1
|
Walther FJ, Waring AJ. Structure and Function of Canine SP-C Mimic Proteins in Synthetic Surfactant Lipid Dispersions. Biomedicines 2024; 12:163. [PMID: 38255268 PMCID: PMC10813813 DOI: 10.3390/biomedicines12010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Lung surfactant is a mixture of lipids and proteins and is essential for air breathing in mammals. The hydrophobic surfactant proteins B and C (SP-B and SP-C) assist in reducing surface tension in the lung alveoli by organizing the surfactant lipids. SP-B deficiency is life-threatening, and a lack of SP-C can lead to progressive interstitial lung disease. B-YL (41 amino acids) is a highly surface-active, sulfur-free peptide mimic of SP-B (79 amino acids) in which the four cysteine residues are replaced by tyrosine. Mammalian SP-C (35 amino acids) contains two cysteine-linked palmitoyl groups at positions 5 and 6 in the N-terminal region that override the β-sheet propensities of the native sequence. Canine SP-C (34 amino acids) is exceptional because it has only one palmitoylated cysteine residue at position 4 and a phenylalanine at position 5. We developed canine SP-C constructs in which the palmitoylated cysteine residue at position 4 is replaced by phenylalanine (SP-Cff) or serine (SP-Csf) and a glutamic acid-lysine ion-lock was placed at sequence positions 20-24 of the hydrophobic helical domain to enhance its alpha helical propensity. AI modeling, molecular dynamics, circular dichroism spectroscopy, Fourier Transform InfraRed spectroscopy, and electron spin resonance studies showed that the secondary structure of canine SP-Cff ion-lock peptide was like that of native SP-C, suggesting that substitution of phenylalanine for cysteine has no apparent effect on the secondary structure of the peptide. Captive bubble surfactometry demonstrated higher surface activity for canine SP-Cff ion-lock peptide in combination with B-YL in surfactant lipids than with canine SP-Csf ion-lock peptide. These studies demonstrate the potential of canine SP-Cff ion-lock peptide to enhance the functionality of the SP-B peptide mimic B-YL in synthetic surfactant lipids.
Collapse
Affiliation(s)
- Frans J. Walther
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alan J. Waring
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Moya F, Curstedt T, Johansson J, Sweet D. Synthetic surfactants. Semin Fetal Neonatal Med 2023; 28:101503. [PMID: 38036308 DOI: 10.1016/j.siny.2023.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Fernando Moya
- Division of Wilmington Pediatric Subspecialties, Department of Pediatrics, UNC School of Medicine, USA
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Dept of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83, Huddinge Sweden
| | - David Sweet
- Regional Neonatal Unit, Royal Maternity Hospital, Grosvenor Road, Belfast, UK.
| |
Collapse
|
3
|
Mikolka P, Kronqvist N, Haegerstrand-Björkman M, Jaudzems K, Kosutova P, Kolomaznik M, Saluri M, Landreh M, Calkovska A, Curstedt T, Johansson J. Synthetic surfactant with a combined SP-B and SP-C analogue is efficient in rabbit models of adult and neonatal respiratory distress syndrome. Transl Res 2023; 262:60-74. [PMID: 37499744 DOI: 10.1016/j.trsl.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Respiratory distress syndrome (RDS) in premature infants is caused by insufficient amounts of endogenous lung surfactant and is efficiently treated with replacement therapy using animal-derived surfactant preparations. On the other hand, adult/acute RDS (ARDS) occurs secondary to for example, sepsis, aspiration of gastric contents, and multitrauma and is caused by alveolar endothelial damage, leakage of plasma components into the airspaces and inhibition of surfactant activity. Instillation of surfactant preparations in ARDS has so far resulted in very limited treatment effects, partly due to inactivation of the delivered surfactants in the airspace. Here, we develop a combined surfactant protein B (SP-B) and SP-C peptide analogue (Combo) that can be efficiently expressed and purified from Escherichia coli without any solubility or purification tag. NMR spectroscopy shows that Combo peptide forms α-helices both in organic solvents and in lipid micelles, which coincide with the helical regions described for the isolated SP-B and SP-C parts. Artificial Combo surfactant composed of synthetic dipalmitoylphosphatidylcholine:palmitoyloleoylphosphatidylglycerol, 1:1, mixed with 3 weights % relative to total phospholipids of Combo peptide efficiently improves tidal volumes and lung gas volumes at end-expiration in a premature rabbit fetus model of RDS. Combo surfactant also improves oxygenation and respiratory parameters and lowers cytokine release in an acid instillation-induced ARDS adult rabbit model. Combo surfactant is markedly more resistant to inhibition by albumin and fibrinogen than a natural-derived surfactant in clinical use for the treatment of RDS. These features of Combo surfactant make it attractive for the development of novel therapies against human ARDS.
Collapse
Affiliation(s)
- Pavol Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Marie Haegerstrand-Björkman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Petra Kosutova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maros Kolomaznik
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Mihkel Saluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden.
| |
Collapse
|
4
|
Walther FJ, Waring AJ. Aerosol Delivery of Lung Surfactant and Nasal CPAP in the Treatment of Neonatal Respiratory Distress Syndrome. Front Pediatr 2022; 10:923010. [PMID: 35783301 PMCID: PMC9240419 DOI: 10.3389/fped.2022.923010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2023] Open
Abstract
After shifting away from invasive mechanical ventilation and intratracheal instillation of surfactant toward non-invasive ventilation with nasal CPAP and less invasive surfactant administration in order to prevent bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome, fully non-invasive surfactant nebulization is the next Holy Grail in neonatology. Here we review the characteristics of animal-derived (clinical) and new advanced synthetic lung surfactants and improvements in nebulization technology required to secure optimal lung deposition and effectivity of non-invasive lung surfactant administration. Studies in surfactant-deficient animals and preterm infants have demonstrated the safety and potential of non-invasive surfactant administration, but also provide new directions for the development of synthetic lung surfactant destined for aerosol delivery, implementation of breath-actuated nebulization and optimization of nasal CPAP, nebulizer circuit and nasal interface. Surfactant nebulization may offer a truly non-invasive option for surfactant delivery to preterm infants in the near future.
Collapse
Affiliation(s)
- Frans J. Walther
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Alan J. Waring
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Control Release 2022; 342:170-188. [PMID: 34813878 PMCID: PMC8605818 DOI: 10.1016/j.jconrel.2021.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well as their global deployment is time-consuming and challenging. In addition, such preventive measures have no effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID-19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat respiratory infections, in particular COVID-19.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Basabe-Burgos O, Landreh M, Rising A, Curstedt T, Jan Johansson. Treatment of Respiratory Distress Syndrome with Single Recombinant Polypeptides that Combine Features of SP-B and SP-C. ACS Chem Biol 2021; 16:2864-2873. [PMID: 34878249 DOI: 10.1021/acschembio.1c00816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of respiratory distress syndrome (RDS) with surfactant replacement therapy in prematurely born infants was introduced more than 30 years ago; however, the surfactant preparations currently in clinical use are extracts from animal lungs. A synthetic surfactant that matches the currently used nature-derived surfactant preparations and can be produced in a cost-efficient manner would enable worldwide treatment of neonatal RDS and could also be tested against lung diseases in adults. The major challenge in developing fully functional synthetic surfactant preparations is to recapitulate the properties of the hydrophobic lung surfactant proteins B (SP-B) and SP-C. Here, we have designed single polypeptides that combine properties of SP-B and SP-C and produced them recombinantly using a novel solubility tag based on spider silk production. These Combo peptides mixed with phospholipids are as efficient as nature-derived surfactant preparations against neonatal RDS in premature rabbit fetuses.
Collapse
Affiliation(s)
- Oihana Basabe-Burgos
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden
| | - Michael Landreh
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, SE-171 65 Stockholm, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 751 23 Uppsala, Sweden
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden
| |
Collapse
|
7
|
Walther FJ, Chan H, Smith JR, Tauber M, Waring AJ. Aerosol, chemical and physical properties of dry powder synthetic lung surfactant for noninvasive treatment of neonatal respiratory distress syndrome. Sci Rep 2021; 11:16439. [PMID: 34385559 PMCID: PMC8360972 DOI: 10.1038/s41598-021-95999-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022] Open
Abstract
Inhalation of dry powder synthetic lung surfactant may assist spontaneous breathing by providing noninvasive surfactant therapy for premature infants supported with nasal continuous positive airway pressure. Surfactant was formulated using spray-drying with different phospholipid compositions (70 or 80 total weight% and 7:3 or 4:1 DPPC:POPG ratios), a surfactant protein B peptide analog (KL4, Super Mini-B, or B-YL), and Lactose or Trehalose as excipient. KL4 surfactant underperformed on initial adsorption and surface activity at captive bubble surfactometry. Spray-drying had no effect on the chemical composition of Super Mini-B and B-YL peptides and surfactant with these peptides had excellent surface activity with particle sizes and fine particle fractions that were well within the margins for respiratory particles and similar solid-state properties. Prolonged exposure of the dry powder surfactants with lactose as excipient to 40 °C and 75% humidity negatively affected hysteresis during dynamic cycling in the captive bubble surfactometer. Dry powder synthetic lung surfactants with 70% phospholipids (DPPC and POPG at a 7:3 ratio), 25% trehalose and 3% of SMB or B-YL showed excellent surface activity and good short-term stability, thereby qualifying them for potential clinical use in premature infants.
Collapse
Affiliation(s)
- Frans J Walther
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA.
| | - Holly Chan
- Acorda Therapeutics Inc., Waltham, MA, 02451, USA
| | | | - Mike Tauber
- Acorda Therapeutics Inc., Waltham, MA, 02451, USA
| | - Alan J Waring
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
|
9
|
Basabe-Burgos O, Ahlström JZ, Mikolka P, Landreh M, Johansson J, Curstedt T, Rising A. Efficient delipidation of a recombinant lung surfactant lipopeptide analogue by liquid-gel chromatography. PLoS One 2019; 14:e0226072. [PMID: 31800629 PMCID: PMC6892477 DOI: 10.1371/journal.pone.0226072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
Pulmonary surfactant preparations extracted from natural sources have been used to treat millions of newborn babies with respiratory distress syndrome (RDS) and can possibly also be used to treat other lung diseases. Due to costly production and limited supply of animal-derived surfactants, synthetic alternatives are attractive. The water insolubility and aggregation-prone nature of the proteins present in animal-derived surfactant preparations have complicated development of artificial surfactant. A non-aggregating analog of lung surfactant protein C, SP-C33Leu is used in synthetic surfactant and we recently described an efficient method to produce rSP-C33Leu in bacteria. Here rSP-C33Leu obtained by salt precipitation of bacterial extracts was purified by two-step liquid gel chromatography and analyzed using mass spectrometry and RP-HPLC, showing that it is void of modifications and adducts. Premature New Zealand White rabbit fetuses instilled with 200mg/kg of 2% of rSP-C33Leu in phospholipids and ventilated with a positive end expiratory pressure showed increased tidal volumes and lung gas volumes compared to animals treated with phospholipids only. This shows that rSP-C33Leu can be purified from bacterial lipids and that rSP-C33Leu surfactant is active against experimental RDS.
Collapse
Affiliation(s)
- Oihana Basabe-Burgos
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Jakub Zebialowicz Ahlström
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Pavol Mikolka
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
- Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michael Landreh
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Tomtebodavägen, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Anna Rising
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
10
|
Zebialowicz Ahlström J, Massaro F, Mikolka P, Feinstein R, Perchiazzi G, Basabe-Burgos O, Curstedt T, Larsson A, Johansson J, Rising A. Synthetic surfactant with a recombinant surfactant protein C analogue improves lung function and attenuates inflammation in a model of acute respiratory distress syndrome in adult rabbits. Respir Res 2019; 20:245. [PMID: 31694668 PMCID: PMC6836435 DOI: 10.1186/s12931-019-1220-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
AIM In acute respiratory distress syndrome (ARDS) damaged alveolar epithelium, leakage of plasma proteins into the alveolar space and inactivation of pulmonary surfactant lead to respiratory dysfunction. Lung function could potentially be restored with exogenous surfactant therapy, but clinical trials have so far been disappointing. These negative results may be explained by inactivation and/or too low doses of the administered surfactant. Surfactant based on a recombinant surfactant protein C analogue (rSP-C33Leu) is easy to produce and in this study we compared its effects on lung function and inflammation with a commercial surfactant preparation in an adult rabbit model of ARDS. METHODS ARDS was induced in adult New Zealand rabbits by mild lung-lavages followed by injurious ventilation (VT 20 m/kg body weight) until P/F ratio < 26.7 kPa. The animals were treated with two intratracheal boluses of 2.5 mL/kg of 2% rSP-C33Leu in DPPC/egg PC/POPG, 50:40:10 or poractant alfa (Curosurf®), both surfactants containing 80 mg phospholipids/mL, or air as control. The animals were subsequently ventilated (VT 8-9 m/kg body weight) for an additional 3 h and lung function parameters were recorded. Histological appearance of the lungs, degree of lung oedema and levels of the cytokines TNFα IL-6 and IL-8 in lung homogenates were evaluated. RESULTS Both surfactant preparations improved lung function vs. the control group and also reduced inflammation scores, production of pro-inflammatory cytokines, and formation of lung oedema to similar degrees. Poractant alfa improved compliance at 1 h, P/F ratio and PaO2 at 1.5 h compared to rSP-C33Leu surfactant. CONCLUSION This study indicates that treatment of experimental ARDS with synthetic lung surfactant based on rSP-C33Leu improves lung function and attenuates inflammation.
Collapse
Affiliation(s)
- J Zebialowicz Ahlström
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - F Massaro
- Anesthesia and Intesive Care, Villa Anthea Hospital, Bari, Italy
| | - P Mikolka
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - R Feinstein
- Department of Pathology, The Swedish National Veterinary Institute, Uppsala, Sweden
| | - G Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - O Basabe-Burgos
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - J Johansson
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - A Rising
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden. .,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
11
|
Walther FJ, Gordon LM, Waring AJ. Advances in synthetic lung surfactant protein technology. Expert Rev Respir Med 2019; 13:499-501. [PMID: 30817233 DOI: 10.1080/17476348.2019.1589372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Frans J Walther
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Departments of Pediatrics and Medicine , Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance , CA , USA
| | - Larry M Gordon
- b Departments of Pediatrics and Medicine , Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance , CA , USA
| | - Alan J Waring
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Departments of Pediatrics and Medicine , Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance , CA , USA
| |
Collapse
|
12
|
Johansson J, Curstedt T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 2019; 285:165-186. [PMID: 30357986 DOI: 10.1111/joim.12845] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment of neonatal respiratory distress syndrome (RDS) using animal-derived lung surfactant preparations has reduced the mortality of handling premature infants with RDS to a 50th of that in the 1960s. The supply of animal-derived lung surfactants is limited and only a part of the preterm babies is treated. Thus, there is a need to develop well-defined synthetic replicas based on key components of natural surfactant. A synthetic product that equals natural-derived surfactants would enable cost-efficient production and could also facilitate the development of the treatments of other lung diseases than neonatal RDS. Recently the first synthetic surfactant that contains analogues of the two hydrophobic surfactant proteins B (SP-B) and SP-C entered clinical trials for the treatment of neonatal RDS. The development of functional synthetic analogues of SP-B and SP-C, however, is considerably more challenging than anticipated 30 years ago when the first structural information of the native proteins became available. For SP-B, a complex three-dimensional dimeric structure stabilized by several disulphides has necessitated the design of miniaturized analogues. The main challenge for SP-C has been the pronounced amyloid aggregation propensity of its transmembrane region. The development of a functional non-aggregating SP-C analogue that can be produced synthetically was achieved by designing the amyloidogenic native sequence so that it spontaneously forms a stable transmembrane α-helix.
Collapse
Affiliation(s)
- J Johansson
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Basabe-Burgos O, Johansson J, Curstedt T. Disulphide Bridges in Surfactant Protein B Analogues Affect Their Activity in Synthetic Surfactant Preparations. Neonatology 2019; 115:134-141. [PMID: 30453306 DOI: 10.1159/000494100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Limited supply and complicated manufacturing procedure of animal-derived surfactants make the development of synthetic surfactants warranted. The synthesis of surfactant protein (SP)-B and SP-C is complicated and several analogues have been developed. Mini-BLeu is an analogue that corresponds to the first and last helix of SP-B joined by a loop and linked by 2 disulphide bridges. SP-C33Leu is an SP-C analogue that can be cost-efficiently produced, but no such analogue has yet been described for SP-B. OBJECTIVE To design short SP-B analogues which lack disulphide bridges, are easy to produce and are efficacious in a preterm rabbit fetus model of neonatal RDS. METHODS Synthetic surfactants were prepared by adding 2 or 8% (w/w) of synthetic variants of Mini-B27, similar to Mini-BLeu but with a short loop, or different peptides covering helix 1 of SP-B to 2% (w/w) of SP-C33Leu in 80 mg/mL of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/egg yolk phosphatidylcholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol, 50: 40: 10 (by weight). Premature newborn rabbit fetuses were treated with 200 mg/kg of the surfactant preparations and ventilated with defined pressures for 30 min without positive end-expiratory pressure. Tidal volumes were registered during the experiments and lung gas volumes were measured at the end of the ventilation period. RESULTS Synthetic surfactant containing the Mini-B27 analogue with 2 disulphides gives similar lung gas volumes as treatment with an animal-derived surfactant preparation, but all other SP-B analogues gave lower lung gas volumes. All synthetic surfactants studied gave no significant differences in compliances except the surfactant containing the Mini-B27 analogue without cysteines that performed somewhat better at 30 min. CONCLUSION The helix-loop-helix SP-B analogues tested in this study require the presence of 2 disulphide bridges for optimal activity in a rabbit RDS model.
Collapse
Affiliation(s)
- Oihana Basabe-Burgos
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Intitutet, Huddinge, Sweden,
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Intitutet, Huddinge, Sweden
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Ronda L, Pioselli B, Catinella S, Salomone F, Marchetti M, Bettati S. Quenching of tryptophan fluorescence in a highly scattering solution: Insights on protein localization in a lung surfactant formulation. PLoS One 2018; 13:e0201926. [PMID: 30075031 PMCID: PMC6075776 DOI: 10.1371/journal.pone.0201926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/24/2018] [Indexed: 11/18/2022] Open
Abstract
CHF5633 (Chiesi Farmaceutici, Italy) is a synthetic surfactant developed for respiratory distress syndrome replacement therapy in pre-term newborn infants. CHF5633 contains two phospholipids (dipalmitoylphosphatidylcholine and 1-palmitoyl-2oleoyl-sn-glycero-3-phosphoglycerol sodium salt), and peptide analogues of surfactant protein C (SP-C analogue) and surfactant protein B (SP-B analogue). Both proteins are fundamental for an optimal surfactant activity in vivo and SP-B genetic deficiency causes lethal respiratory failure after birth. Fluorescence emission of the only tryptophan residue present in SP-B analogue (SP-C analogue has none) could in principle be exploited to probe SP-B analogue conformation, localization and interaction with other components of the pharmaceutical formulation. However, the high light scattering activity of the multi-lamellar vesicles suspension characterizing the pharmaceutical surfactant formulation represents a challenge for such studies. We show here that quenching of tryptophan fluorescence and Singular Value Decomposition analysis can be used to accurately calculate and subtract background scattering. The results indicate, with respect to Trp microenvironment, a conformationally homogeneous population of SP-B. Trp is highly accessible to the water phase, suggesting a surficial localization on the membrane of phospholipid vesicles, similarly to what observed for full length SP-B in natural lung surfactant, and supporting an analogous role in protein anchoring to the lipid phase.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Biopharmanet-TEC, University of Parma, Parma, Italy
- * E-mail: (LR); (SB)
| | | | | | | | | | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Biopharmanet-TEC, University of Parma, Parma, Italy
- Italian National Institute of Biostructures and Biosystems, Rome, Italy
- * E-mail: (LR); (SB)
| |
Collapse
|
15
|
Efficient protein production inspired by how spiders make silk. Nat Commun 2017; 8:15504. [PMID: 28534479 PMCID: PMC5457526 DOI: 10.1038/ncomms15504] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/04/2017] [Indexed: 01/05/2023] Open
Abstract
Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.
Collapse
|
16
|
Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1725-1739. [PMID: 28341439 DOI: 10.1016/j.bbamem.2017.03.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023]
Abstract
Pulmonary surfactant is a complex of lipids and proteins assembled and secreted by the alveolar epithelium into the thin layer of fluid coating the respiratory surface of lungs. There, surfactant forms interfacial films at the air-water interface, reducing dramatically surface tension and thus stabilizing the air-exposed interface to prevent alveolar collapse along respiratory mechanics. The absence or deficiency of surfactant produces severe lung pathologies. This review describes some of the most important surfactant-related pathologies, which are a cause of high morbidity and mortality in neonates and adults. The review also updates current therapeutic approaches pursuing restoration of surfactant operative films in diseased lungs, mainly through supplementation with exogenous clinical surfactant preparations. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Mercedes Echaide
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Chiara Autilio
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Raquel Arroyo
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain.
| |
Collapse
|
17
|
Buxbaum JN, Johansson J. Transthyretin and BRICHOS: The Paradox of Amyloidogenic Proteins with Anti-Amyloidogenic Activity for Aβ in the Central Nervous System. Front Neurosci 2017; 11:119. [PMID: 28360830 PMCID: PMC5350149 DOI: 10.3389/fnins.2017.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Amyloid fibrils are physiologically insoluble biophysically specific β-sheet rich structures formed by the aggregation of misfolded proteins. In vivo tissue amyloid formation is responsible for more than 30 different disease states in humans and other mammals. One of these, Alzheimer's disease (AD), is the most common form of human dementia for which there is currently no definitive treatment. Amyloid fibril formation by the amyloid β-peptide (Aβ) is considered to be an underlying cause of AD, and strategies designed to reduce Aβ production and/or its toxic effects are being extensively investigated in both laboratory and clinical settings. Transthyretin (TTR) and proteins containing a BRICHOS domain are etiologically associated with specific amyloid diseases in the CNS and other organs. Nonetheless, it has been observed that TTR and BRICHOS structures are efficient inhibitors of Aβ fibril formation and toxicity in vitro and in vivo, raising the possibility that some amyloidogenic proteins, or their precursors, possess properties that may be harnessed for combating AD and other amyloidoses. Herein, we review properties of TTR and the BRICHOS domain and discuss how their abilities to interfere with amyloid formation may be employed in the development of novel treatments for AD.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research InstituteLa Jolla, CA, USA; Scintillon InstituteSan Diego, CA, USA
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Center for Alzheimer Research, Karolinska Institutet Huddinge, Sweden
| |
Collapse
|
18
|
Gupta R, Hernández-Juviel JM, Waring AJ, Walther FJ. Synthetic lung surfactant reduces alveolar-capillary protein leakage in surfactant-deficient rabbits. Exp Lung Res 2016; 41:293-9. [PMID: 26052829 DOI: 10.3109/01902148.2015.1024354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF THE STUDY Alveolar-capillary leakage of proteinaceous fluid impairs alveolar ventilation and surfactant function and decreases lung compliance in acute lung injury. We investigated the correlation between lung function and total protein levels in bronchoalveolar lavage fluid (BALF) of ventilated, lavaged surfactant-deficient rabbits treated with various clinical and synthetic lung surfactant preparations. MATERIALS AND METHODS 109 ventilated, young adult New Zealand White rabbits underwent lung lavage to induce surfactant-deficiency (PaO2 <100 torr in 100% O2), were treated with a clinical surfactant or a synthetic surfactant preparation with surfactant protein B (SP-B) and/or surfactant protein C (SP-C) analogs, and mechanically ventilated for 120 min. Total protein levels in postmortem BALF were correlated with arterial PO2 (PaO2) and dynamic lung compliance values at 120 min post-surfactant treatment. RESULTS Repeated lung lavages decreased mean PaO2 values from 540 to 58 torr and lung compliance from 0.64 to 0.33 mL/kg/cm H2O. Two hours after surfactant therapy and mechanical ventilation, mean PaO2 values had increased to 346 torr and lung compliance to 0.44 mL/kg/cm H2O. Eighty-six rabbits (79%) responded to surfactant therapy with an increase in PaO2 to values >200 torr. Fourteen non-responders received inactive surfactant preparations. BALF protein levels were inversely correlated with PaO2 and lung compliance (P < .001). Surfactant preparations containing both SP-B and SP-C proteins or peptide analogs outperformed single protein/peptide preparations. CONCLUSIONS Clinical and synthetic surfactant therapy reduces alveolar-capillary protein leakage in surfactant-deficient rabbits. Surfactant preparations with both SP-B and SP-C (analogs) were more efficient than preparations with SP-B or SP-C alone.
Collapse
Affiliation(s)
- Rohun Gupta
- 1Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | | | | | | |
Collapse
|
19
|
Calkovska A, Linderholm B, Haegerstrand-Björkman M, Pioselli B, Pelizzi N, Johansson J, Curstedt T. Phospholipid Composition in Synthetic Surfactants Is Important for Tidal Volumes and Alveolar Stability in Surfactant-Treated Preterm Newborn Rabbits. Neonatology 2016; 109:177-85. [PMID: 26757268 DOI: 10.1159/000442874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The development of synthetic surfactants for the treatment of lung pulmonary diseases has been going on for many years. OBJECTIVES To investigate the effects of phospholipid mixtures combined with SP-B and SP-C analogues on lung functions in an animal model of respiratory distress syndrome. METHODS Natural and synthetic phospholipid mixtures with/without SP-B and/or SP-C analogues were instilled in ventilated premature newborn rabbits. Lung functions were evaluated. RESULTS Treatment with Curosurf or phospholipids from Curosurf combined with SP-B and SP-C analogues gave similar results. Treatment with phospholipids from adult rabbit lungs or liver combined with dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylglycerol (POPG) gave tidal volumes (VT) well above physiological levels, but alveolar stability at end-expiration was only achieved when these phospholipids were combined with analogues of SP-B and SP-C. Treatment with egg yolk-PC mixed with DPPC with and without POPG gave small VT, but after addition of both analogues VT was only somewhat lower and lung gas volumes (LGV) similar to those obtained with Curosurf. Substitution of egg yolk-PC (≥99% PC) with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine, and combining them with DPPC, POPG and 2% each of the SP-B and SP-C analogue gave a completely synthetic surfactant with similar effects on VT and LGV as Curosurf. CONCLUSIONS Phospholipid composition is important for VT while the SP-B and SP-C analogues increase alveolar stability at end-expiration. Synthetic surfactant consisting of unsaturated and saturated phosphatidylcholines, POPG and the analogues of SP-B and SP-C has similar activity as Curosurf regarding VT and LGV in an animal model using preterm newborn rabbits ventilated without positive end-expiratory pressure.
Collapse
Affiliation(s)
- Andrea Calkovska
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Landreh M, Rising A, Presto J, Jörnvall H, Johansson J. Specific chaperones and regulatory domains in control of amyloid formation. J Biol Chem 2015; 290:26430-6. [PMID: 26354437 DOI: 10.1074/jbc.r115.653097] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many proteins can form amyloid-like fibrils in vitro, but only about 30 amyloids are linked to disease, whereas some proteins form physiological amyloid-like assemblies. This raises questions of how the formation of toxic protein species during amyloidogenesis is prevented or contained in vivo. Intrinsic chaperoning or regulatory factors can control the aggregation in different protein systems, thereby preventing unwanted aggregation and enabling the biological use of amyloidogenic proteins. The molecular actions of these chaperones and regulators provide clues to the prevention of amyloid disease, as well as to the harnessing of amyloidogenic proteins in medicine and biotechnology.
Collapse
Affiliation(s)
- Michael Landreh
- From the Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 5QY, United Kingdom
| | - Anna Rising
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden, the Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, 751 23 Uppsala, Sweden
| | - Jenny Presto
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden
| | - Hans Jörnvall
- the Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | - Jan Johansson
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden, the Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, 751 23 Uppsala, Sweden, the Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 101 20 Tallinn, Estonia
| |
Collapse
|
21
|
Sáenz A, Presto J, Lara P, Akinyi-Oloo L, García-Fojeda B, Nilsson I, Johansson J, Casals C. Folding and Intramembraneous BRICHOS Binding of the Prosurfactant Protein C Transmembrane Segment. J Biol Chem 2015; 290:17628-41. [PMID: 26041777 DOI: 10.1074/jbc.m114.630343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Indexed: 12/19/2022] Open
Abstract
Surfactant protein C (SP-C) is a novel amyloid protein found in the lung tissue of patients suffering from interstitial lung disease (ILD) due to mutations in the gene of the precursor protein pro-SP-C. SP-C is a small α-helical hydrophobic protein with an unusually high content of valine residues. SP-C is prone to convert into β-sheet aggregates, forming amyloid fibrils. Nature's way of solving this folding problem is to include a BRICHOS domain in pro-SP-C, which functions as a chaperone for SP-C during biosynthesis. Mutations in the pro-SP-C BRICHOS domain or linker region lead to amyloid formation of the SP-C protein and ILD. In this study, we used an in vitro transcription/translation system to study translocon-mediated folding of the WT pro-SP-C poly-Val and a designed poly-Leu transmembrane (TM) segment in the endoplasmic reticulum (ER) membrane. Furthermore, to understand how the pro-SP-C BRICHOS domain present in the ER lumen can interact with the TM segment of pro-SP-C, we studied the membrane insertion properties of the recombinant form of the pro-SP-C BRICHOS domain and two ILD-associated mutants. The results show that the co-translational folding of the WT pro-SP-C TM segment is inefficient, that the BRICHOS domain inserts into superficial parts of fluid membranes, and that BRICHOS membrane insertion is promoted by poly-Val peptides present in the membrane. In contrast, one BRICHOS and one non-BRICHOS ILD-associated mutant could not insert into membranes. These findings support a chaperone function of the BRICHOS domain, possibly together with the linker region, during pro-SP-C biosynthesis in the ER.
Collapse
Affiliation(s)
- Alejandra Sáenz
- From the Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040 Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jenny Presto
- the Center for Alzheimer Research, NVS (Neurobiology, Care Sciences, and Society) Department, Karolinska Institutet, S-141 57 Huddinge, Sweden, and
| | - Patricia Lara
- the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, S-10691 Stockholm, Sweden
| | - Laura Akinyi-Oloo
- the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, S-10691 Stockholm, Sweden
| | - Belén García-Fojeda
- the Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - IngMarie Nilsson
- the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, S-10691 Stockholm, Sweden
| | - Jan Johansson
- the Center for Alzheimer Research, NVS (Neurobiology, Care Sciences, and Society) Department, Karolinska Institutet, S-141 57 Huddinge, Sweden, and
| | - Cristina Casals
- From the Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040 Madrid, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain,
| |
Collapse
|
22
|
Curstedt T, Halliday HL, Speer CP. A unique story in neonatal research: the development of a porcine surfactant. Neonatology 2015; 107:321-9. [PMID: 26044099 DOI: 10.1159/000381117] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surfactant deficiency was identified as the cause of respiratory distress syndrome (RDS) as long ago as 1959. Trials of surfactant replacement in the 1960s were unsuccessful because the preparations used contained only phospholipids and they were administered inefficiently by nebulization. In the 1970s Bengt Robertson and Göran Enhörning showed that natural surfactant, containing both phospholipids and proteins, could ameliorate the signs of RDS in immature rabbits. In the 1980s Bengt Robertson and Tore Curstedt developed a porcine surfactant, Curosurf (named after their surnames), which was effective in immature animals and was used in a pilot clinical trial beginning in 1983. Subsequent randomized clinical trials were planned a year later by Bengt Robertson, Tore Curstedt and Henry Halliday, and the first trial was begun in 1985. This showed that Curosurf reduced pulmonary air leaks and neonatal mortality in preterm infants with severe RDS. A second trial, coordinated by Christian Speer, demonstrated that multiple doses of Curosurf were more effective than a single dose. Subsequent trials conducted by the Collaborative European Multicenter Study Group, which included among others Guilio Bevilacqua, Janna Koppe, Ola Saugstad, Nils Svenningsen and Jean-Pierre Relier, showed that early treatment was more effective than later administration and that infants treated at birth had similar neurodevelopmental status to untreated controls at a corrected age of 2 years. Members of the Collaborative European Multicenter Study Group in Denmark and Sweden performed studies to demonstrate the benefits of a combination of surfactant treatment and early continuous positive airway pressure. Curosurf has also been compared with several synthetic and natural surfactants, and at a dose of 200 mg/kg Curosurf has been shown to be superior to either Survanta or Curosurf used at a dose of 100 mg/kg. Recently, new-generation synthetic surfactants containing both phospholipids and proteins have been developed. After preclinical testing, CHF5633 (developed by Tore Curstedt and Jan Johansson in collaboration with Chiesi Farmaceutici) has undergone a preliminary first study in humans under the guidance of Christian Speer. If effective, this new surfactant preparation could revolutionize the treatment of preterm infants worldwide as it could be made consistently and safely in almost unlimited quantities. This story of a porcine surfactant preparation has been truly remarkable, and many thousands of preterm babies worldwide are now alive and well because of it.
Collapse
Affiliation(s)
- Tore Curstedt
- Section of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
23
|
Walther FJ, Waring AJ, Hernández-Juviel JM, Ruchala P, Wang Z, Notter RH, Gordon LM. Surfactant protein C peptides with salt-bridges ("ion-locks") promote high surfactant activities by mimicking the α-helix and membrane topography of the native protein. PeerJ 2014; 2:e485. [PMID: 25083348 PMCID: PMC4106191 DOI: 10.7717/peerj.485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/23/2014] [Indexed: 11/20/2022] Open
Abstract
Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as ‘helical adjuvants’ to maintain activity by overriding the β-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges (“ion-locks”) promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu−–Lys+ into the parent SP-C’s. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with ‘amyloid-like’ properties. The enhanced β-sheet properties for SP-Css and SP-Cff are likely responsible for their low surfactant activities in the in vitro and in vivo assays. Although standard 12C-FTIR study showed that the α-helicity of these SP-C sequences in lipids was uniformly increased with Glu−–Lys+ insertions, elevated surfactant activity was only selectively observed. Additional results from oriented and H/D exchange FTIR experiments indicated that the high surfactant activities depend on the SP-C ion-locks recapitulating both the α-helicity and the membrane topography of native SP-C. SP-Css ion-lock 1, an SP-Css with a salt-bridge for a Glu−–Lys+ ion-pair predicted from MPEx hydropathy calculations, demonstrated enhanced surfactant activity and a transmembrane helix simulating those of native SP-C. Conclusion. Highly active SP-C mimics were developed that replace the palmitoyls of SP-C with intrapeptide salt-bridges and represent a new class of synthetic surfactants with therapeutic interest.
Collapse
Affiliation(s)
- Frans J Walther
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , United States of America ; Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , United States of America
| | - Alan J Waring
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , United States of America ; Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , United States of America ; Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , United States of America ; Department of Physiology & Biophysics, School of Medicine, University of California , Irvine, CA , United States of America
| | - José M Hernández-Juviel
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , United States of America
| | - Piotr Ruchala
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , United States of America
| | - Zhengdong Wang
- Department of Pediatrics, University of Rochester , Rochester, NY , United States of America
| | - Robert H Notter
- Department of Pediatrics, University of Rochester , Rochester, NY , United States of America
| | - Larry M Gordon
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , United States of America
| |
Collapse
|
24
|
Walther FJ, Hernández-Juviel JM, Gordon LM, Waring AJ. Synthetic surfactant containing SP-B and SP-C mimics is superior to single-peptide formulations in rabbits with chemical acute lung injury. PeerJ 2014; 2:e393. [PMID: 24883253 PMCID: PMC4034647 DOI: 10.7717/peerj.393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
Background. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions. Objectives. Surfactant inactivation and formation of free radicals are important pathways in (chemical) ALI. We tested the potential of lipid mixtures with advanced surfactant protein B and C (SP-B and C) mimics to improve oxygenation and lung compliance in rabbits with lavage- and chemical-induced ALI/ARDS. Methods. Ventilated young adult rabbits underwent repeated saline lung lavages or underwent intratracheal instillation of hydrochloric acid to induce ALI/ARDS. After establishment of respiratory failure rabbits were treated with a single intratracheal dose of 100 mg/kg of synthetic surfactant composed of 3% Super Mini-B (S-MB), a SP-B mimic, and/or SP-C33 UCLA, a SP-C mimic, in a lipid mixture (DPPC:POPC:POPG 5:3:2 by weight), the clinical surfactant Infasurf®, a bovine lung lavage extract with SP-B and C, or synthetic lipids alone. End-points consisted of arterial oxygenation, dynamic lung compliance, and protein and lipid content in bronchoalveolar lavage fluid. Potential mechanism of surfactant action for S-MB and SP-C33 UCLA were investigated with captive bubble surfactometry (CBS) assays. Results. All three surfactant peptide/lipid mixtures and Infasurf equally lowered the minimum surface tension on CBS, and also improved oxygenation and lung compliance. In both animal models, the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA led to better arterial oxygenation and lung compliance than single peptide synthetic surfactants and Infasurf. Synthetic surfactants and Infasurf improved lung function further in lavage- than in chemical-induced respiratory failure, with the difference probably due to greater capillary-alveolar protein leakage and surfactant dysfunction after HCl instillation than following lung lavage. At the end of the duration of the experiments, synthetic surfactants provided more clinical stability in ALI/ARDS than Infasurf, and the protein content of bronchoalveolar lavage fluid was lowest for the two-peptide synthetic surfactant with S-MB and SP-C33 UCLA. Conclusion. Advanced synthetic surfactant with robust SP-B and SP-C mimics is better equipped to tackle surfactant inactivation in chemical ALI than synthetic surfactant with only a single surfactant peptide or animal-derived surfactant.
Collapse
Affiliation(s)
- Frans J Walther
- Department of Pediatrics, Division of Medical Genetics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center , Torrance, CA , USA ; Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles , USA
| | - José M Hernández-Juviel
- Department of Pediatrics, Division of Medical Genetics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center , Torrance, CA , USA
| | - Larry M Gordon
- Department of Pediatrics, Division of Medical Genetics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center , Torrance, CA , USA
| | - Alan J Waring
- Department of Medicine, Division of Molecular Medicine, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Harbor-UCLA Medical Center , Torrance, CA , USA ; Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , USA ; Department of Physiology & Biophysics, School of Medicine, University of California Irvine , CA , USA
| |
Collapse
|
25
|
El-Gendy N, Kaviratna A, Berkland C, Dhar P. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders. Ther Deliv 2013; 4:951-80. [PMID: 23919474 PMCID: PMC3840129 DOI: 10.4155/tde.13.72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung surfactant is crucial for optimal pulmonary function throughout life. An absence or deficiency of surfactant can affect the surfactant pool leading to respiratory distress. Even if the coupling between surfactant dysfunction and the underlying disease is not always well understood, using exogenous surfactants as replacement is usually a standard therapeutic option in respiratory distress. Exogenous surfactants have been extensively studied in animal models and clinical trials. The present article provides an update on the evolution of surfactant therapy, types of surfactant treatment, and development of newer-generation surfactants. The differences in the performance between various surfactants are highlighted and advanced research that has been conducted so far in developing the optimal delivery of surfactant is discussed.
Collapse
Affiliation(s)
- Nashwa El-Gendy
- Department of Pharmaceutical Chemistry, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Beni-suef University, Egypt
| | - Anubhav Kaviratna
- Department of Chemical & Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
- Department of Chemical & Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
| | - Prajnaparamita Dhar
- Department of Chemical & Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
| |
Collapse
|
26
|
Seehase M, Collins JJP, Kuypers E, Jellema RK, Ophelders DRMG, Ospina OL, Perez-Gil J, Bianco F, Garzia R, Razzetti R, Kramer BW. New surfactant with SP-B and C analogs gives survival benefit after inactivation in preterm lambs. PLoS One 2012; 7:e47631. [PMID: 23091635 PMCID: PMC3473048 DOI: 10.1371/journal.pone.0047631] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Respiratory distress syndrome in preterm babies is caused by a pulmonary surfactant deficiency, but also by its inactivation due to various conditions, including plasma protein leakage. Surfactant replacement therapy is well established, but clinical observations and in vitro experiments suggested that its efficacy may be impaired by inactivation. A new synthetic surfactant (CHF 5633), containing synthetic surfactant protein B and C analogs, has shown comparable effects on oxygenation in ventilated preterm rabbits versus Poractant alfa, but superior resistance against inactivation in vitro. We hypothesized that CHF 5633 is also resistant to inactivation by serum albumin in vivo. METHODOLOGY/PRINCIPAL FINDINGS Nineteen preterm lambs of 127 days gestational age (term = 150 days) received CHF 5633 or Poractant alfa and were ventilated for 48 hours. Ninety minutes after birth, the animals received albumin with CHF 5633 or Poractant alfa. Animals received additional surfactant if P(a)O(2) dropped below 100 mmHg. A pressure volume curve was done post mortem and markers of pulmonary inflammation, surfactant content and biophysiology, and lung histology were assessed. CHF 5633 treatment resulted in improved arterial pH, oxygenation and ventilation efficiency index. The survival rate was significantly higher after CHF 5633 treatment (5/7) than after Poractant alfa (1/8) after 48 hours of ventilation. Biophysical examination of the surfactant recovered from bronchoalveolar lavages revealed that films formed by CHF 5633-treated animals reached low surface tensions in a wider range of compression rates than films from Poractant alfa-treated animals. CONCLUSIONS For the first time a synthetic surfactant containing both surfactant protein B and C analogs showed significant benefit over animal derived surfactant in an in vivo model of surfactant inactivation in premature lambs.
Collapse
Affiliation(s)
- Matthias Seehase
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jennifer J. P. Collins
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elke Kuypers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Olga L. Ospina
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain
- Department of Physics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - J. Perez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain
| | - Federico Bianco
- Research and Development Department, Chiesi Farmaceutici SpA, Parma, Italy
| | - Raffaella Garzia
- Research and Development Department, Chiesi Farmaceutici SpA, Parma, Italy
| | - Roberta Razzetti
- Research and Development Department, Chiesi Farmaceutici SpA, Parma, Italy
| | - Boris W. Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
27
|
Calkovska A, Linderholm B, Haegerstrand-Björkman M, Curstedt T. Properties of modified natural surfactant after exposure to fibrinogen in vitro and in an animal model of respiratory distress syndrome. Pediatr Res 2012; 72:262-9. [PMID: 22691953 DOI: 10.1038/pr.2012.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Plasma proteins are known to interfere with pulmonary surfactant. Studies have proven the hypothesis that fibrinogen preserves exogenous surfactant subjected to long-term surface area cycling. METHODS The exogenous surfactant Curosurf was subjected to long-term surface area cycling without or with fibrinogen (ratio 2:1 w/w) and was tested by captive bubble surfactometer and on newborn premature rabbits. RESULTS Surface tension increased in Curosurf (80 mg/ml) samples without fibrinogen after 6-12 d of cycling. In samples with fibrinogen the cycling time had no effect on surface tension. Addition of fibrinogen to surfactant prevented lipid peroxidation. Lung gas volumes of animals with noncycled Curosurf or Curosurf cycled with fibrinogen for 6 d were comparable and higher than in rabbits with Curosurf cycled without fibrinogen. Alveolar volume density was higher in groups with noncycled Curosurf or Curosurf cycled with fibrinogen than in Curosurf cycled without fibrinogen (both P < 0.001). CONCLUSION The effect of fibrinogen on pulmonary surfactant cycled at 37 °C depends both on surfactant concentration and cycling time. At high phospholipid concentration used in clinical practice fibrinogen has a protective effect on biophysical and physiological properties of natural modified surfactant subjected to surface area cycling. This effect is partially mediated by reduction in lipid peroxidation.
Collapse
Affiliation(s)
- Andrea Calkovska
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | |
Collapse
|
28
|
Ma CCH, Ma S. The role of surfactant in respiratory distress syndrome. Open Respir Med J 2012; 6:44-53. [PMID: 22859930 PMCID: PMC3409350 DOI: 10.2174/1874306401206010044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/20/2012] [Accepted: 06/15/2012] [Indexed: 11/22/2022] Open
Abstract
The key feature of respiratory distress syndrome (RDS) is the insufficient production of surfactant in the lungs of preterm infants. As a result, researchers have looked into the possibility of surfactant replacement therapy as a means of preventing and treating RDS. We sought to identify the role of surfactant in the prevention and management of RDS, comparing the various types, doses, and modes of administration, and the recent development. A PubMed search was carried out up to March 2012 using phrases: surfactant, respiratory distress syndrome, protein-containing surfactant, protein-free surfactant, natural surfactant, animal-derived surfactant, synthetic surfactant, lucinactant, surfaxin, surfactant protein-B, surfactant protein-C.Natural, or animal-derived, surfactant is currently the surfactant of choice in comparison to protein-free synthetic surfactant. However, it is hoped that the development of protein-containing synthetic surfactant, such as lucinactant, will rival the efficacy of natural surfactants, but without the risks of their possible side effects. Administration techniques have also been developed with nasal continuous positive airway pressure (nCPAP) and selective surfactant administration now recommended; multiple surfactant doses have also reported better outcomes. An aerosolised form of surfactant is being trialled in the hope that surfactant can be administered in a non-invasive way. Overall, the advancement, concerning the structure of surfactant and its mode of administration, offers an encouraging future in the management of RDS.
Collapse
|
29
|
Knudsen L, Boxler L, Mühlfeld C, Schaefer IM, Becker L, Bussinger C, von Stietencron I, Madershahian N, Richter J, Wahlers T, Wittwer T, Ochs M. Lung preservation in experimental ischemia/reperfusion injury and lung transplantation: A comparison of natural and synthetic surfactants. J Heart Lung Transplant 2012; 31:85-93. [DOI: 10.1016/j.healun.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/31/2011] [Accepted: 10/04/2011] [Indexed: 11/24/2022] Open
|
30
|
BRICHOS domain associated with lung fibrosis, dementia and cancer - a chaperone that prevents amyloid fibril formation? FEBS J 2011; 278:3893-904. [DOI: 10.1111/j.1742-4658.2011.08209.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Almlén A, Vandenbussche G, Linderholm B, Haegerstrand-Björkman M, Johansson J, Curstedt T. Alterations of the C-terminal end do not affect in vitro or in vivo activity of surfactant protein C analogs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:27-32. [PMID: 21284935 DOI: 10.1016/j.bbamem.2011.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 01/10/2011] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
Abstract
The secondary structure, orientation and hydrogen/deuterium exchange of SP-C33, a surfactant protein C analog, in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/egg phosphatidylglycerol (8:2, wt./wt.) bilayers, was studied by attenuated total reflection Fourier transform infrared spectroscopy. This showed a transmembrane α-helix, in which about 55% of the amide hydrogens do not exchange for up to 20 h. Moreover, C-terminally modified SP-C33, either truncated after position 30, or having the methionine at position 31 exchanged for either lysine or isoleucine, showed the same secondary structure and orientation. The different peptides, suspended in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol 68:31 (wt./wt.), were tested for surfactant activity in vitro in a captive bubble surfactometer and in vivo in an animal model of respiratory distress syndrome using premature rabbit fetuses. All preparations showed similar surface activity in the captive bubble surfactometer. Also, in the rabbit model, all preparations performed equally well and significantly better than non-treated controls, both regarding tidal volumes and lung gas volumes. Thus, truncation or residue replacements in the C-terminal part of SP-C33 do not seem to affect membrane association or surfactant activity.
Collapse
Affiliation(s)
- Andreas Almlén
- Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
32
|
Almlén A, Walther FJ, Waring AJ, Robertson B, Johansson J, Curstedt T. Synthetic surfactant based on analogues of SP-B and SP-C is superior to single-peptide surfactants in ventilated premature rabbits. Neonatology 2010; 98:91-9. [PMID: 20110733 PMCID: PMC2914361 DOI: 10.1159/000276980] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 08/26/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Respiratory distress syndrome (RDS) is currently treated with surfactant preparations obtained from natural sources and attempts to develop equally active synthetic surfactants have been unsuccessful. One difference in composition is that naturally derived surfactants contain the two hydrophobic proteins SP-B and SP-C while synthetic preparations contain analogues of either SP-B or SP-C. It was recently shown that both SP-B and SP-C (or SP-C33, an SP-C analogue) are necessary to establish alveolar stability at end-expiration in a rabbit RDS model, as reflected by high lung gas volumes without application of positive end-expiratory pressure. OBJECTIVES To study the efficacy of fully synthetic surfactants containing analogues of both SP-B and SP-C compared to surfactants with only one protein analogue. METHODS Premature newborn rabbits, treated with synthetic surfactants, were ventilated for 30 min without positive end-expiratory pressure. Tidal volumes as well as lung gas volumes at end-expiration were determined. RESULTS Treatment with 2% Mini-B (a short-cut version of SP-B) and 2% SP-C33, or its C-terminally truncated form SP-C30, in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol, 68:31 (w/w) resulted in median lung gas volumes of 8-9 ml/kg body weight, while animals treated with 2% Mini-B surfactant or 2% SP-C33/SP-C30 surfactant had lung gas volumes of 3-4 ml/kg, and those treated with Curosurf, a porcine surfactant, 15-17 ml/kg. In contrast, mixing SP-C33 with peptides with different distributions of positively charged and hydrophobic residues did not improve lung gas volumes. CONCLUSIONS The data indicate that synthetic surfactants containing analogues of both SP-B and SP-C might be superior to single-peptide surfactants in the treatment of RDS.
Collapse
Affiliation(s)
- Andreas Almlén
- Department of Molecular Medicine and Surgery, Section of Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Nerelius C, Fitzen M, Johansson J. Amino acid sequence determinants and molecular chaperones in amyloid fibril formation. Biochem Biophys Res Commun 2010; 396:2-6. [DOI: 10.1016/j.bbrc.2010.02.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/13/2010] [Indexed: 10/19/2022]
|
34
|
Stichtenoth G, Linderholm B, Björkman MH, Walter G, Curstedt T, Herting E. Prophylactic intratracheal polymyxin B/surfactant prevents bacterial growth in neonatal Escherichia coli pneumonia of rabbits. Pediatr Res 2010; 67:369-74. [PMID: 20035246 DOI: 10.1203/pdr.0b013e3181d026f6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In neonatal pneumonia, the surface activity of pulmonary surfactant is impaired and microorganisms may invade by passing the air-liquid interface. Previously, we have shown that addition of the antimicrobial peptide polymyxin B (PxB) to modified porcine surfactant (pSF) improves resistance to surfactant inactivation in vitro while antimicrobial activity of PxB is maintained. In this study, we investigated pSF/PxB in vivo. Neonatal near-term rabbits were treated with intratracheal pSF and/or PxB. Rabbits treated with only saline served as controls. Animals were ventilated with standardized tidal volumes and received ∼10(7) Escherichia coli intratracheally. Plethysmographic pressure-volume curves were recorded every 30 min. After 240 min, animals were killed, the right lung and left kidney were excised, and bacterial growth was determined. The left lung was used for histologic analysis. Intratracheal administration of PxB ± pSF significantly reduced the growth of E. coli compared with control animals or animals receiving only pSF. This was accompanied by reduction of severe inflammatory tissue destruction and significantly reduced bacterial translocation to the left kidney. Animals receiving pSF + PxB had no difference in lung compliance compared with the pSF- or PxB-treated group. Mixtures of PxB and pulmonary surfactant show antimicrobial effects in neonatal rabbits and prevent systemic spreading of E. coli.
Collapse
Affiliation(s)
- Guido Stichtenoth
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden.
| | | | | | | | | | | |
Collapse
|
35
|
Inactivation of pulmonary surfactant by silicone oil in vitro and in ventilated immature rabbits. Crit Care Med 2009; 37:1750-6. [PMID: 19325472 DOI: 10.1097/ccm.0b013e31819fb42c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Surface activity of pulmonary surfactant is impaired by exposure to syringes lubricated with silicone oil (SO). These syringes are used daily in clinical practice. DESIGN In vitro experiments were used for detection of SO, determination of surface activity, and semiquantitative measurement of surfactant protein (SP)-B and -C in SO/surfactant mixtures. Randomized, controlled animal studies were applied for determination of in vivo activity. SETTING University research laboratory. INTERVENTIONS Mass spectrometry of SO originating from syringes with and without surfactant was performed. The surface activity of SO plus surfactant phospholipids (PLs) or modified natural surfactant (Curosurf) was measured. SO/Curosurf preparations were further analyzed for changes in the content of SP-B and SP-C using immunoblotting. Neonatal rabbits received mixtures of SO/Curosurf (ratio 0-1.3 mg/mg PL) intratracheally and were then ventilated with a standardized sequence of peak insufflation pressures. Tidal volume curves were recorded, gas volumes of excised lungs were measured, and histologic analysis was performed. MEASUREMENTS AND MAIN RESULTS Dissolved SO was found after rinsing syringes with organic solvents or Curosurf. Surface activity of Curosurf was significantly reduced after addition of 0.13-1.3 mg SO/mg PL. Immunoblotting revealed interference of SO with SP-B, but not with SP-C. With increasing SO/Curosurf ratios, patchy alveolar air expansion was observed, lung gas volumes were reduced, and time to inflate the lungs was increased, whereas compliance and tidal volumes remained unimpaired. CONCLUSIONS In vitro SO impairs surface activity of Curosurf and leads to interference with SP-B. SO contamination of exogenous surfactant impairs lung function in animal studies and should be avoided.
Collapse
|
36
|
Mutations linked to interstitial lung disease can abrogate anti-amyloid function of prosurfactant protein C. Biochem J 2008; 416:201-9. [PMID: 18643778 DOI: 10.1042/bj20080981] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The newly synthesized proSP-C (surfactant protein C precursor) is an integral ER (endoplasmic reticulum) membrane protein with a single metastable polyvaline alpha-helical transmembrane domain that comprises two-thirds of the mature peptide. More than 20 mutations in the ER-lumenal CTC (C-terminal domain of proSP-C), are associated with ILD (interstitial lung disease), and some of the mutations cause intracellular accumulation of cytotoxic protein aggregates and a corresponding decrease in mature SP-C. In the present study, we showed that: (i) human embryonic kidney cells expressing the ILD-associated mutants proSP-C(L188Q) and proSP-C(DeltaExon4) accumulate Congo Red-positive amyloid-like inclusions, whereas cells transfected with the mutant proSP-C(I73T) do not; (ii) transfection of CTC into cells expressing proSP-C(L188Q) results in a stable CTC-proSP-C(L188Q) complex, increased proSP-C(L188Q) half-life and reduced formation of Congo Red-positive deposits; (iii) replacement of the metastable polyvaline transmembrane segment with a stable polyleucine transmembrane segment likewise prevents formation of amyloid-like proSP-C(L188Q) aggregates; and (iv) binding of recombinant CTC to non-helical SP-C blocks SP-C amyloid fibril formation. These results suggest that CTC can prevent the polyvaline segment of proSP-C from promoting formation of amyloid-like deposits during biosynthesis, by binding to non-helical conformations. Mutations in the Brichos domain of proSP-C may lead to ILD via loss of CTC chaperone function.
Collapse
|
37
|
Abstract
Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design considerations but makes use of a non-natural, poly-N-substituted glycine or "peptoid" scaffold to circumvent the difficulties associated with SP-C. By incorporating unique biomimetic side chains in a non-natural backbone, the peptoid mimic captures both SP-C's hydrophobic patterning and its helical secondary structure. Despite the differences in structure, both SP-C33 and the SP-C peptoid mimic capture many requisite features of SP-C. In a surfactant environment, these analogues also replicate many of the key surface activities necessary for a functional biomimetic surfactant therapy while overcoming the difficulties associated with the natural protein. With improved stability, greater production potential, and elimination of possible pathogenic contamination, these biomimetic surfactant formulations offer not only the potential to improve the treatment of respiratory distress syndrome but also the opportunity to treat other respiratory-related disorders.
Collapse
Affiliation(s)
- Nathan J. Brown
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
| | - Jan Johansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, SE-751 23 Uppsala, Sweden
| | - Annelise E. Barron
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, California 94305
| |
Collapse
|
38
|
Almlén A, Stichtenoth G, Linderholm B, Haegerstrand-Björkman M, Robertson B, Johansson J, Curstedt T. Surfactant proteins B and C are both necessary for alveolar stability at end expiration in premature rabbits with respiratory distress syndrome. J Appl Physiol (1985) 2008; 104:1101-8. [DOI: 10.1152/japplphysiol.00865.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modified natural surfactant preparations, used for treatment of respiratory distress syndrome in premature infants, contain phospholipids and the hydrophobic surfactant protein (SP)-B and SP-C. Herein, the individual and combined effects of SP-B and SP-C were evaluated in premature rabbit fetuses treated with airway instillation of surfactant and ventilated without positive end-expiratory pressure. Artificial surfactant preparations composed of synthetic phospholipids mixed with either 2% (wt/wt) of porcine SP-B, SP-C, or a synthetic poly-Leu analog of SP-C (SP-C33) did not stabilize the alveoli at the end of expiration, as measured by low lung gas volumes of ∼5 ml/kg after 30 min of ventilation. However, treatment with phospholipids containing both SP-B and SP-C/SP-C33 approximately doubled lung gas volumes. Doubling the SP-C33 content did not affect lung gas volumes. The tidal volumes were similar in all groups receiving surfactant. This shows that SP-B and SP-C exert different physiological effects, since both proteins are needed to establish alveolar stability at end expiration in this animal model of respiratory distress syndrome, and that an optimal synthetic surfactant probably requires the presence of mimics of both SP-B and SP-C.
Collapse
|
39
|
Brown NJ, Wu CW, Seurynck-Servoss SL, Barron AE. Effects of Hydrophobic Helix Length and Side Chain Chemistry on Biomimicry in Peptoid Analogues of SP-C. Biochemistry 2008; 47:1808-18. [PMID: 18197709 DOI: 10.1021/bi7021975] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan J. Brown
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, and Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, California 94305
| | - Cindy W. Wu
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, and Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, California 94305
| | - Shannon L. Seurynck-Servoss
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, and Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, California 94305
| | - Annelise E. Barron
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, and Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, California 94305
| |
Collapse
|
40
|
Almlén A, Stichtenoth G, Robertson B, Johansson J, Curstedt T. Concentration dependence of a poly-leucine surfactant protein C analogue on in vitro and in vivo surfactant activity. Neonatology 2007; 92:194-200. [PMID: 17476119 DOI: 10.1159/000102057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/10/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Modified natural surfactants currently used for treatment of respiratory distress syndrome contain about 0.5-1% (w/w phospholipids) of each of the surfactant proteins SP-B and SP-C. The supply of these preparations is limited and synthetic surfactant preparations containing lipids and peptides are under development. OBJECTIVES To investigate the potential of different concentrations of the SP-C analogue SP-C33 in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (68:31, w/w). METHODS Surface activity was evaluated in pulsating and captive bubble surfactometers and in immature newborn rabbits. RESULTS Preparations containing >or=1% SP-C33 achieve minimum surface tension <5 mN/m indicating good biophysical activity, and increase tidal volumes in premature rabbit fetuses to the same level as a modified natural surfactant preparation does. Alveolar patency at end expiration, as evaluated by measurement of lung gas volumes, histological assessment of alveolar expansion and determination of alveolar volume density, was lower in the animals treated with synthetic surfactant than in those receiving modified natural surfactant. CONCLUSIONS These data suggest that SP-C33 is similarly efficient as the native peptide in improving surface properties of phospholipids mixtures and in increasing lung compliance in surfactant-deficient states, but that other components are needed to maintain alveolar stability at low airway pressures.
Collapse
Affiliation(s)
- Andreas Almlén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
41
|
Mazela J, Merritt TA, Gadzinowski J, Sinha S. Evolution of pulmonary surfactants for the treatment of neonatal respiratory distress syndrome and paediatric lung diseases. Acta Paediatr 2006; 95:1036-48. [PMID: 16938747 DOI: 10.1080/08035250600615168] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
UNLABELLED This review documents the evolution of surfactant therapy, beginning with observations of surfactant deficiency in respiratory distress syndrome, the basis of exogenous surfactant treatment and the development of surfactant-containing novel peptides patterned after SP-B. We critically analyse the molecular interactions of surfactant proteins and phospholipids contributing to surfactant function. CONCLUSION Peptide-containing surfactant provides clinical efficacy in the treatment of respiratory distress syndrome and offers promise for treating other lung diseases in infancy.
Collapse
Affiliation(s)
- Jan Mazela
- Department of Neonatology, Poznan University of Medical Sciences, Poznan, and Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | | | | |
Collapse
|
42
|
Abstract
Animal-derived surfactant preparations are very effective in the treatment of premature infants with respiratory distress syndrome but they are expensive to produce and supplies are limited. In order to widen the indications for surfactant treatment there is a need for synthetic preparations, which can be produced in large quantities and at a reasonable cost. However, development of clinically active synthetic surfactants has turned out to be more complicated than initially anticipated. The hydrophobic surfactant proteins, SP-B and SP-C, which are involved in the adsorption of surface-active lipids to the air-liquid interface of the alveoli and increase alveolar stability, are either too big to synthesize, structurally complex or unstable in pure form. A new generation of synthetic surfactants containing simplified phospholipid mixtures and small amounts of peptides replacing the hydrophobic proteins is currently under development and will in the near future be introduced into the market. However, more trials need to be performed before any conclusions can be drawn about the effectiveness of these synthetic surfactants in relation to natural animal-derived preparations.
Collapse
Affiliation(s)
- Tore Curstedt
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
43
|
Sáenz A, Cañadas O, Bagatolli LA, Johnson ME, Casals C. Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4. FEBS J 2006; 273:2515-27. [PMID: 16704424 DOI: 10.1111/j.1742-4658.2006.05258.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surfactant-like membranes containing the 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL4), have been clinically tested as a therapeutic agent for respiratory distress syndrome in premature infants. The aims of this study were to investigate the interactions between the KL4 peptide and lipid bilayers, and the role of both the lipid composition and KL4 structure on the surface adsorption activity of KL4-containing membranes. We used bilayers of three-component systems [1,2-dipalmitoyl-phosphatidylcholine/1-palmitoyl-2-oleoyl-phosphatidylglycerol/palmitic acid (DPPC/POPG/PA) and DPPC/1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/PA] and binary lipid mixtures of DPPC/POPG and DPPC/PA to examine the specific interaction of KL4 with POPG and PA. We found that, at low peptide concentrations, KL4 adopted a predominantly alpha-helical secondary structure in POPG- or POPC-containing membranes, and a beta-sheet structure in DPPC/PA vesicles. As the concentration of the peptide increased, KL4 interconverted to a beta-sheet structure in DPPC/POPG/PA or DPPC/POPC/PA vesicles. Ca2+ favored alpha<-->beta interconversion. This conformational flexibility of KL4 did not influence the surface adsorption activity of KL4-containing vesicles. KL4 showed a concentration-dependent ordering effect on POPG- and POPC-containing membranes, which could be linked to its surface activity. In addition, we found that the physical state of the membrane had a critical role in the surface adsorption process. Our results indicate that the most rapid surface adsorption takes place with vesicles showing well-defined solid/fluid phase co-existence at temperatures below their gel to fluid phase transition temperature, such as those of DPPC/POPG/PA and DPPC/POPC/PA. In contrast, more fluid (DPPC/POPG) or excessively rigid (DPPC/PA) KL4-containing membranes fail in their ability to adsorb rapidly onto and spread at the air-water interface.
Collapse
Affiliation(s)
- Alejandra Sáenz
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Li J, Liepinsh E, Almlén A, Thyberg J, Curstedt T, Jörnvall H, Johansson J. Structure and influence on stability and activity of the N-terminal propeptide part of lung surfactant protein C. FEBS J 2006; 273:926-35. [PMID: 16478467 DOI: 10.1111/j.1742-4658.2006.05124.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mature lung surfactant protein C (SP-C) corresponds to residues 24-58 of the 21 kDa proSP-C. A late processing intermediate, SP-Ci, corresponding to residues 12-58 of proSP-C, lacks the surface activity of SP-C, and the SP-Ci alpha-helical structure does not unfold in contrast to the metastable nature of the SP-C helix. The NMR structure of an analogue of SP-Ci, SP-Ci(1-31), with two palmitoylCys replaced by Phe and four Val replaced by Leu, in dodecylphosphocholine micelles and in ethanol shows that its alpha-helix vs. that of SP-C is extended N-terminally. The Arg-Phe part in SP-Ci that is cleaved to generate SP-C is localized in a turn structure, which is followed by a short segment in extended conformation. Circular dichroism spectroscopy of SP-Ci(1-31) in microsomal or surfactant lipids shows a mixture of helical and extended conformation at pH 6, and a shift to more unordered structure at pH 5. Replacement of the N-terminal hexapeptide segment SPPDYS (known to constitute a signal in intracellular targeting) of SP-Ci with AAAAAA results in a peptide that is mainly unstructured, independent of pH, in microsomal and surfactant lipids. Addition of a synthetic dodecapeptide, corresponding to the propeptide part of SP-Ci, to mature SP-C results in slower aggregation kinetics and altered amyloid fibril formation, and reduces the surface activity of phospholipid-bound SP-C. These data suggest that the propeptide part of SP-Ci prevents unfolding by locking the N-terminal part of the helix, and that acidic pH results in structural disordering of the region that is proteolytically cleaved to generate SP-C.
Collapse
Affiliation(s)
- Jing Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gastiasoro-Cuesta E, Alvarez-Diaz FJ, Rey-Santano C, Arnaiz-Renedo A, Loureiro-Gonzalez B, Valls-i-Soler A. Acute and sustained effects of lucinactant versus poractant-alpha on pulmonary gas exchange and mechanics in premature lambs with respiratory distress syndrome. Pediatrics 2006; 117:295-303. [PMID: 16452346 DOI: 10.1542/peds.2005-0378] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Animal-derived, protein-containing surfactants seem to be superior to protein-free surfactants. Lucinactant, a synthetic surfactant containing a surfactant protein-B peptide analog, has been shown to be effective in animal models and phase II clinical trials. To date, lucinactant has not been compared with an animal-derived surfactant in a premature animal model. OBJECTIVE The objective was to compare the acute and sustained effects of lucinactant among premature lambs with respiratory distress syndrome (RDS) with the effects of a natural porcine surfactant (poractant-alpha). METHODS After 5 minutes of mechanical ventilation twin premature lambs were assigned randomly to the lucinactant group (30 mg/mL, 5.8 mL/kg) or the poractant-alpha group (80 mg/mL, 2.2 mL/kg). Heart rate, systemic arterial pressure, arterial pH, blood gas values, and lung mechanics were recorded for 12 hours. RESULTS Baseline fetal pH values were similar for the 2 groups (pH 7.27). After 5 minutes of mechanical ventilation, severe RDS developed (pH: <7.08; Paco2: >80 mm Hg; Pao2: <40 mm Hg; dynamic compliance: <0.08 mL/cm H2O per kg). After surfactant instillation, similar improvements in gas exchange and lung mechanics were observed for the lucinactant and poractant-alpha groups at 1 hour (pH: 7.3 +/- 0.1 vs 7.4 +/- 0.1; Paco2: 8 +/- 18 mm Hg vs 40 +/- 8 mm Hg; Pao2: 167 +/- 52 mm Hg vs 259 +/- 51 mm Hg; dynamic compliance: 0.3 +/- 0.1 mL/cm H2O per kg vs 0.3 +/- 0.1 mL/cm H2O per kg). The improvements in lung function were sustained, with no differences between groups. Cardiovascular profiles remained stable in both groups. CONCLUSIONS Among preterm lambs with severe RDS, lucinactant produced improvements in gas exchange and lung mechanics similar to those observed with a porcine-derived surfactant.
Collapse
Affiliation(s)
- Elena Gastiasoro-Cuesta
- Department of Pediatrics, Hospital de Cruces, University of the Basque Country, Barakaldo, Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of surface-active lipids to the air-liquid interface of the alveoli and are essential for alveolar stability and gas exchange. Synthetic surfactant preparations must contain at least one of these hydrophobic proteins, or analogs thereof, to have optimal effects when administered into the airways of patients with lung diseases. However, development of clinically active artificial surfactants has turned out to be more complicated than initially anticipated since the native hydrophobic proteins are structurally complex or unstable in pure form. The proteins have been replaced by different analogs which have the right conformation without forming oligomers. Increased understanding of the surfactant proteins will hopefully lead to development of effective synthetic surfactants which can be produced in large quantities for treatment of a wide range of respiratory disorders. Furthermore, the lipid composition seems to be important, as well as a high lipid concentration in the suspension. For successful treatment of many respiratory diseases, it is also desirable that the synthetic surfactant resists inactivation by plasma components leaking into the alveoli.
Collapse
Affiliation(s)
- Tore Curstedt
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
47
|
Abstract
Development of clinically active synthetic surfactants has turned out to be more complicated than initially anticipated. Surfactant protein analogues must have the right conformation without forming oligomers. Furthermore, the lipid composition, as well as a high lipid concentration in the suspension seem to be important. For successful treatment of many respiratory diseases, it is desirable that the synthetic surfactant may stabilize the alveoli at end-expiration and may resist inactivation by components leaking into the alveoli.
Collapse
Affiliation(s)
- Tore Curstedt
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Li J, Hosia W, Hamvas A, Thyberg J, Jörnvall H, Weaver TE, Johansson J. The N-terminal Propeptide of Lung Surfactant Protein C is Necessary for Biosynthesis and Prevents Unfolding of a Metastable α-Helix. J Mol Biol 2004; 338:857-62. [PMID: 15111052 DOI: 10.1016/j.jmb.2004.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 03/07/2004] [Accepted: 03/12/2004] [Indexed: 11/18/2022]
Abstract
The lung surfactant-associated protein C (SP-C) consists mainly of a polyvaline alpha-helix, which is stable in a lipid membrane. However, in agreement with the predicted beta-strand conformation of a polyvaline segment, helical SP-C unfolds and transforms into beta-sheet aggregates and amyloid fibrils within a few days in aqueous organic solvents. SP-C fibril formation and aggregation have been associated with lung disease. Here, we show that in a recently isolated biosynthetic precursor of SP-C (SP-Ci), a 12 residue N-terminal propeptide locks the metastable polyvaline part in a helical conformation. The SP-Ci helix does not aggregate or unfold during several weeks of incubation, as judged by hydrogen/deuterium exchange and mass spectrometry. Hydrogen/deuterium exchange experiments further indicate that the propeptide reduces exchange in parts corresponding to mature SP-C. Finally, in an acidic environment, SP-Ci unfolds and aggregates into amyloid fibrils like SP-C. These data suggest a direct role of the N-terminal propeptide in SP-C biosynthesis.
Collapse
Affiliation(s)
- Jing Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|