985) 2017; 123:922-925. [PMID: 29025903 DOI: 10.1152/japplphysiol.00846.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Robert C Roach
- University of Colorado Altitude Research Center, Department of Medicine, Anschutz Medical Campus, Aurora, Colorado;
| | - Peter D Wagner
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Canada; and
| | - Peter H Hackett
- University of Colorado Altitude Research Center, Department of Medicine, Anschutz Medical Campus, Aurora, Colorado.,Institute for Altitude Medicine, Telluride, Colorado
| |
Collapse
|